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Advanced disk herniation computer 
aided diagnosis system
Maad Ebrahim 1,4, Mohammad Alsmirat 2,4* & Mahmoud Al‑Ayyoub 3,4*

Over recent years, researchers and practitioners have encountered massive and continuous 
improvements in the computational resources available for their use. This allowed the use of resource‑
hungry Machine learning (ML) algorithms to become feasible and practical. Moreover, several 
advanced techniques are being used to boost the performance of such algorithms even further, 
which include various transfer learning techniques, data augmentation, and feature concatenation. 
Normally, the use of these advanced techniques highly depends on the size and nature of the dataset 
being used. In the case of fine‑grained medical image sets, which have subcategories within the main 
categories in the image set, there is a need to find the combination of the techniques that work the 
best on these types of images. In this work, we utilize these advanced techniques to find the best 
combinations to build a state‑of‑the‑art lumber disc herniation computer‑aided diagnosis system. We 
have evaluated the system extensively and the results show that the diagnosis system achieves an 
accuracy of 98% when it is compared with human diagnosis.

Keywords Lumber disc, Transfer learning, Data augmentation, Feature concatenation, Medical image 
classification, Computer aided diagnosis

With the advent of biomedical equipment, medical imaging has played an important role in accelerating the 
diagnosis, monitoring, and analysis of human parts and diseases. That includes radiology medical imaging, such 
as X-rays, computed tomography (CT) scans, magnetic resonance imaging (MRI), positron emission tomography 
(PET), and ultrasound imaging. It also includes microscopic medical imaging, such as light, electron, and ion 
microscopy. While it is the ultimate responsibility of the physician to make the right decision based on these 
images, the complexity of the images and the wide variety of diseases to capture makes any help to be given to 
the physician very valuable. Hence, using machine learning to diagnose these medical imaging paves the way 
for optimized early detection of various diseases and their  treatment1.

For many years, scientists and researchers have been intensively working on developing and enhancing Com-
puter-Aided Diagnosis (CAD) systems. Those CAD systems can help speed up human work in diagnosing the 
images produced by the aforementioned medical equipment. For instance, deep learning and machine learning 
can quickly and accurately classify video and audio recordings of patient interviews compared to, or even better 
than, human  experts2. Also, integrating AI-based activity recognition into smart devices enhances their func-
tionality as CAD systems by leveraging their built-in motion  sensors3. This provides ubiquitous healthcare and 
wellness monitoring systems that enable personalized monitoring, timely interventions, and behavioral insights.

Continuous flow of patient monitoring data and large-scale medical imaging datasets must be accessed 
securely to train/retrain data-hungry machine learning algorithms, which contain highly personal and sensi-
tive information about  patients4. Computer scientists started developing many machine learning algorithms 
and tools for these types of images, which use hand-crafted features, such as Local Binary Pattern (LBP)5,6 and 
Scale-Invariant Feature Transform (SIFT)7,8. These features can be used to classify the images into different 
classes using machine learning algorithms, such as support vector machine (SVM)9 and Artificial/Deep Neural 
Networks (ANN/DNN)10,11.

Inspired by human vision and brain systems, Convolutional Neural Networks (CNN) made its breakthrough 
in the field of image classification in  201212. CNN has been obtaining state-of-the-art results in many image clas-
sification tasks, including medical image classifications. One of the manifestations of the success of CNN is the 
large-scale benchmark image dataset called  ImageNet13. Since 2012, Stanford University has been holding an 
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annual challenge on this  dataset14, which contains around 1.5M accurately labeled natural images categorized 
into 1K distinct hierarchical categories. This challenge produced several CNN models over the last years that 
kept on improving the accuracy of classifying this dataset.

Since the development of CNN, many advanced techniques have been introduced to enhance its calcification 
capabilities. In this study, we are interested in the following:

• Because CNN models are supposed to mimic human vision and brain  systems15 by generating generic 
image features of natural images at different levels of abstraction, researchers have proposed transferring 
the knowledge learned by some ImageNet models into other image classification tasks, including medical 
image  classification16. This technique is called Transfer Learning (TL)17–19, and it provides a good starting 
point to train CNN models on new fine-grained tasks.

• The transferred knowledge of different models can be joined together in what is called ensemble  learning20 
and feature  concatenation21.

• Moreover, a technique called data  augmentation22,23 has also played an important role in advancing the 
performance of CNN models on almost every task.

