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How to experimentally evaluate 
the adiabatic condition 
for quantum annealing
Yuichiro Mori 1*, Shiro Kawabata 1,2* & Yuichiro Matsuzaki 1,2*

We propose an experimental method for evaluating the adiabatic condition during quantum annealing 
(QA), which will be essential for solving practical problems. The adiabatic condition consists of the 
transition matrix element and the energy gap, and our method simultaneously provides information 
about these components without diagonalizing the Hamiltonian. The key idea is to measure the power 
spectrum of a time domain signal by adding an oscillating field during QA, and we can estimate the 
values of the transition matrix element and energy gap from the measurement output. Our results 
provides a powerful experimental basis for analyzing the performance of QA.

The adiabatic theorem is a crucial result in quantum mechanics, first introduced by Ehrenfest in  19161. Later, 
Born and Fock proved a more modern version of the theorem in  19282. The theorem states that if an initial state 
is prepared in the ground state of the Hamiltonian, it will remain in the ground state as long as the change in the 
Hamiltonian is slow enough. Since Born and Fock’s proof in 1928, there have been numerous studies that have 
improved and expanded the theorem, including more rigorous  formulations3 and extensions to open  systems4–6.

An essential application of this theorem is quantum annealing (QA). This was originally proposed by Apol-
loni et al.  in7. The original proposal aimed to improve the simulated annealing utilizing the quantum effects of 
tunneling. However, an alternative approach was subsequently  presented8,9, where the Hamiltonian changes over 
time. In this approach, a ground state of the transverse-field Hamiltonian is prepared, and the Hamiltonian is 
gradually changed to the target problem Hamiltonian. The adiabatic theorem guarantees that if the alteration of 
the Hamiltonian is gradual enough, the final state will be the ground state of the problem Hamiltonian.

QA has been intensively studied from various viewpoints, including the computational  speed10–12, implemen-
tation  methods13,14, and  algorithms15–17. The commercial use of QA machines was pioneered by D-Wave Systems 
Inc. Accordingly, proposals for their use in research and applications in various fields have arisen, including 
examples in quantum  chemistry18,19, machine  learning20,21, and high-energy  physics22. For more information, 
see review  papers23–25.

One of the problems in QA is that there is no known efficient method for checking whether the adiabaticity 
is satisfied or not. In principle, if we can diagonalize the Hamiltonian, we can use an approximate version of the 
adiabatic conditions are given as  follows23,24,26,27:

for all s and m, where Tann denotes the annealing time, s = t/Tann denotes the time normalized by Tann , t denotes 
the time, |m(s)� ( |0(s)� ) denotes the m-th excited (ground) state, Ḣ(s) denotes the s derivative of the instantane-
ous Hamiltonian at a time s and Em(s) ( E0(s) ) denote the eigenenergies of the m-th excited (ground) state (see 
Supplemental Material). Throughout this paper, we consider a dimensionless time s normalized by Tann . These 
conditions are obtained by an argument that considers only the first order perturbation expansion and neglects 
higher order  terms28, and so are not mathematically rigorous. In particular, conditions (1) are not known to be 
sufficient for adiabaticity. However, when the interest is in the qualitative properties of the computation time, 
these conditions are widely used, and so we adopt them as the adiabatic conditions in our paper.

In the case of applying QA to practical problems, it is unworkable to diagonalize the Hamiltonian with using 
a classical computer. Consequently, we cannot directly apply the adidabatic conditions (1) to check whether 

(1)
|�m(s)|Ḣ(s)|0(s)�|
|Em(s)− E0(s)|2

≪ Tann
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the dynamics is adiabatic or not. Experimental methods have been proposed to measure the energy  gap17,29,30, 
which corresponds to the denominator in Eq. (1). However, to our knowledge, no studies have been conducted 
to measure the numerator of the adiabatic condition (1), i.e., the size of the transition matrix element of the time 
derivative of the Hamiltonian.

In this paper, we propose a method for simultaneously measuring the numerator and denominator of Eq. (1). 
This method involves utilizing an oscillating field during quantum annealing to induce a Rabi oscillation between 
the ground and excited states. By performing Fourier transformation on a time domain signal, we obtain a power 
spectrum and extract relevant information from the data. These steps enable us to evaluate the values of the 
numerator and denominator of the adiabatic condition (1).

The remainder of this paper is organized as follows. In Sect. "Review of QA", we review QA. In Sect."Our 
method for evaluating the adiabatic condition", we introduce our method for simultaneously measuring the 
values of the transition matrix element and the energy gap, based on an analytical calculation using some 
approximations. In Sect. "Numerical analysis", we describe numerical simulations (with noise) performed to 
quantify the performance of our method in realistic cases. Lastly, we summarize our results and discuss possible 
directions for open questions.

Review of QA
To review the conventional QA, we consider the following Hamiltonian:

where HD is a driver Hamiltonian, HP is a problem Hamiltonian, and f(s) is a schedule function satisfying the 
condition

Here and in the following we make the choice

Due to the condition (3), the Hamiltonian at s = 0 is the driver Hamiltonian HD and the Hamiltonian at s = 1 
is the problem Hamiltonian. After obtaining a ground state of the driver Hamiltonian, we let the state evolve by 
the annealing Hamiltonian from s = 0 to s = 1 . According to the adiabatic theorem, if the annealing time Tann 
is sufficiently large, the state after QA becomes a ground state of the problem Hamiltonian.

