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Classifying early infant feeding 
status from clinical notes using 
natural language processing 
and machine learning
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The objective of this study is to develop and evaluate natural language processing (NLP) and machine 
learning models to predict infant feeding status from clinical notes in the Epic electronic health 
records system. The primary outcome was the classification of infant feeding status from clinical 
notes using Medical Subject Headings (MeSH) terms. Annotation of notes was completed using 
TeamTat to uniquely classify clinical notes according to infant feeding status. We trained 6 machine 
learning models to classify infant feeding status: logistic regression, random forest, XGBoost gradient 
descent, k‑nearest neighbors, and support‑vector classifier. Model comparison was evaluated based 
on overall accuracy, precision, recall, and F1 score. Our modeling corpus included an even number 
of clinical notes that was a balanced sample across each class. We manually reviewed 999 notes that 
represented 746 mother‑infant dyads with a mean gestational age of 38.9 weeks and a mean maternal 
age of 26.6 years. The most frequent feeding status classification present for this study was exclusive 
breastfeeding [n = 183 (18.3%)], followed by exclusive formula bottle feeding [n = 146 (14.6%)], and 
exclusive feeding of expressed mother’s milk [n = 102 (10.2%)], with mixed feeding being the least 
frequent [n = 23 (2.3%)]. Our final analysis evaluated the classification of clinical notes as breast, 
formula/bottle, and missing. The machine learning models were trained on these three classes after 
performing balancing and down sampling. The XGBoost model outperformed all others by achieving 
an accuracy of 90.1%, a macro‑averaged precision of 90.3%, a macro‑averaged recall of 90.1%, and a 
macro‑averaged F1 score of 90.1%. Our results demonstrate that natural language processing can be 
applied to clinical notes stored in the electronic health records to classify infant feeding status. Early 
identification of breastfeeding status using NLP on unstructured electronic health records data can 
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be used to inform precision public health interventions focused on improving lactation support for 
postpartum patients.

Human milk is the optimal source of nutrition for infant health and  development1,2. The benefits of human milk 
include greater neurocognitive development and protection against infection, gastroenteritis, respiratory infec-
tions, obesity, diabetes, childhood leukemia, and sudden infant death  syndrome1,2. The World Health Organiza-
tion advises that infants should be exclusively breastfed for the initial 6 months of their lives and continue to 
receive breast milk alongside suitable solid foods until the age of two years or  more3. Despite this opportunity 
in preventative health, recent statistics from the Centers for Disease Control and Prevention (CDC) show that 
although approximately 8 out of 10 (83.9%) infants in the U.S. start breastfeeding at birth, merely 1 out of 4 
(26.8%) continue to breastfeed exclusively for 6  months4. Further, in-hospital formula feeding during the first 
48 h of life is associated with a shorter duration of exclusive breastfeeding, and supporting lactation during the 
early postpartum period is critical for optimizing long-term milk  volume5–8. Early identification of in-hospital 
breastfeeding status presents an important opportunity for directing population-level interventions focused on 
improving exclusive breastfeeding rates.

Electronic health records (EHRs) represent a longitudinal repository of structured and unstructured data 
that can enable large-scale evaluation of health outcomes that breastfeeding  outcomes9,10. Despite the relative 
accessibility of structured EHR data, large-scale investigation of breastfeeding is hindered by missing  data11, lack 
of standardized  templates12, and national registries that require manual review by frontline health care  workers12. 
In contrast, clinical notes are comprised of unstructured narratives and other free text written by clinicians that 
contain rich subjective data. Due to the limitations of manual chart review, the examination of clinical notes 
requires the use of natural language processing (NLP)10. Natural language processing is a field of research that has 
produced methods intended to extract meaning (“semantics”) from natural language text, such as the unstruc-
tured data found in clinical  notes13. Given the rate at which unstructured clinical information is created, auto-
mated solutions such as NLP are vital for analyzing texts efficiently and extracting useful infant feeding  data10.