In a previous  study24, we have created a Lumber Disc Radiology (LDR) dataset composed of axial MRI scans of 
human spines that were obtained from King Abdullah University Hospital (KAUH), located in Irbid, Jordan. 
The scans were initially stored as DICOMDIR files, and a radiologist used a DICOM viewer to select the best 
slice and diagnose it, after which the images were extracted in JPEG format. As a result of the restricted number 
of patients willing to participate and the high costs associated with gathering patient images, we were only able 
to amass a modest collection of usable MRI images given the limited funding and personnel resources available 
to us. The dataset contains a total of 164 images, each sized at 512 × 512 pixels, and they are categorized into 
different classes that are detailed in Table 1. In that previous  study24, we have built a CNN-based CAD system. 
Due to many limitations, the highest accuracy that we could achieve is only 91%.

In this paper, we systematically explore the impact of different advanced techniques to achieve state-of-the-
art performance on our fine-grained medical MRI imaging dataset, i.e., the Lumber Disc Radiology (LDR). 
These techniques include various transfer learning techniques using different pre-trained CNN models, data 
augmentation, and feature concatenation. Through this systematic exploration, we achieved state-of-the-art 
accuracy on the LDR dataset.

Through this work, we provided the basis for a computer-aided diagnosis system that is designed to assist 
healthcare professionals, not replace them. It will be used to help and guide human experts, who are essential 
to validate the results produced by the system. Such systems can provide valuable insights for human clinicians, 
who will have the final clinical judgment, intuition, and the ability to consider various factors when making a 
diagnosis.

Compared to human experts, CAD systems are better at identifying early signs of diseases that might be 
challenging for human clinicians to detect at an early stage, leading to earlier treatment. In addition, their quick 
processing time helps guide healthcare professionals to make faster and more informed decisions, which is 
especially crucial in emergency situations. Moreover, such systems do not suffer from fatigue and variations in 
performance, providing reliable consistent results 24/7.

Background and literature review
In this section, we are going to provide background information and a literature review of different techniques 
that include three different transfer learning techniques, feature concatenation and ensemble methods, and data 
augmentation techniques. We also provide information about the dataset used in this work and the previous 
work on it. We then speak about the nine pre-trained ImageNet models that are used for fine-tuning and feature 
extraction. Finally, we give a brief information about the six machine learning classifiers that were used on the 
extracted features.

Table 1.  The number of samples per class for LDR dataset with and without data augmentations.

Class Name Samples Augmented

Left 10 30

Right 5 15

Central 7 21

Diffuse 35 35

Diffuse+Left 4 12

Diffuse+Right 4 12

Diffuse+Central 6 18

Normal 93 93

Total 164 236
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Transfer learning techniques
Fine-tuning25–27, feature  extraction17,18, and random  initialization28 are the three main techniques that are used 
for transferring the knowledge learned by ImageNet pre-trained models. Of course, transfer learning techniques 
are not only meant for ImageNet pre-trained models. However, the diversity and the large amount of images 
in the ImageNet dataset make it the best dataset for transfer learning using CNN models. Over the past years, 
researchers assumed that CNN models that perform better on ImageNet should perform better on any other 
recognition tasks.

A very important research  by28 investigated the goodness of the knowledge/features learned by ImageNet pre-
trained models. The results show that ImageNet features are less general than what was expected. Which makes a 
given transfer learning technique superior to another given the type of the dataset in hand and the information it 
contains. Moreover, a given model may be superior to another given the data and the transfer learning technique 
in use. Following is a brief explanation of each one of the most used transfer learning techniques:

Fine‑tuning
Fine-tuning is one of the most common transfer learning techniques used by  researchers25–27. In this technique, 
the learned parameters of the pre-trained CNN model are fully transferred into the new tasks, and then slowly 
updated to fit the samples in the new classification task. The only modification to the network architecture will 
usually be changing the number of neurons in the last fully-connected layer to match the number of classes in 
the new dataset.

Feature extraction
To be able to use the knowledge learned by the ImageNet models using other machine learning classifiers, the 
features of the images in the new classification task are first extracted using an ImageNet model as fixed feature 
 extractors17,18. That produces an output feature vector for each image in the new classification task. Those fea-
ture vectors are then used to train other machine learning classifiers, such as SVM, to discriminate the different 
classes in the new task.

Random initialization
Fine-grained image datasets, which have images and classes that are very different from those of ImageNet, usu-
ally do not benefit from the knowledge learned by ImageNet models. However, they still value the good archi-
tecture of those models to produce better classification accuracies on them. That is when random initialization 
of the ImageNet models is preferred over ImageNet parameters of those pre-trained  models28.

Feature concatenation and ensemble methods
Recently, a work  by21 has proposed the possibility of concatenating the features extracted from ImageNet pre-
trained models to provide richer and more discriminative representation for fine-grained image datasets. Ensem-
ble fine-tuning transfer learning technique has been also proposed  by20 based on the same assumption. Both 
of those techniques are supposed to produce significant improvements in many fine-grained image datasets, 
including medical images.