Our method for evaluating the adiabatic condition
We will now present a technique to experimentally determine the numerator and denominator of the left-hand 
side of Eq. (1) for a given time s1 , using the Hamiltonian defined in Eq. (2). In this scenario, the Hamiltonian in 
Eq. (1) is the Hamiltonian for quantum annealing Hconv defined by Eq. (2). We introduce the Hamiltonian H(s) , 
which comprises the driver Hamiltonian HD , the problem Hamiltonian HP , and an external driving Hamiltonian 
Hext(s) with strength �(s) and frequency ω as follows.

Here, A(s) is the schedule function that modulates the weight of HD and HP in HQA(s) . We plot A(s) and �(s) as 
functions of time in Fig. 1, where we note that A(s) satisfies A(s) = f (s) when 0 ≤ s ≤ s1.

Our experimental protocol proceeds as follows. Firstly, we prepare the ground state of the driver Hamiltonian 
|0(s = 0)� . Secondly, we slowly vary the Hamiltonian HQA(s) from s = 0 to s = s1 by setting �(s) = 0 , allowing the 
system to evolve under this Hamiltonian adiabatically. Thirdly, at s = s1 , we introduce a driving term by setting 
�(s) = � and fixing A(s) = f (s1) , and we let the system evolve for s1 < s ≤ s1 + τ/Tann . Fourthly, we terminate 
the driving at s = s1 + τ/Tann by setting �(s) = 0 , and gradually vary the Hamiltonian from HQA(s1) to HD for 
s1 + τ/Tann < s ≤ 2s1 + τ/Tann , allowing the system to evolve adiabatically. Finally, we measure the probability 
of the system occupying the m-th excited state |m(s = 0)� of the driver Hamiltonian using projective measure-
ments, which we denote as p0,m(ω, s1, τ) . We repeat these steps multiple times, varying ω, s1 and τ . We emphasize 
the importance of adiabaticity during the second and fourth steps, while it is not necessary for the third step.

In the method described above, we assume that the adiabaticity is satisfied from s = 0 to s = s1 , and we will 
discuss how this assumption could be roughly justified in a realistic circumstance in the concluding Section.

Let us explain how to realize Hext(s) in the third step of the actual experiment. We have

In the experiment with superconducting qubits, we can temporarily change the coefficient of the Pauli 
 matrices31,32. The driver Hamiltonian and problem Hamiltonian can be decomposed using the Pauli operators 
as follows:

(2)Hconv(s) = f (s)HD + (1− f (s))HP,

(3)f (0) = 1, f (1) = 0.

(4)f (s) = 1− s.

(5)H(s) = HQA(s)+Hext(s)

(6)HQA(s) = A(s)HD + (1− A(s))HP

(7)Hext(s) = �(s)Ḣconv(s1) cos (ωTann(s − s1))

(8)
Hext(s) = �ḟ (s1)HD cos (ωTann(s − s1))

− �ḟ (s1)HP cos (ωTann(s − s1)).
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where Oi ( O′
j ) denote the Pauli matrices and hi ( h′j ) denotes a time-independent coefficient. Hence, we obtain

Thus, if we can temporarily change the coefficient of the Pauli matrices to a cosine function, it is possible to 
realize the Hamiltonian Hext(s).

As the problem Hamiltonian usually contains two-body interaction terms, we must change the interaction 
coupling strength. Such a technique has also been developed for superconducting  circuits33.

Here, we describe the dynamics of the system in the third step of our scheme, which is crucial for measuring 
the adiabatic condition. We begin by describing a simplified scenario in which the dynamics is adiabatic in the 
second and fourth steps, and we will consider more general cases later. For simplicity, we omit the expression 
of “ (s1) ” to mention HQA(s1) or Ḣconv(s1) in the remainder of this section. In our proposal, the measurements 
are performed while sweeping the time period τ ; hence, we treat τ as a variable in the remainder of this section 
unless mentioned otherwise.

Let us diagonalize HQA as follows:

where Ei ≤ Ej is satisfied for i < j . By moving to a rotating frame, we can express the state of the system as follows:

and the Hamiltonian in the rotating frame is expressed as

Note that we set � = 1 throughout this paper. Here, we assume that the transition frequency between the ground 
state and the m-th excited state is close to the frequency of the external driving field. Then, we set r as the ratio 
between |Em − E0| and ω as follows:

(9)HD =
∑

i

hiOi ,

(10)HP =
∑

j

h′jO
′
j ,

(11)

Hext(s) =
∑

i

�ḟ (s1)hiOi cos (ωTann(s − s1))

−
∑

j′
�ḟ (s1)h

′
jOj′ cos (ωTann(s − s1)).

(12)HQA =
∑

i

Ei|i��i|,

(13)|ψ̃(τ )� = eirτHQA |ψ(τ)�,

(14)
H̃(τ ) = eirτHQAH(τ )e−irτHQA + i

deirτHQA

dτ
e−irτHQA

= (1− r)HQA + eirτHQAHext(τ )e
−irτHQA .