Natural language processing has been successful in examining clinical notes to identify complex maternal and 
pediatric conditions including severe maternal  morbidity14, child respiratory  illness15, neurodevelopment after 
preterm  birth16, postpartum self-harm17, and infant feeding in the presence of congenital heart  defects18. More 
recently, NLP methods focused on breastfeeding were used to extract lactation-specific drug information from 
US Food and Drug Administration–approved medication labels and the publicly available National Library of 
Medicine Drugs and Lactation  Database19. However, the use of NLP to analyze clinical notes to identify breast-
feeding status in early postnatal populations has yet to be explored. This study leverages NLP methods to classify 
clinical notes according to infant feeding status using de-identified linked maternal-infant EHRs collected from 
the University of Florida (UF) Health Integrated Data Repository (IDR), a large-scale clinical data warehouse 
that securely stores US Health Insurance Portability and Accountability Act (HIPAA)-compliant and institutional 
review board-approved data  sets20.

Methods
Data source and study population
Electronic health records for mothers and their infants, which had been de-identified and linked, were gathered 
from UF Health Shands Hospital in Gainesville, Florida, United States between June 1, 2011, and April 30, 2017. 
UF Health is a teaching hospital and major referral center serving a largely rural population in north central 
Florida and neighboring regions. The obstetric unit is a 27-bed, Baby-Friendly accredited facility. A trustworthy 
intermediary from the UF Health IDR utilized fully identified data to execute the linkage, subsequently stripping 
away identifiers from the connected dataset prior to distributing the de-identified data to the research  team21. 
Demographic details, including the type of insurance at the time of delivery, age, race, and ethnicity, were 
obtained from the maternal records, while information on each infant’s sex, race, and ethnicity was derived from 
the infant’s records. It is important to note that, as part of standard care, all infant records within the UF Health 
system are connected to their respective maternal records. Our study included infants born within the UF Health 
system who had attended at least one postnatal well visit. Given that infant feeding information is frequently 
collected across multiple clinical settings, we included all note types in our corpus development. We included 
all clinical notes collected within the first 24 h of delivery and included ambulatory notes, discharge summaries, 
emergency department (ED) observation progress notes, labor and delivery notes, lactation notes, progress 
notes, significant event notes, and operative notes, as well as pathology, cardiology, endoscopy, pulmonary, and 
radiology reports. We developed our corpus by reading through 30 to 50 random notes to develop a library of 
keywords related to infant feeding (Supplementary Information). We then evaluated each clinical note for the 
presence of at least one keyword from our library. The analysis corpus was created by randomly selecting notes 
from the eligible cohort and implementing a rule whereby 80% of the notes had to have at least one keyword. As 
illustrated by Fig. S2, our inclusion criteria for this study included all patients with at least one postnatal visit, 
a delivery visit, and at least one clinical note within ± 2 days of the baby’s date of birth. We further enriched our 
corpus through random sampling to include keywords with the following proportions: 40% breastfeeding, 40% 
express/pump feeding, and 20% non-breast and pump feeding. The final analysis corpus included 999 clinical 
notes that were linked to 746 patients. The research adhered to the principles of the Declaration of Helsinki and 
received approval from the University of Florida’s Institutional Review Board (IRB201601899). Informed con-
sent was waived by the Institutional Review Board of the University of Florida. The original dataset was made 
anonymous in alignment with HIPAA  regulations22.
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Chart review to obtain gold standard labels
Our analysis corpus included medical record reviews of 999 clinical notes performed by two trained annotators. 
Clinical notes were classified according to infant feeding status using Medical Subject Headings (MeSH) terms. 
In this analysis, infant feeding status was classified as (1) exclusive breastfeeding (D001942), (2) exclusive for-
mula/bottle feeding (D001903), and Not-Related. Infants who were fed expressed mother’s milk (using a breast 
pump) were classified as breastfeeding. We only focused on the quantitative infant feeding information pertaining 
to a specific patient and excluded general or instructional information such as the breastfeeding information 
mentioned in guidelines (e.g., “we discussed guidelines with the patient on breastfeeding”). All clinical notes 
were annotated using TeamTat, a clinical language annotation tool that includes corpus quality assessment via 
inter-annotator agreement statistics and an interface for annotation review and inter-annotator disagreement 
 resolution23. Two reviewers examined each chart, and any discrepancies were settled by a third reviewer to reach 
agreement on the infant feeding status. This process also involved resolving any disagreements that arose between 
the initial two reviewers. The conflicts that typically resulted between annotators generally were either syntactic or 
semantic conflicts. Syntactic conflicts included situations when one annotator would highlight a whole sentence 
compared to another annotator highlighting a phrase within that sentence. Semantic conflicts included annota-
tors deciding on whether or not a particular manner of wording within a note constituted or implied a particular 
form of infant feeding status. After resolving conflicts through discussion, we updated the annotation guide to 
mitigate the occurrence of similar future conflicts, increasing annotator agreement rates over the course of each 
project. We had substantial agreement among annotators, with an average inter-annotator agreement of 0.62 
that ranged from 0.6 to 0.7 prior to resolving conflicts as a group. We have included an expanded discussion of 
infant feeding classes (Table S2) and the corpus annotation strategy as Supplementary Information.