The work  by21 achieved the state-of-the-art on two well-known microscopic medical datasets. InceptionV3, 
ResNet152, and InceptionrsnetV2 pre-trained CNN models were used to extract the features from The 2D-Hela 
and the PAP-smear datasets. These features are then concatenated to train two fully connected DNN layers to 
classify the images in each one of those datasets. Their results of feature concatenation show a significant improve-
ment compared to feature extraction of a single CNN pre-trained model on both datasets.

Regarding ensemble fine-tuning, the work  by20 was also able to achieve state-of-the-art results on three 
benchmark datasets of different domains. Those datasets are the Yahoo! Shopping Shoe, the UC Merced Land 
Use, and the Caltech Birds datasets. They used AlexNet, VGG19, and GoogleNet pre-trained models to be fine-
tuned either for each two models together, or oven for the three models altogether. Their results showed that 
ensemble fine-tuning achieves better results than single-network fine-tuning. They also proved that ensemble 
learning is better than feature extraction and feature concatenation on those three datasets.

It is obvious that different models learn different features, and those features perform differently based on the 
data of a given  problem28. That fact supports the ideas of both feature concatenation and ensemble learning to 
produce better classification accuracies on small and fine-grained images, such as medical images. That increases 
the potential to systematically investigate the effect of those techniques on different types of medical images. That 
will save time and effort for researchers and practitioners in their specific medical domain.

This work provides a comprehensive study that evaluates the use of individual techniques and their combina-
tions to provide the best approach to handling medical image datasets. Unlike existing studies, where only the 
final findings of a single approach are shared, without going through what led to those findings.

Augmentation techniques
Due to the limited number of images, that is usually encountered in small datasets such as medical image datasets, 
data augmentation has been proposed. It is used to increase the amount of data, as well as increase the diversity 
in the data to help CNN models work better. Data Augmentation has shown a massive performance improve-
ment for both small and large  datasets12,29,30.

Besides increasing the amount of data to train on, the main reason for the success of augmentation techniques 
is that it teaches the model about invariances in the given data. That is because CNN models can only capture 
translation invariances in the  data12,31–33. Based on the dataset to work on, CNN models should be able to capture 
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more invariances to work better. Hence, data augmentation provides the needed invariances using the data rather 
than the architecture, whether or not the given model can capture them.

Moreover, augmentation is used to balance unbalanced  datasets34,35. That is done by augmenting the images 
in the classes with fewer samples more than augmenting the images in the classes with more samples. Balanc-
ing the datasets using augmentation techniques has shown a great improvement in the performance of natural 
 images12, medical  images23,36–38 and many other problems.

Augmentation techniques usually perform basic image processing operations, such as translation, rotation, 
and flipping. Sometimes they involve even more complex operations such as intensity and color transformations 
or even noise addition. Sometimes, a single operation has to be implemented in different levels for every dataset 
or every class in a dataset. These augmentation operations can produce results comparable to the state-of-the-art 
even when used with very simple network  architectures23.

The need for an automatic way to learn the proper augmentation operations on each dataset has been recently 
raised.  Hence22, proposed an automatic tool to find the best set of augmentation operations, such as translation, 
rotation, flipping, or shearing, that should work better on a given dataset. Although it is time and resource-inten-
sive, their AutoAugment tool has obtained state-of-the-art results on many benchmark datasets. The augmenta-
tion operations learned by their tool on a given dataset are transferable to similar problems as stated in their work.

The AutoAugment tool works by searching over a predefined set of augmentation policies for each dataset. 
Each policy is made up of several sub-policies to choose one of them randomly in every training iteration. Each 
sub-policy contains two transformation operations as well as the magnitudes of these operations and the prob-
abilities to implement these operations.

Dataset
This work systematically explores the effect of transfer learning, data augmentation, and feature concatenation 
techniques on the LDR medical image dataset. Table 1 shows the number of classes in our dataset, the number 
of samples per class, and the number of samples after data augmentation. Following, we discuss some of the 
important information, characteristics, and state-of-the-art for the LDR dataset.

Lumbar disc herniation, also known as intervertebral disc herniation, is a common spine disorder causing 
serious back pain to its patients. X-ray, MRI, and CT scans have all been used to examine the spine for disc 
problems. But among them, MRI has been widely used and accepted for the diagnosis of lumbar disc herniation 
abnormality because it shows the internal structures of both bones and soft tissues in the region of interest for 
diagnoses, as shown in Fig. 1.