(15)r =
ω

|Em − E0|
,

Figure 1.  Plot of the scheduling function A(t) and strength of the external driving field � for our protocol. The 
dotted line shows f(s), which is the scheduling function of the conventional QA.
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where E0 denotes the energy of the ground state. The second term in Eq. (14) becomes

Here, we adopt the rotating wave approximation (RWA)34. The coefficient |i��j| in Eq. (16) includes an oscillatory 
component:

If r|Ei − Ej| = ω is satisfied, one of the terms in Eq. (17) becomes time-independent while the other term has 
a high-frequency oscillation. Owing to the condition of Eq. (15), we have at least two time-independent terms, 
(i, j) = (m, 0) and (0, m), which remain after RWA. We assume a condition ||Em − E0| − ω| ≪ ||Ei − Ej| − ω| in 
neither (i, j) = (m, 0) nor (i, j) = (0,m) . Then, all terms except (i, j) = (0,m) and (i, j) = (m, 0) are dropped, and 
the Hamiltonian (16) can be simplified as Hext,I = �

2 �m|Ḣconv |0�|m��0| + h.c. . Therefore, the effective Hamil-
tonian Eq. (14) can be expressed as

These calculations indicate that if the initial state is prepared in a subspace spanned by the ground state and 
m-th excited state, the system’s dynamics will be confined to this subspace. Notably, projecting out the states 
except |m(s = s1)� and |0(s = s1)� results in an effective Hamiltonian with the same structure as the single-qubit 
Hamiltonian that induces Rabi oscillations. A known analytical formula that characterizes tha Rabi oscillation 
without decoherence involves two parameters: detuning and Rabi frequancy, and details of the behavior of Rabi 
oscillations in a single-qubit system are presented in Supplemental Material. By using this analytical formula, 
we can fit the data obtained from our method and acquire information about the transition matrix element 
|�m|Ḣ|0�| and the energy gap Em − E0.

To observe the oscillation experimentally, we need to construct a projective measurement of |m��m| in the 
rotating frame. In our idea, the fourth and fifth steps enable us to construct a projective measurement |m��m| 
in the laboratory frame effectively, provided the dynamics in the fourth step is adiabatic. If the state |ψ(τ)� is an 
eigenstate of the Hamiltonian HQA , the change in the frame only results in a global phase. Therefore, as long as 
the second step and fourth step are adiabatically performed, p0,m(ω, s1, τ) is approximately described as follows:

where �ana(ω) is analytically expected angular frequency of the Rabi oscillation given by,

where � = Em − E0 . We obtain the right-hand side of Eq. (19), which is independent of s1 , under an assumption 
that the adiabatic condition is satisfied at the second and fourth steps. However, if there are non-adiabatic 
transitions, the probability p0,m has a dependence on s1.

In the aforementioned discussion, a ground state of the driver Hamiltonian is assumed to be pre-
pared in the first step, and we perform a projective measurement into the m-th excited state in the fifth 
step. Meanwhile, if we prepare the k-th excited state in the first step and perform a projective measure-
ment into the l-th excited state in the fifth step, we can obtain the angular frequency of Rabi oscillation as 

�(k,l)
ana (ω) =

√

(

�|�l|Ḣconv |k�|
)2 + (ω −�kl)

2 , where �kl = Ek − El through similar calculations. The details 
of these derivations are presented in Supplemental Material. When non-adiabatic transition is caused, the signal 
may include some different oscillations, whose angular frequencies are given by �(k,l)

ana (ω).
The adiabatic condition described in Eq. (1) is valid only when we can consider that the effect of the non-

adiabatic transitions is weak. Therefore, throughout our paper, we assume that the effect of non-adiabatic transi-
tions is negligible. We will discuss how the non-adiabatic transitions affect the spectroscopic measurements in 
our methods later.

Let us explain how to specify the values of |Em − E0| and |�m|Ḣconv |0�| by using our method. We repeat these 
by sweeping ω , and we can find an optimal value of ω = |Em − E0| to minimize the frequency of the Rabi oscil-
lation; this corresponds to the energy gap � . Furthermore, the Rabi frequency with the optimal � observed in 
our method corresponds to the numerator in Eq. (1). Thus, our estimated transition matrix element |�m|Ḣ|0�|est 
and our estimated energy gap �est are given by

(16)
eirτHQAHext(τ )e

−irτHQA

= �

∑

i,j

〈

i
∣

∣Ḣconv

∣

∣j
〉

eir(Ei−Ej)τ cosωτ |i�
〈

j
∣

∣.

(17)

eir(Ei−Ej)τ cosωτ

=
1

2
eir(Ei−Ej)τ (eiωτ + e−iωτ )

=
1

2
ei(r(Ei−Ej)−ω)τ +

1

2
ei(r(Ei−Ej)+ω)τ .

(18)Heff =
∑

i

(1− r)Ei|i��i| +
�

2
�m|Ḣconv |0�|m��0| + h.c..

(19)
p0,m(ω, s1, τ) ≃ |�m|e−iτHeff |0�|2

∝ (1− cos�ana(ω)τ),

(20)�ana(ω) =
√

(

�|�m|Ḣconv |0�|
)2 + (ω −�)2,
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respectively. Here, �exp(ω) is the angular frequency of the Rabi oscillation obtained experimentally, which is 
analytically considered to be expressed by Eq. (20).