Natural language data processing
Our NLP workflow included the use of the TeamTat tool for clinical language annotation and  Python24 scripts for 
preprocessing of clinical notes and the modeling for NLP analysis. Preprocessing of note text included convert-
ing all words to lowercase and removing punctuation, numerical values, and stop words. After preprocessing 
the notes, the remaining words were lemmatized to their base form using the WordNet Lemmatizer. To address 
class imbalance, downsampling was performed to create a test corpus to ensure an equal number of samples 
in each class. The downsampling specifically targeted the NA class, which exhibited an imbalance compared to 
other classes. Prior to downsampling, the dataset had imbalance ratio of 3.428 between the majority (NA) and 
minority classes (bottle feeding). The dataset is split into training and testing sets using a 70:30 ratio. The term 
frequency-inverse document frequency (TF-IDF) vectorizer is employed to convert the text data into numerical 
features. The training data are used to fit the vectorizer, and both the training and testing data are transformed 
into TF-IDF representations. Next, the class labels are encoded into numeric values using LabelEncoder. This 
allows the XGBoost classifier to work with the encoded labels. The XGBoost classifier is then trained using the 
training data and hyperparameter tuning with GridSearchCV. The best model and its corresponding hyperpa-
rameters are identified based on cross-validation performance. Using the best model, predictions are made on 
the testing data. The predicted class labels are inverse transformed to obtain the original class labels. Various 
evaluation metrics such as accuracy, precision, recall, and F1 score are calculated to assess the model’s perfor-
mance. Table S3 outlines the distribution of feeding classes that were used for the analysis, training, and test data.

Machine learning models
We implemented supervised learning models for the classification task.  Python24 and scikit-learn  package25 were 
used for the model development. We did not use any dimension reduction techniques and feature extraction 
included all note words that passed preprocessing. The machine learning models chosen for comparison include 
logistic  regression26,  XGBoost27, support vector classifier, random forest, and k-nearest  neighbors28. Specifically, 
logistic regression is a linear model that converts linear regression with sigmoid function, making it a better fit 
for two-classification problems. It has been widely used for health-related problems and has achieved promising 
 performances29–31. The “one-vs-the-rest” algorithm, also known as “one-vs-all,” is a common approach used by 
logistic regression to handle multiclass classification. Similarly, support vector classifiers (SVCs) also employ the 
one-vs-the-rest strategy for multiclass classification tasks. The k-nearest neighbors (KNN) algorithm categorized 
each sample in the testing data by looking at the “k” samples in the training data that were closest to the test 
sample. Then, it identified the most common class (category) among these “k” nearest samples. This common 
class was then assigned to the test sample. All models were trained with 70% training data and evaluated on 30% 
test data. Our balanced dataset was completed at the note level and included 507 notes that were split into test 
(n = 355 notes) and training (n = 152 notes) sets. Hyperparameters were optimized with fivefold cross-validations 
using the training data.