The need for CAD systems for lumbar disc herniation disorder has been raised rapidly as it has been the 
reason for several medical  problems39. For that reason, a benchmark dataset has been created and used  by8,24,40–43 
axial (top-down) MRI scans instead of the traditional sagittal (side) view scans for disc diagnoses because the 
axial scan can provide more information about the disc area. Creating this benchmark dataset encouraged 
researchers to keep finding better approaches for CAD systems of the lumbar disc herniation disorder. Over 
the last few years, this benchmark has been enhanced by researchers to address some minor issues in the first 
version of the dataset.

The most recent work  in24 focused on the use of state-of-the-art techniques, such as CNN, where the feature 
extraction is automatically performed. Transfer learning was also used in that work to facilitate and speed up the 

Figure 1.  Axial MRI scan for lumbar disk herniation.
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training job using the AlexNet pre-trained model. They achieved an accuracy of 95.65% for the binary classifica-
tion task. However, they achieved 91.38% for the recognition task, in which the images are classified into eight 
categories. The recognition accuracy was produced with the help of a slight data augmentation of two rotation 
operations to increase the number of samples in small categories. This augmented version of the dataset is used 
in this work, referring to it, in this paper, as “Disc” for simplicity.

Pretrained models
MATLAB44 has published several pre-trained CNN models trained on over a million  ImageNet13 images to clas-
sify them into 1000 natural object categories. Those models have often produced state-of-the-art results in the 
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)14. MATLAB’s Deep Learning Toolbox provides 
those pre-trained ImageNet models to be used for classification, feature extraction, and fine-tuning using a few 
lines of code.

In this work, we selected nine of those pre-trained models to perform feature extraction and fine-tuning on 
the LDR dataset. Learned from MATLAB documentation, Table 2 shows some of the characteristics of those 
models. Figure 2 compares the validation top-1 accuracy of each model on ImageNet data with the time required 
to make a prediction using that model. The results shown in the figure were produced by the MATLAB team 

Table 2.  The characteristics of the nine pre-trained ImageNet models used in this work. Depth, is the largest 
number of sequential convolutional or fully connected layers on a path from the input layer to the output layer; 
Size, is measured in MB; Parameters, are measured in millions; Input size, is the image input size of the network 
in pixels; Top‑1 & Top‑5, are the Top-1 & Top-5 error rates (0 means no error) respectively.

Models Depth Size Parameters Input Size Top-1 Top-5

AlexNet12 8 227 61 227 × 227 0.4355 0.2049

VGG1645 16 515 138 224 × 224 0.3426 0.1346

VGG1945 19 535 144 224 × 224 0.3411 0.1317

GoogleNet46 22 27 7 224 × 224 0.3227 0.1170

InceptionV347 48 89 23.9 299 × 299 0.2337 0.0675

ResNet5048,49 50 96 25.6 224 × 224 0.2925 0.1014

ResNet10148,49 101 167 44.6 224 × 224 0.2762 0.0925

InceptionResNetV250 164 209 55.9 299 × 299 0.2039 0.0522

SqueezeNet51 18 4.6 1.24 227 × 227 0.4288 0.1988

Figure 2.  Validation accuracy vs. prediction time for MATLAB ImageNet pre-trained  models52.
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using mini-batches of 64 images on a modern GPU (an  NVIDIA® TITAN Xp). The prediction time in the figure 
is relative to the fastest network and the area of the markers represents the size of the network on disk.

The success of these nine pre-trained models on the ImageNet dataset suggests that they have learned mean-
ingful features from those images, making them good candidates for transfer learning. In addition, these models 
represent a diverse set of neural network architectures; ranging from relatively simple architectures like AlexNet 
and SqueezeNet to more complex ones like InceptionV3 and InceptionResNetV2; which enables them to cap-
ture different representations from the ImageNet data. This diversity can help us understand the ability of each 
architecture to generalize to significantly different types of tasks. Using models with different levels of complexity 
will show which model can perform better than others on fine-grained image recognition tasks, i.e., medical 
image classification.

Machine learning classifiers
The extracted features of different pre-trained networks can be used on any classifier to discriminate between the 
different classes in a dataset. The authors of this work used a deep learning approach and a none-deep learning 
approach for feature classification. For the deep learning approach, the authors used a multilayer deep neural 
network (DNN), also called a multi-layer perceptron (MLP) in the literature. This multilayer DNN model is 
simply made up of multiple fully connected layers to be trained on the extracted features. On the other hand, 
for the none-deep learning approach, the authors of this work used six different machine learning classifiers, i.e., 
support vector machine (SVM)53,54, Linear  SVM55, Discriminant Analysis  Classification56,56, K-Nearest Neighbors 
(KNN)57, Naïve  Bayes58,59, and Decision  Trees60.