In actual experiments, owing to some imperfections, p0,m(ω, t1, τ) cannot be fully explained by the analytical 
formula Eq. (19), which was derived under ideal conditions (see Fig. 1 in the Supplemental Materials). To find 
the relevant frequency of �exp(ω) in the dynamics, we perform a Fourier transformation and obtain a power 
spectrum that is defined by

If p0,m(ω, s1, τ) is expressed as Eq. (19), the power spectrum is given by

Therefore, in the actual experiment, we define the peak with a positive frequency in the spectrum as �exp(ω) , and 
we expect to satisfy �exp(ω) ≃ �ana(ω) in the power spectrum; this allows us to use the formulas of Eqs. (21) 
and (22). Thus, we can estimate the values of the transition matrix element |�m|Ḣconv |0�| and the energy gap � 
using our method.

Lastly, we discuss potential experimental implementations of our proposal. In the existing D-wave quantum 
annealing plattform, it is not possible to perform our proposal because we cannot perform microwave pulses to 
induce the Rabi oscillation in the annealer. However, the recently proposed method, called the spin-lock quantum 
 annealing13,35, is compatible with the requirement of our method. In the spin-lock quantum annealing, we use 
superconducting qubits for a gate type quantum computer, and there is an experimental demonstration of the 
spin-lock with superconducting qubits by using microwave  pulses36.

Numerical analysis
We perform numerical simulations to evaluate the effectiveness of our method. In the previous section, we 
derived an analytical formula under the following assumptions:

• I. The time evolution is adiabatic in both step 2 and step 4.
• II. The rotating wave approximation holds.
• III. The time evolution in step 3 only involves the ground state and the m-th excited state.
• IV. There is no decoherence.

However, these assumptions may not be met in actual experiments and we perform numerical simulations to 
examine the validity of our method under different conditions, as summarized in Table 1.

Condition I is only satisfied when the process in steps 2 and 4 is completely adiabatic. In cases A and D from 
Table 1, we use diagonalization to prepare the ground state of HQA(s1) . In the remaining cases, we solve the 
time-dependent Schrödinger equation with specific annealing times to prepare the ground state of HQA(s1).

Condition III is naturally satisfied for a single-qubit system, while it is violated for a system with two or more 
qubits. Thus, in cases A, B, and C, condition III is satisfied, whereas in cases D, E, and F, condition III is violated.

(21)�|�m|Ḣconv |0�|est = min
ω

[�exp(ω)],

(22)�est = arg min
ω

[

�exp(ω)
]

,

(23)
P(ω, s1,�) = abs

[

FT[p0,m(ω, s1, τ)]
]

,

= abs

[∫ ∞

−∞
dτ p0,m(ω, s1, τ)

e−i�τ

√
2π

]

.

(24)
P(ω, s1,�) =α(ω)δ(�)+

α(ω)

2
δ(�−�ana(ω))

+
α(ω)

2
δ(�+�ana(ω)).

Table 1.  Cases investigated in this study. For cases B, C, E, and F, we consider the effect of non-adiabatic 
transitions in steps 2 and 4. Meanwhile, for cases C and F, we consider decoherence.

Case

Qubit Adiabaticity of

Decoherence

Violated

Number Step 2 and 4 conditions

A 1 Complete None II

B 1 Incomplete None I, II

C 1 Incomplete � I, II, IV

D 2 Complete None II, III

E 2 Incomplete None I, II, III

F 2 Incomplete � I, II, III, IV
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Condition IV is satisfied if we solve a time-dependent Schrödinger equation of the system, as with cases A, 
B, D, and E. Meanwhile, we consider the effect of decoherence by solving the master equation in cases C and F.

Settings and methods for all cases
Here, we introduce some conditions that are common throughout our numerical analysis.

Schedule function
For the schedule function A(s) in Eq. (5), we use

where Tann is the annealing time. In actual experiments, this value is typically around 10 to 100 µ s, and the typical 
energy scale of the Hamiltonian is of the order of GHz in the superconducting qubits (e.g. D-wave  system37). We 
choose smaller values Tann such as 10 to 1000 ns in the following simulations to consider worse cases where the 
non-adiabatic transitions could occur.

We take the schedule function (25) as A(s) = 1− s up to s1 , and we evaluate the adiabatic condition at time 
s1 according to our method. Hence, for our simulation, ḢQA(s1) is given by

for any t1.

Strength �
The Rabi frequency can be controlled by changing the strength � . If the decoherence is negligible, we set � to be 
as small as possible, because RWA is valid only when the Rabi frequency is much smaller than the energy gap. 
Meanwhile, when there is decoherence, the choice of � is not straightforward. As we decrease � , the decoherence 
becomes more relevant and RWA becomes more valid. Therefore, the following condition should be satisfied:

where Tc is the coherence time. In our simulation, we set � = 0.05 , chosen as a value that satisfies the condition 
of Eq. (27) in our numerical simulations.

Time evolution and measurement process
In real  experiments,  we need to consider decoherence.  To address this,  we use the 
Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master  equation38,

for cases C and F, where Ln is the Lindblad operators.
In the fifth step, we assume that an ideal projective measurement into the state |m(t = 0)� can be performed. 