Ethic statement
The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review 
Board of the University of Florida (IRB201601899).

Informed consent statement
Informed consent was waived by the Institutional Review Board of the University of Florida.
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Results
Table 1 presents the characteristics of patients who delivered an infant at UF Health Shands Hospital between 
June 2011 to April 2017. Patient demographics within the analysis cohort were not significantly different from the 
full or eligible cohort across perinatal variables, including maternal age, gestational age of the infant, and birth 
weight. Supplementary Table S1 includes a complete description of the corpus. Briefly, each note in the analysis 
corpus contained a mean of 776.6 characters, 115.7 words, and 9.3 sentences. Table 2 outlines the classifica-
tion of clinical notes in the analysis cohort according to infant feeding status. The most frequent feeding status 
classification present for this study was breastfeeding [n = 183 (18.3%)], then formula/bottle feeding [n = 146 
(14.6%)], followed by pump/expressed feeding [n = 102 (10.2%)], with mixed feeding being the least frequent 
[n = 23 (2.3%)]. After merging the breastfeeding and express/pump classes, Table S3 shows that nearly 1 in 3 
notes (28.5%) were classified as breastfeeding. Using unbalanced data (Table S4), our averaged performance 
across all models was 72.4% and the best performing models were SVC (81.1%) and XGBoost (80.1%). After 
balancing the data (Table 3), the averaged performance across all models was 76.6%. Within the balanced data, 
our machine learning results revealed the XGBoost model outperformed all others by achieving an accuracy 
of 90.1%, a macro average precision of 90.3%, a macro average recall of 90.1%, and a macro average F1 score of 
90.1%. By majority vote, we also implemented an ensemble method based on algorithms used in this study and 
found the F1 score was generally consistent with our results (data not shown).

Discussion
Overview
In-hospital infant feeding patterns established during the first 48 h of life have been significantly associated with 
the duration of excusive  breastfeeding32. This study found that applying a validated NLP-based workflow and 
machine learning to clinical notes was a technically feasible and highly accurate method of estimating in-hospital 

Table 1.  Patient characteristics for training and testing sets.

Variables Entire cohort Eligible cohort Analysis cohort

N 16,108 1888 746

Note number 659,576 55,699 999

Maternal age (yrs) 27.6 ± 6.0 27.3 ± 5.8 26.6 ± 5.9

Gestational age (wks) 38.2 ± 3.2 38.9 ± 2.0 38.9 ± 2.1

Birth weight (g) 3075.9 ± 738.4 3179.8 ± 565.9 3144.4 ± 569.0

Gender

 Female 7799 (48%) 940 (50%) 369 (49%)

 Male 8308 (52%) 948 (50%) 377 (51%)

Infant feeding present (%) 12.49 16.31 80.2

Table 2.  Distribution of infant feeding classes in the unbalanced analysis corpus.

Classes Analysis (n = 999) (%)

Breastfeeding 183 (18.3)

Bottle feeding 146 (14.6)

Mixed feed 23 (2.3)

Pump/express 102 (10.2)

NA: feeding related 127 (12.7)

NA: not related 418 (41.8)

Table 3.   Model comparison using balanced data. Estimates are averages across all models and the best 
performing model is identified in bold text.

Model Accuracy Precision Recall F1 Score

SVC 0.738 0.739 0.738 0.737

Logistic regression 0.745 0.744 0.745 0.743

XGB classifier 0.901 0.903 0.901 0.901

Random forest classifier 0.843 0.842 0.843 0.842

K neighbors classifier 0.601 0.593 0.601 0.583
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infant feeding patterns during the first 24 h postnatal. The overarching goal for this analysis was to develop simple 
infant feeding classification methods using machine learning that can be easily implemented within pediatric 
health care centers. Our results revealed only a modest difference in the averaged performance across all models 
tested using balanced and unbalanced data (~ 4%). To our knowledge, this is the first NLP-based cross-sectional 
study that identifies perinatal health behavior such as breastfeeding status from clinical notes. Our results high-
light the translational potential for NLP-based tools to facilitate early identification of breastfeeding status in 
postpartum patients. The primary contribution of this study is twofold:

Breastfeeding outcomes
First, we have developed an NLP-based method to extract infant feeding status from unstructured EHR data that 
can be used to enhance population estimates of breastfeeding. Previous estimates of population-level breastfeed-
ing have traditionally relied on self-reporting33, phone call  screenings34, and mobile apps or registries that are 
 costly34, labor intensive, and may be subject to selection  bias35. The adoption of EHRs has enabled structured 
data analysis to estimate population-based breastfeeding outcomes in  Canada33,36 and  Europe37 using  regression37 
and rule-based methods. The limitations of structured EHRs to evaluate breastfeeding include low data  quality12, 
high levels of missing  data38, EHRs-system constraints and the absence of standardized breastfeeding-related 
definitions and external mandates for structured data. An important observation from our study is that NLP is 
a feasible method to extract perinatal outcomes such as infant feeding status from unstructured EHR data that 
include clinical notes, pathology and radiology reports, and continuity of care  documents39–41. Our study extends 
the area of perinatal NLP to include classification of infant feeding status using standard biomedical ontologies 
(e.g., MeSH) and rigorous annotation guidelines that can be used to standardize breastfeeding outcomes extracted 
from unstructured EHR data.

Social and behavioral determinants of health
The secondary contribution of our work is the development of multilevel tools to extract data on infant feeding 
as a behavioral determinant of infant and mother health. Social and behavioral determinants of health (SBDH) 
are powerful drivers of morbidity, mortality, and well-being, and may contribute to perinatal  outcomes42,43. 
Previous work on utilizing NLP for identifying SBDH has focused on factors such as substance abuse, alcohol 
and tobacco use, housing, and food  insecurity44. However, existing SBDH and health behaviors (e.g., smoking, 
alcohol, substance abuse) have not considered perinatal populations. Our developed methods can be extended 
to identify relevant SBDH in perinatal populations.

Strengths
We show multiple classification methods of training clinical notes to identify infant feeding types. The fact that 
simpler models (logistic regression, decision tree, and SVC) perform better indicates that the current infant 
feeding types are fairly distinguishable given the size and number of features of the annotated corpus. We cre-
ated a corpus of fully manually reviewed clinical data (999 notes), which provides a high-quality training and 
evaluation resource for other clinical NLP tasks. Additionally, the included clinics in this study serve patients 
with diverse socioeconomic statuses, suggesting the potential generalizability of our methods. Notably, we have 
achieved promising results using conventional machine learning algorithms, with the advantages of feasibility 
and explainability. Using NLP, hospitals can quickly and regularly characterize infant feeding trends in their own 
populations without waiting for annual surveys to publish breastfeeding trends. Our model achieved its highest 
accuracy of 90% on the test data when trained on the balanced dataset, emphasizing the significance of addressing 
class imbalance for improved performance. In contrast, the accuracy with unbalanced data was 80%, highlighting 
the positive impact of downsampling on the model’s ability to generalize across different classes. Additionally, 
the national survey results frequently do not include underrepresented groups, likely due to selection bias. As a 
result, the statistics may not be generalizable to certain delivery hospitals. NLP can lay the groundwork for com-
munity awareness of current infant feeding practices and thus targeted interventions among all patient groups.