Since we used the MATLAB implementation of the pre-trained models, we also used the  fitCECOC61 MAT-
LAB implementation for the six machine learning classifiers with their default parameters. This allows for seam-
less interoperability to simplify the experimentation workflow. The efficient implementations and the extensive 
documentation make MATLAB the best choice for researchers and practitioners alike, which allows them to 
reproduce published results for validation and improvement. While other classifiers exist, these six classifiers 
cover a broad spectrum of machine learning techniques, from linear models like Linear SVM and Naive Bayes 
to more complex ones like Decision Trees and KNN. Hence, evaluating these six classifiers is enough to guide 
future research on specific categories of machine learning classifiers.

Methodology
In this paper, we propose a systematic exploration of different transfer learning techniques to try to produce 
state-of-the-art results on the slightly augmented LDR medical image dataset. The nine pre-trained networks 
mentioned in Table 2 were used for fine-tuning and feature extraction on the images of those datasets. Those 
features were then used on their own, or concatenated together for every two pre-trained networks to produce 
double features. The single and double features are then used to train six different machine learning algorithms 
as well as a multilayer Deep Neural Network.

We used MATLAB version R2018b, and their implementations of the nine pre-trained networks mentioned in 
Table 2. These networks were used for both fine-tuning and feature extraction of the images in the two datasets. 
MATLAB was also used to train the six machine learning algorithms mentioned in Fig. 4. For the multilayer 
DNN, the authors used a TensorFlow DNN-Classifier estimator in Python to be trained on the features extracted 
from MATLAB. TensorFlow was chosen for DNN over MATLAB because it provides a more robust and powerful 
DNN implementation that overcomes the MATLAB implementation for DNN.

The LDR dataset is unbalanced, with 236 images categorized into 8 classes, as shown in Table 1. The smallest 
class contains 12 images, while the largest “normal” class contains 93 images. Each Disc image is a 100 × 100 
colored image cropped from an MRI slide of lumbar disc herniation. The dataset is slightly augmented as  in24, 
using just two rotation operations of 10 degrees in both left and right directions, as shown in Fig. 3.

Figure 4 shows a workflow of all experiments in this work. The experiments start by reading the images of 
the LDR dataset. The images are scaled first to match the input of each pre-trained model. They are then shuffled 

Figure 3.  Augmenting the Disc images by two rotation operations.
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and used for fine-tuning or feature extraction. Finally, The extracted features are used to train a multilayer DNN 
and the six machine learning classifiers either as single or double features.

Fine‑tuning
The fine-tuning part of the experiments in this work is done without feature concatenation for simplicity and 
speed. Feature concatenation in the case of fine-tuning is usually referred to as ensemble fine-tuning. Ensemble 
fine-tuning requires the concatenation of two or more networks at one of their last layers to be trained together. 
Besides the need to implement the proper cost estimation function on the concatenated networks, it is required 
to load all concatenated networks in memory to train them as a single network. Hence, implementing ensemble 
fine-tuning in our work will be extremely hard using our moderate set of devices.

To produce consistent and trusted results, we have averaged the fine-tuning results of ten runs. Very small 
mini-batch size, i.e. eight images per iteration, has been used in our fine-tuning experiments. That is due to the 
large size of the used pre-trained networks, and our limited availability of resources. The small mini-batch size 
enables researchers and practitioners to re-implement any part of these experiments on their own moderate set 
of devices.

MATLAB augmented image data source has been used to automatically resize the images of the dataset. 
Resizing the images is required to match the proper image size of the input layer of each pre-trained network. 
To speed up this preprocessing step, the resizing operations are done using a background execution of four 
MATLAB parallel workers. The networks were fine-tuned for 40 training epochs. The training set is shuffled 
for every epoch and trained using the Stochastic Gradient Descent with Momentum (SGDM) optimizer with a 
1e−4 constant learning rate.

To be able to retrain those pre-trained networks, we first replace the last learnable layer of the network, which 
is usually a fully-connected layer. The number of neurons in that layer should match the number of classes in 
the new task. We also replace the final classification layer, which computes the cross entropy loss for multi-class 
classification problems of mutually exclusive classes. The replacement of the classification layer is needed to adapt 
the network to the new class labels in the new data set.

To learn faster in the newly added layers, we increased the learning rate factors of those layers relative to the 
learning rates of the original layers. Moreover, we froze the weights of the first 10 layers in the network by setting 
the learning rates in those layers to zero. Figure 5 shows the three different strategies that are usually used for 
fine-tuning. As shown in the figure, we implement the second fine-tuning strategy. Freezing the earlier network 
layers significantly speeds up the training time. It also prevents the overfitting problem that neural networks 
usually encounter on small datasets.