It is worth mentioning that, in the actual experiment, this projective measurement corresponds to σx on all 
qubits. By using a post processing with a classical computer, we can obtain the projection probability for not 
only m = 1 but also all m. However, the non-adiabatic transitions between the ground state and the first excited 

(25)A(s) =







1− s (0 ≤ s < s1),
1− s1 (s1 ≤ s < s1 + τ

Tann
),

s − 2s1 − τ
Tann

(s1 + τ
Tann

≤ s < 2s1 + τ
Tann

),

(26)Ḣconv(s1) = −HD +HP,

(27)
1

Tc
≪ �|�m|Ḣconv |0�| ≪ |E1 − E0|,

(28)ρ̇ = −i[H, ρ] +
∑

n

(LnρL
†
n −

1

2
{L†nLn, ρ}),

Figure 2.  The actual adiabatic conditions (1) of our simulated two-qubit cases. m = 1 is the largest at almost all 
s.
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state is considered as the most relevant part. Actually, as long as |�1|Ḣ|0�| is similar to or larger than |�m|Ḣ|0�| for 
m ≥ 2 , the non-adiabatic transitions between the ground state and the first excited state is more relevant than 
the others, Thus, for the numerical simulations, we consider a case of m = 1 in this paper. (See Fig. 2)

Construction of �exp(ω)
In our method, we calculate the probability of a projection into the first excited state p0,1(τ ) , and we use the 
power spectrum P(�) to determine the function �exp(ω) as explained in the previous section. In this case, we 
expect to observe a peak at � = �ana(ω) in the power spectrum. To determine the function �exp(ω) , we fix ω 
and maximize the height of the power spectrum by sweeping � so that we can determine the position of the 
resonance peak as follows:

Finally, by sweeping ω , we can obtain the function �exp(ω).
When we sweep � , it is crucial to choose an appropriate range. First, we explore the frequency range � > 0 . 

As indicated by Eq. (24), three peaks emerge. However, to evaluate the adiabatic condition, our focus lies solely 
on the positive-frequency peak, because the negative frequency peak contains the same information as its 
positive counterpart, while the zero frequency peak lacks relevant information. Also, we should consider only 
the frequency range of � ≪ ω because we use RWA to derive the analytical formula of Eq. (19), which is valid 
only for � ≪ ω.

Even if we restrict the frequency range, we may not find a correct peak for several reasons. We discuss the 
case in which such a problem occurs, and we present a possible solution to overcome such a problem at least 
for some cases.

Single‑qubit cases (A, B, and C)
We examine the single-qubit cases (A, B, and C). For these cases, the driver Hamiltonian HD and the problem 
Hamiltonian HP are given by

respectively. In our simulation, we fixed ω1 = 1 GHz and g = 0.4 GHz.

Case A
We set the parameters Tann and s1 as follows:

As shown in Fig. 3, our estimated values (dots in the figure) are in good agreement with the theoretically expected 
values (lines in the figure). Indeed, the relative error in the estimation of the transition matrix element |�1|Ḣ|0�| 
(the energy gap E1 − E0 ) is at most 0.99 % ( 0.071 %).

These errors are small compared to the resolution owing to the discretization performed while processing 
the data. The estimation error of the transition matrix element (energy gap) is 0.9 (0.1) times smaller than the 
resolution. As shown in Fig. 3, we confirm that the adiabatic condition (1) is reasonably satisfied.

Case B
Next, the effect of non-adiabatic transitions in steps 2 and 4 is studied for case B. Similar to case A, we can accu-
rately measure both the transition matrix element |�1|Ḣ|0�| and the energy gap (E1 − E0) for case B, and (see 
Fig. 4) the relative error of the transition matrix element (energy gap) is at most 2.2 % ( 0.7 % ) and 0.77 (0.93) 
relative to the resolution.

For the single-qubit case, our scheme is robust against the non-adiabatic transitions. Actually, we consider 
cases with Tann = 1, 2, 4 , and 8 ns (see Fig. 5), and these results show that a shorter annealing time does not 
impair the performance of our methods.

We show that, as long as RWA is valid, the power spectrum contains a peak corresponding to a frequency of 
�(ω) (see Supplemental Material). Thus, we can accurately estimate the transition matrix element and energy 
gap using Eqs. (21) and (22) for the single-qubit case without decoherence.

Case C
In case C, to consider decoherence, we employ the GKSL master equation, and we select the Lindblad operator as

where κ denotes the decay rate. We fix κ = 2.5× 10−3 ns−1 , which is a typical value for a superconducting flux 
 qubit39

The results are shown in Fig. 6. The relative error of the transition matrix element |�1|Ḣ|0�| (the energy gap 
� ) is at most 2.1 % ( 0.05 % ), which is 0.77 (0.023) times smaller than the resolution.

These errors are as small as those in cases A and B, indicating the robustness of our method against 
decoherence. This resilience stems from the fact that decoherence primarily impacts the width rather than the 

(29)�exp(ω) = arg max
�

P(�,ω).

(30)HD =
ω1

2
σx , HP = gσz ,

(31)
Tann = 10, 30, 100, 300, 1000 ns,

s1 = 0.1, 0.2, 0.3, 0.4, ..., 0.9.

(32)L =
√
κσz ,
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Figure 3.  (Top) Estimation of the transition matrix element in case A (single qubit, complete adiabaticity, 
and no decoherence). (Bottom) Estimation of the energy gap in case A. The solid lines represent the solution 
obtained by diagonalization of the Hamiltonian, and the dots represent the estimated values obtained from our 
method by numerical simulation.