Limitations
There are limitations to our study, including the fact that we used data from a single health system and the termi-
nology used by providers at other institutions to describe infant feeding may differ from that used in the current 
study. Given the size of our corpus and distribution of infant feeding classes, we were underpowered to classify 
breastfeeding and pump/express independently with > 90% accuracy. The classification of infant feeding status 
used in our final analysis included exclusive breastfeeding, exclusive formula/bottle feeding, and Not-Related. 
Infants who were fed expressed mother’s milk (using a breast pump) were classified as breastfeeding. The clas-
sification of “bottle feeding,” as asked at UF Health upon the pregnant mother’s birth hospital admission, is likely 
meant as a synonym for “formula feeding intent” but unfortunately is an inaccurate substitute. “Bottle feeding” 
has dual meaning and thus remains an ambiguous label for infant feeding. Bottle contents can include either 
breast milk or formula milk. Use of “bottle feeding” as a category can cause imprecise estimates of benchmark 
outcome measures such as formula supplementation in hospital. For term, healthy infants, such as in our study, 
bottles may be used to provide expressed breast milk when parents return to work, as a parental preference, or 
due to infant medical needs. The limitation of using “bottle fed” as a surrogate for “formula” illustrates the need 
for a consensus definition of infant feeding including categorizing feeds into clinically relevant categories to 
inform epidemiologic measurements and above programs. Additionally, given that infant feeding information is 
collected across multiple clinical settings, we included all note types in our corpus development. However, we did 
not evaluate the influence of note type and/or how selections within a given note influenced model performance. 
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Working with stakeholders, including EHRs companies, to ensure the most accurate input information will result 
in the maximum potential to utilize NLP for the most meaningful clinical data output.

Future directions
In addition to developing a consensus definition of early infant feeding, future restructuring of NLP categories 
can align hospital data with nationally collected data. Conducted by the CDC, the National Immunization 
Survey–Child focuses on 3 early infant feeding questions as follows: (1) Was [child] ever breastfed or fed breast 
milk? (2) How old was [child’s name] when [child’s name] completely stopped breastfeeding or being fed breast 
milk? (3) How old was [child’s name] when (he/she) was first fed formula? Using NLP as a tool to examine linked 
mother-infant dyad records on birth hospital admission and pediatric outpatient visits has the potential to define 
breastfeeding rates as per the CDC’s classifications of “ever breastfed” or “exclusive breastfeeding,” examining 
duration time points of 3 months, 6 months, 12 months, 18 months, and in the future even up to 24 months. With 
the participation of multiple hospitals, NLP may be able to provide local, state, and federal stakeholders with 
quarterly updates as an alternative to annual update reports from CDC. Clinically, some EHRs can easily generate 
data reports, such as “intention to feed” data entered in drop-down boxes, with predetermined options including 
breast, bottle, or both. However, some data only exist in the bodies of certain notes. An important example is 
status and type of breast pump for the lactating mother. Since this information is only in the body of the lactation 
consultant’s note, it would not be in an EHR report but instead could be made available by utilization of NLP. 
If there are social or economic barriers to obtaining a breast pump, insurance, including Medicaid, will cover a 
breast pump. Using NLP to automatically extract data regarding social or economic barriers to obtaining a breast 
pump from clinical notes in real time will allow physicians, nurses, or lactation consultants to intervene during 
a critical window of lactation, which may affect the mother’s potential lactation duration. Furthermore, future 
experiments with infant feeding classification methods using more advanced data preprocessing approaches like 
FastText, Word2Vec, Doc2Vec, and BERT, more advanced ensemble-like stacking, open-source large language 
models like  LLaMa45, and unsupervised learning (such as clustering and anomaly detection) can be considered. 
Additionally, adding structured EHR data may further improve the model’s  performance46, and structured data 
such as demographics may also impact breastfeeding  outcomes47.

Conclusion
In this study, we developed an NLP-based method for breastfeeding outcome identification from clinical notes. 
We believe that NLP-based identification of infant feeding status has potential as an optimal solution that will 
increase the accuracy of documentation of infant feeding status and can be used to target interventions to support 
breastfeeding in at-risk patients. Implementing our approach will minimize the impact of current documentation 
routines while providing structured data regarding breastfeeding outcomes for clinicians to guide clinical care. 
In the future, we will integrate structured EHR data to further improve the model’s performance.

Data availability
Data is available upon request. Please contact the corresponding author, Dominick Lemas (djlemas@ufl.edu) 
to request the data.
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