Figure 4.  Experimentation flowchart.
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Feature extraction and concatenation
Feature extraction is done first to transfer the knowledge of the nine pre-trained networks to the multilayer DNN 
and the six machine-learning classifiers. For each pre-trained network, we extract the features of each image to 
create image feature vectors. We used MATLAB augmented image data source again to automatically resize the 
images to the proper image size of the input layer of each pre-trained network. The training set is pre-shuffled to 
provide robust data distribution for the machine learning classifiers, and the multilayer DNN to perform better 
training on the data.

Each image is represented by a feature vector of a length that corresponds to the number of neurons in the 
feature extraction layer of the pre-trained network used, as shown in Table 3. The table also shows that the feature 
extraction layer is usually the first fully-connected layer for each pre-trained network. The first fully connected 
layer is selected to capture the features of the last feature extraction layer in the network.

Some pre-trained models only have a single fully-connected layer for classification. While in the SqueezeNet 
model, there are no fully-connected layers in its implementation to be used as a learnable layer. The SqueezeNet 
features are therefore extracted from the last average pooling layer, which is actually the last layer before the 
softmax and classification layers.

The extracted features are directly used as single features to train the multilayer DNN and the six machine-
learning classifiers. Furthermore, the features extracted from every two pre-trained models are concatenated 
together to form larger feature vectors, as can be seen from Fig. 6. The produced double features are of very high 
dimensionality, especially when AlexNet, VGG16, or VGG19 features are used for concatenation. That is because 
their single features already suffer from the curse of dimensionality problem, with a feature size of 4096 features 
(neurons). Concatenating each two of those high dimensional features produces a feature vector of length 8192.

Figure 5.  Three well-known fine-tuning techniques.

Table 3.  The layer name and its length (number of neurons) used for feature extraction of each of the nine 
pre-trained models in MATLAB.

Model name Extraction layer type Layer name Feature length

AlexNet The 1st fully-connected fc6 4096

VGG16 The 1st fully-connected fc6 4096

VGG19 The 1st fully-connected fc6 4096

GoogleNet The only fully-connected loss3-classifier 1000

InceptionV3 The only fully-connected predictions 1000

ResNet50 The only fully-connected fc1000 1000

ResNet101 The only fully-connected fc1000 1000

InceptionResNetV2 The only fully-connected predictions 1000

SqueezeNet The last average pooling pool10 1000
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Multilayer deep neural network (DNN)
In this work, we use the DNN-Classifier estimator of the TensorFlow framework. Both single and double features 
are used to train the multilayer DNN. We start by creating an input layer with the number of neurons equal to 
the number of features in the feature vectors. Since the length of each feature vector differs for each pre-trained 
model, then the number of neurons in the input layer will also differ for both single and double features of dif-
ferent pre-trained models.

Our DNN network is composed of three hidden fully-connected layers of 1000 neurons each. We have used 
Batch normalization for each hidden layer in the network. We have also used a 50% dropout factor, and tanh 
activation function for each hidden layer. Adagrad optimizer is used with 1e−3 constant learning rate factor. 
Weighted-mean loss reduction is used to reduce the loss over a single batch for every training iteration. A mini-
batch size of 128 feature vectors was used for every training epoch. The training was performed for 300 training 
epochs. The training input data is shuffled for every epoch during the training time.

Machine learning classifiers (ML)
We again used both single and double features to train the six different machine learning classifiers mentioned in 
Fig. 4. For each one of the six classifiers, we use four MATLAB parallel workers to accelerate the code execution 
on our moderate set of devices. FitCECOC was used to fit the Linear SVM, Discriminant, KNN, Naïve Bayes, 
SVM, and Tree multi-class classifiers.

Observations, i.e. samples, in the data correspond to rows for all classifiers except for the linear SVM learner, 
where observations correspond to columns in the data. As per MATLAB documentation, this data representation 
provides a significant reduction in the optimization and execution time. we fit the FitCECOC learners using a 
one-versus-all coding scheme for multi-class classification. And for all those classifiers, we used them with their 
default options and parameters, to avoid the long process of hyperparameter optimization and tuning for each 
one of them.

Results and discussions
With such a large number of experiments, and consequently, a large number of results, using a single metric is 
better to focus on one clear measure of performance when interpreting the results. This makes it easier to compare 
different solutions and quickly identify the best-performing approach without getting lost in a sea of numbers. 
Accuracy is a very good indicator of overall model performance, which can give a clear picture of how well the 
model is doing. Accuracy is enough by itself when the dataset has a roughly equal number of samples for each 
class. Hence, performing data augmentation to minimize sample variation in each category makes accuracy the 
best performance metric to choose from.