Figure 4.  Top (bottom): estimated value of the transition matrix element (energy gap) in case B (single qubit, 
incomplete adiabaticity, and no decoherence). For the solid lines and dots, we use the same notation as that in 
Fig. 3.
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Figure 5.  Top (bottom): estimated value of the transition matrix element (energy gap) in case B (single qubit, 
incomplete adiabaticity, and no decoherence) with a shorter annealing time such as Tann = 1, 2, 4, 8 ns . For the 
solid lines and dots, we use the same notation as that in Fig. 3.

Figure 6.  Top (bottom): estimated value of the transition matrix element (energy gap) in case C (single qubit, 
incomplete adiabaticity, and decoherence). For the solid lines and dots, we use the same notation as that in 
Fig. 3.
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position of the peaks in the power spectrum. Consequently, accurate estimation of the transition matrix element 
and energy gap remains achievable even in the presence of weak decoherence.

Two‑qubit cases (D, E, and F)
In the two-qubit cases, the problem and driver Hamiltonians are given by

respectively. Here, we set ω1 = 1.0 GHz , ω2 = 1.1 GHz , g1 = 0.5 GHz , g2 = 0.3 GHz , and g3 = 0.
For these cases, we select the parameters Tann and s1 as follows.

Case D
In this case, we can accurately measure the transition matrix element |�1|Ḣ|0�| and the energy gap (E1 − E0) as 
shown in Fig. 7. The relative error of the transition matrix element (energy gap) is at most 3.5 % ( 0.04 % ), which 
is 0.55 (0.99) times smaller than the resolution. Despite not satisfying condition III for considering two qubits 
in this case, the dynamics can be effectively confined within a two-level system, ensuring the accuracy of our 
method, especially when the Rabi frequency is low.

Case E
In case E, the relative error of the transition matrix element (energy gap) is at most 3.5 % ( 1.2 % ), which is 0.55 
(0.99) times smaller than the resolution, as shown in Fig. 8.

In the case of weak non-adiabatic transitions, it is possible to estimate both the transition matrix element and 
the energy gap with high accuracy even for the two-qubit case. Meanwhile, as described in detail in Supplemental 
Material, in the case of strong non-adiabatic transitions, the power spectrum contains peaks other than the one 
that we want to use in our estimation. We discuss a possible solution for this problem in Suppremental Material.

Case F
In case F, we select the Lindblad operator as follows.

(33)
HD =

ω1

2
σx ⊗ 1+

ω2

2
1⊗ σx ,

HP = g1σz ⊗ σz + g2σz ⊗ 1+ g31⊗ σz ,

(34)
Tann = 10, 30, 100 ns,

s1 = 0.1, 0.3, 0.5, 0.7, 0.9.

Figure 7.  Top (bottom): estimated value of the transition matrix element (energy gap) in case D (two qubits, 
complete adiabaticity, and no decoherence). Even when two qubits are used, we can estimate both the transition 
matrix element and the energy gap with high accuracy. For the solid lines and dots, we use the same notation as 
that in Fig. 3.
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Figure 8.  Top (bottom): estimated value of the transition matrix element (energy gap) in case E (two qubits, 
incomplete adiabaticity, and no decoherence). For the solid lines and dots, we use the same notation as that in 
Fig. 3.

Figure 9.  Top (bottom): estimated value of the transition matrix element (energy gap) in case F (two qubits, 
incomplete adiabaticity, and decoherence). In this case, we have significant estimation errors for a few points. 
For the solid lines and dots, we use the same notation as that in Fig. 3.
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Here, κ denotes the decay rate. For the numerical simulations, we chose κ = 2.5× 10−3 ns−1.
We plot the estimated transition matrix element and energy gap against s1 , and we demonstrate that our 

method is accurate except for two points, s1 = 0.3 and s1 = 0.9 for Tann = 100 ns , as shown in Fig. 9. In the for-
mer case, as shown in the power spectrum (see Fig. 10a), where ω is smaller than 0.575 or larger than 0.65, a low-
frequency ( � < 0.02 ) peak exists, and the height of this peak is greater than that of the target peak at the same ω.

As shown in Eq. (24), strictly speaking, a peak around � ≃ 0 should exist in the spectrum, and this peak 
has a finite width owing to decoherence so that we can observe this in case F. Therefore, if we naively adopt our 
method described in Eq. (29), we generate an inappropriate �exp(ω) and obtain incorrect estimated values of 
the transition matrix element and energy gap.

To identify the target peak in the presence of decoherence and non-adiabatic conditions, we employ a 
modified approach outlined as follows. Initially, we assess the value of � not only for the highest peak but also 
for the second- and third-highest peaks at each ω . These pairs of values (ω,�) then constitute candidates for 
the data in the estimated function �exp(ω) . Subsequently, we attempt to fit the data using the analytical formula 
presented in Eq. (20). In the third step, we eliminate data that cannot be adequately fitted by the analytical 
formula. Finally, we designate data successfully fitting the analytical formula as the target peaks.