Hence, we use the accuracy measure for all reported results in our experiments on a scale between 0 and 1, 
where 1 represents the best possible accuracy with no errors. The reported accuracy values are rounded to only 
two decimal places in the given figures and tables, to make it easily readable. The reported accuracy measure is 
calculated on the validation set of the dataset, and calculated as shown in the following equation:

Accuracy =

Correct Predictions

Total Number of Samples

Figure 6.  36 double concatenated features from 9 single-features.
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Due to the large amount of results in this work, we represent the results per dataset for easier discussion. For 
each dataset, we discuss the results of single and double features separately for each transfer learning technique. 
Fine-tuning results are represented first as they were implemented using only single features. Moreover, fine-
tuning works directly on the images of each dataset to tune the parameters of the pre-trained networks, instead 
of using them as fixed feature extractors.

The results are shown in tables for the DNN and machine learning classifiers to make them more readable. 
However, fine-tuning results are represented in figures with a small data table below each figure. The data table 
shows the maximum, minimum, and average accuracy over all the runs for every pre-trained model. We later 
provide a detailed discussion of the provided results. We also discuss the effect of data augmentation and feature 
concatenation on the used classifiers.

It was quite fast to produce the results for fine-tuning, DNN, and ML classifiers. That is due to the small size 
of the dataset, although it has been slightly increased by a couple of rotation operations for some of its classes. 
The small size of the dataset comes at the cost of producing inconsistent results as will be discussed later.

The dataset is split into 75% and 25% for training and testing, respectively. Which is the same way that has 
been implemented in the work  by24. A random split of the dataset into training and testing sets is the most used 
approach in the literature. In addition to being a common approach, we chose data splitting over more computa-
tionally intensive methods like K-Fold cross-validation due to the large number of experiments and the limited 
availability of computational resources to perform those experiments.

It is good to note that the augmentation done  by24 on the LDR dataset significantly helped in achieving the 
best results in their work. It also helped boost the accuracy of the results reported in this work. However, more 
augmentation operations should also be investigated as it might help boost the accuracy even further.

Fine‑tuning
Starting with the fine-tuning results of the LDR dataset images, Fig. 7 shows the maximum, minimum, and aver-
age accuracy values over 10 fine-tuning training runs on each of the nine pre-trained networks. Each network 
was fine-tuned for 40 training epochs in every run, which did not take too much time due to the small size of 
the dataset.

We can notice that the average accuracy values significantly vary for each pre-trained network. AlexNet 
produced the best average accuracy on the LDR dataset with a maximum accuracy of 98%. On the other hand, 
InceptionResNetV2, which outperforms all the eight pre-trained models on the ImageNet dataset, produced the 
worst average accuracy on this dataset with a maximum accuracy of 67%.

The results show that Inception and ResNets architectures are not performing well on the LDR dataset. And 
these results support the findings  of28, that ImageNet features are less general than what was previously sug-
gested. This means that the parameters learned by a good model on the ImageNet dataset are not necessarily 
a good starting point to train a fine-grained medical image dataset of bones and tissues, such as the images in 
the LDR dataset.

Single‑features
Linear SVM classifier is significantly faster than all other classification methods. The accuracies for the LDR 
single features using DNN and the six machine learning classifiers are shown in Table 4. The best feature extractor 

Figure 7.  Fine-tuning results over 10 runs.
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differs based on the classification method used on the extracted features. However, the ResNet50 feature extractor 
produced the best classification accuracies on DNN, Linear, and Tree classifiers.

AlexNet produced the best classification accuracy, i.e. 95%, for the single-feature experiments using the SVM 
classifier. That accuracy is not better than the best fine-tuning accuracy of 98% using an AlexNet pre-trained 
network. However, SVM was able to produce pretty good results for each one of the nine pre-trained networks. 
That makes SVM a good choice for practitioners when working with radiology images using the features extracted 
from most of the given pre-trained models.

It should be noticed though, that the worst feature extractors for the SVM classifier are the Inception archi-
tectures, i.e. GoogleNet, InceptionV3, and InceptionResNetV2. This shows the bad effect of Inception models on 
this type of radiology medical images. On the other hand, The worst classifiers in our single-feature experiments 
are Tree and Naïve Bayes classifiers with 59% and 69% best accuracies, respectively.

Double‑features
Again, the linear SVM classifier is significantly faster than all other classification methods. Table 5 shows the 
accuracies of DNN and the six machine learning classifiers on the double features. For these sets of experiments, 
there are two feature extractors for each classifier instead of one.

The contributions of the two feature extractors are joined together to produce a more robust model with sig-
nificantly better accuracy. This is easily noticed by boosting the best classification accuracy from 95% to 98% for 
the experiments of the single and double features, respectively. Of course, those best accuracies were produced 
using the SVM classifier.