In the former case ( s1 = 0.3 ), after using this modified method, the relative error of the transition matrix 
element (energy gap) is 1.0% (0.2%) , and the ratio to the resolution is 0.07 (0.26). Thus, our modified method is 
effective for this case, as shown in Fig. 10a.

(35)L1 =
√
κσz ⊗ 1, L2 =

√
κ1⊗ σz ,

Figure 10.  Plot of the power spectrum P(ω,�) for Tann = 100 for case F (two qubits, incomplete adiabaticity, 
and decoherence). The horizontal axis represents the angular frequency of the driving field and the vertical axis 
represents the Fourier frequency. (a) We use s1 = 0.3 . The yellow line is obtained by fitting Eq. (20) to the plot. 
(b) We use s1 = 0.9 . The dotted line represents the exact value obtained by diagonalization.
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However, in the latter case ( s1 = 0.9 ), the decoherence is so strong that the target peak nearly disappears, and 
we cannot identify the target peak anymore, as shown in Fig. 10b.

Conclusions and discussion
We have proposed an experimental method to assess adiabaticity in QA by evaluating adiabatic conditions. 
Our approach uses an oscillating field to induce Rabi oscillations, providing insights into the energy gap and 
the transition matrix element of the time derivative of the Hamiltonian. To validate our method, we performed 
numerical simulations, considering non-adiabatic transitions and decoherence effects. The results confirm the 
robustness of our method against these experimentally inevitable problems.

In the main text, we have assumed the adiabaticity to be maintained between s = 0 and s = s1 . However, 
the adiabaticity is not explicitly guaranteed. Here, we discuss s1 to be updated systematically by performing our 
method incrementally. Roughly speaking, at s1 = s

(n)
1  where n denotes the number of current step of iterations, 

we adopt our method and measure the adiabatic condition. Based on the measurement results, we choose �s , 
and we perform our method at s1 = s

(n+1)
1 = s

(n)
1 +�s . We can employ the perturbation theory outlined in Sup-

plemental Material to discuss how the ground state varies for s around s = s1 . As the amplitude cn(s1) that is given 
by Eq. (39) in the Supplemental Material becomes larger, the fidelity between the ground state at s = s1 +�s and 
that at s = s1 decreases. Based on this, it would be reasonable to maintain �s to satisfy the following condition,

where ǫ denotes a small constant and ñ denotes an upper bound of the excited states to be considered. We may 
set certain values of ǫ and ñ as threshold. Since we can measure |cn(s1)| with our method, we can choose �s to 
satisfy the threshold value.

More specifically, we adopt the following strategy. First, at s = 0 , we can diagonalize the driver Hamiltonian, 
and so we can calculate |cn(0)|2 . This lets us determine �s for the next step using Eq. (36). Second, at s1 = �s , 
we can adopt our method to measure the values of |cn(s1)| , and we determine �s for the next step using Eq. (36). 
Finally, we repeat the second step and update s1 = s

(n)
1  to s1 = s

(n+1)
1 = s

(n)
1 +�s until we obtain s = 1 where 

n denotes the number of interations. Obviously, this approach to update s1 incrementally does not guarantee 
perfect adiabaticity due to the inherent limitations of the perturbation theory. Further study would be needed 
to check the validity.

While there have been numerous studies evaluating the performance of quantum annealing in the past, 
they have typically followed the approach of solving specific problems using various algorithms, as seen in 
 references40,41. To quantify the performance such as speed and accuracy, such methodologies often focus on 
factors like the time required to obtain final results and, when the correct solution is known, the accuracy 
of the solutions. On the other hand, our method provides a way to measure the adiabatic conditions from 
the experiments. Our results are useful not only for evaluating the performance of computation but also for 
checking the adiabatic condition during QA for practical purposes, which is completely different from the 
previous  works40,41.

In this perspective, our method may be helpful to determine a better annealing schedule and Hamiltonian 
form to improve the performance of QA. When a phase transition takes place, the performance of QA is 
degraded. Some methods have been proposed to address this issue in specific  cases42–44. To apply these methods, 
we need to change the annealing schedule and form of the Hamiltonian. However, a potential problem is that 
we cannot easily find a better annealing scheduling or a better form of the Hamiltonian for general problems 
if we do not know whether the adiabatic conditions are satisfied. Meanwhile, by using our methods to evaluate 
the adiabaticity of the dynamics, we could select a better annealing schedule and form of the Hamiltonian when 
we try to solve practical optimization problems using QA. Further research is needed to check the applicability 
of this direction, which we leave as an open question.

Here, we examine the validity of the parameters used in our numerical simulations. During the spin lock, the 
system is in the rotating frame and so we can set ω1 = 1.0 GHz and ω2 = 1.1 GHz as the detuning between the 
microwave frequency and qubit resonance. The reported coherence time of the superconducting  qubit45 is much 
longer than 1/κ = 400 ns which is used in our simulations. Also, it is possible to realize a coupling strength of 
g1 = 0.5 GHz and g2 = 0.3 GHz by using inductive coupling between the superconducting  qubits46. We set the 
Rabi frequency � to be around tens of MHz , which is also available in the current  experiment47.

We also examine the conditions under which our method can be effectively employed. It is necessary for 
the success of our method to satisfy the condition (27). If the energy gap E1 − E0 and coherence time Tc remain 
constant with the number of qubits, the condition (27) can be satisfied even if the number of qubits increases. 
However, this is not sufficient because there may be many excited states just above the first excited state, which 
makes it difficult to distinguish the first excited state and the others. Fortunately, for specific circumstances, we 
could apply our method even if there are many excited states just above the first excited state as we will explain 
 below48,49.

The Hamiltonian Eq. (18), can be written by

(36)ǫ = �s2
ñ

∑

n=1

|cn(s1)|2,



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8177  | https://doi.org/10.1038/s41598-024-58286-2

www.nature.com/scientificreports/

where ωi = (1− r)Ei and cm = ��m|Ḣconv |0�/2 . This Hamiltonian is the same as that adopted in Ref.48. A 
spectral density function is defined as ρ(ω) =

∑

j |cj|2δ(ω − ωi) , and ρ(ω) is assumed to follow a Lorentzian 
 distribution48 (Fig. 11). In this case, we can calculate α1(t) = �0|e−itH|0� as  follows48, which corresponds to the 
probability amplitude at step 5 in our method. We perform the Laplace transform of α1(t) , and obtain,

where � is the width of the Lorentz distribution of the spectral distribution,

and ω0 is the center of the distribution which is chosen as zero by adjusting the angular frequency of the external 
field. Exploiting the inverse Laplace transformation,

This is a damped oscillation where the angular frequency is 
√

�2 −�2/4 and the decay rate is 12� . By 
applying our method to this case, we obtain the Rabi frequency 

√

�2 −�2/4 ≃ � and the energy gap 
|E1(s)− E0(s)| ≃ |Em(s)− E0(s)| where we assume � ≫ � and |E1(s)− E0(s)| ≫ � . We obtain the following

Importantly, by using our method, we can experimentally obtain the value of |�|2
|E1(s)−E0(s)|4

 , which approximately 

provides an upper-bound of |�m(s)|Ḣ(s)|0(s)�|2
|Em(s)−E0(s)|4

 . Therefore, if |�|2
T2
ann|E1(s)−E0(s)|4

 is much smaller than 1, the adiabatic 

condition of |�m(s)|Ḣ(s)|0(s)�|
|Em(s)−E0(s)|2Tann

≪ 1 should be satisfied. This is how our method to measure the adiabatic condition 
is useful for a specific circumstance where there are many almost degenerate excited states just above the first 
excited state.

In QA, the energy gap could approach to zero as we increase the size of the system. In such a case, we will 
find a highly degenerate spectrum. In our method, we sweep s1 and investigate the adiabatic condition for several 
values of s1.

Since we sweep the value of s1 from 0 to another value in our method, we can study the adiabatic condition 
during QA before the energy gap closes. In this case, we will recognize that the energy gap becomes smaller as 
we increase s1 , and this lets us know the existence of the energy gap closing. We could adopt several strategies 

(37)H =











ω0 c1 c2 · · ·
c∗1 ω1

c∗2 ω2

...
. . .











,

(38)L[α1(t)] ∝
s + 1

2�

s2 + (ω0 − i
2�)is +�2 + i

2�ω0

,

(39)�2 =
∑

k

|ck|2,

(40)α1(t) = e−
1
2�t cos

√

�2 −�2/4t.

(41)

∑

m

|�m(s)|Ḣ(s)|0(s)�|2

|Em(s)− E0(s)|4
≃

∑

m

|�m(s)|Ḣ(s)|0(s)�|2

|E1(s)− E0(s)|4

=
|�|2

|E1(s)− E0(s)|4
.

Figure 11.  Energy spectrum where many almost degenerate excited states are just above the first excited 
state. We assume that the power spectrum function of the almost degenerate excited states has a Lorentzian 
distribution and the linewidth is � . Strictly speaking, there are other excited states above these excited states, but 
we ignore them by assuming that there is a large energy gap.
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to enlarge the energy gap in this case. For example, twisted  field50,51, counterdiabatic  term52,53, nonstoquastic 
 Hamiltonian54–56, inhomogeneous driving magnetic  field57 may be helpful for such a purpose.

If one of such strategies succeeds, our method will work, and we can investigate the adiabatic conditions 
during the entire QA process.

Finally, we comment on the adiabatic condition itself. In general, it has not been proved that the condition (1) 
is sufficient to achieve the adiabaticity. In addition, more sophisticated criteria have been  proposed28, and it was 
shown that higher order derivative of the annealing Hamiltonian could affect the adiabaticity. In our numerical 
examples, we show that the condition (1) actually provides an upper bound of the population of the excited state 
due to the non-adibatic transitions in Supplemental Material. However, if we need to know the information of 
the higher order derivative of the Hamiltonian, we can use a modified version of our method. For example, if 
we are interested in the value of |�m|Ḧ|0�| , we can replace Ḣ(s1) in Eq. (7) with Ḧ(s1) . We leave a detailed study 
of this for future work. Secondly, although the conventional adiabatic condition in Eq. (1) is derived from the 
unitary evolution, it is possible to generalize the adiabatic theorem to open quantum  systems5. The aim of our 
method is to know the value of Eq. (1), which is different from the adiabatic condition in the open quantum 
systems. The extension of our method to the adiabatic condition in open quantum systems is an open question.

Data availability
The datasets used and/or analyzed during the current study are available from Y.Mori on reasonable request.
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