The concatenated feature extractors that produced the best classification accuracy are VGG19 and ResNet101. 
We can still observe the contribution of ResNet architectures in producing the best results for each classifier. Out 
of the seven best accuracies in the seven classifiers, ResNet architectures were one of the two feature extractors 
used to produce the best six accuracies. Those classifiers are the SVM, DNN, Linear SVM, Discriminant, Naïve 
Bayes, and Tree classifiers, as can be seen from Table 5. This again supports the previous findings of ResNets as 
the best feature extractors.

SVM again shows good classification accuracies for each pair of the given feature extractors. Almost always, 
an Inception architecture was presented for every drop in the classification accuracy of the double features using 
SVM, as was noticed in the single-feature experiments. That emphasizes the fact that Inception architectures are 
bad feature extractors for radiology medical images. The worst accuracies reported using SVM were 84% and 
86%, and they always involve an Inception architecture as one of its feature extractors. Finally, we again notice 
that the worst classifiers are gain Tree and Naïve Bayes classifiers with 71% and 59% best accuracies, respectively.

It is well shown in the results of the double-features experiments, that feature concatenation significantly 
improves the classification accuracy for each classifier. Except for the Tree and Naïve Bayes classifiers, where there 
was no significant improvement in the performance between single and double features using those two classi-
fiers. That makes those two classifiers a bad choice for practitioners when dealing with radiology medical datasets.

Discussion of the results
To summarize the results and outcomes represented earlier, we shortly discuss the effect of each of the used 
techniques in boosting classification performance. We show how this systematic exploration enabled us to 
achieve state-of-the-art results. Moreover, these results enabled us to understand the behavior of each classifier 
on medical datasets. They also enabled us, practitioners, and researchers to shorten the time required to find the 
best technique to use on new, similar datasets in the future.

Our systematic exploration of the used techniques on the LDR dataset enabled us to boost the previous state-
of-the-art on this dataset that was achieved  by24. The accuracy was improved from 91.38 to 98% using fine-tuning 
on the AlexNet pre-trained model. The fine-tuning accuracy was achieved by freezing the learned parameters 
on the first ten layers and increasing the learning factor on the newly added layers. This new state-of-the-art 
was also achieved using SVM on the concatenated features of VGG19 and ResNet101. However, we have also 
achieved other results better than the state-of-the-art with several single/double features mostly using SVM.

We did not test the feature Concatenation effect for fine-tuning experiments, i.e. ensemble fine-tuning. How-
ever, it is well noted that feature concatenation often had a good effect in enhancing the performance of classifiers 

Table 4.  Accuracies of DNN and ML classifiers using single‑features. The highest accuracy for each classifier is 
highlighted in bold font. The highest overall accuracy is highlighted in bolditalic font.

Model DNN Linear Discriminant KNN Naïve Bayes SVM Tree

AlexNet 0.47 0.74 0.78 0.88 0.64 0.95 0.45

VGG16 0.76 0.81 0.78 0.86 0.66 0.91 0.45

VGG19 0.74 0.81 0.83 0.86 0.66 0.93 0.43

GoogleNet 0.79 0.66 0.59 0.78 0.50 0.74 0.41

InceptionV3 0.81 0.76 0.66 0.76 0.69 0.81 0.41

ResNet50 0.88 0.81 0.64 0.78 0.60 0.88 0.59

ResNet101 0.81 0.76 0.72 0.81 0.62 0.86 0.40

InceptionResNetV2 0.83 0.72 0.69 0.81 0.59 0.74 0.52

SqueezeNet 0.45 0.59 0.76 0.72 0.47 0.84 0.55
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if used with data augmentation. Hence, it is still recommended to investigate the effect of ensemble fine-tuning 
on these datasets to complement this work. Furthermore, SVM was mostly the best classifier on the extracted 
features, either used with single or double features. It is also important to reinforce the fact found  by28, that 
ResNet architectures are usually more successful than any other architectures when used as feature extractors.

Conclusion and future work
As a conclusion, this systematic exploration enabled us to achieve state-of-the-art results on the LDR dataset. It 
provides a comparative study that shows the effect of the different techniques discussed in this work, individu-
ally and combined. It is noticed from the discussed results, that fine-tuning transfer learning technique always 
produced the best classification accuracy results for radiology images. Adding rotation invariance to dataset 
images significantly helped boost the performance of every technique used in this study. Moreover, joining the 
outputs of different feature extractors has a significant performance improvement, especially when used with 
data augmentation.

It has been confirmed in this work, that ResNet architectures are almost often the best feature extractors for 
radiology medical image datasets. In this work, ResNets produced the best results when used as single or concat-
enated feature extractors. When working on the extracted features, SVM produces the best results. With the help 
of this systematic exploration, we were able to produce a state-of-the-art accuracy of 98% on the LDR dataset.

Table 5.  Accuracies of DNN and ML classifiers using double‑features. The highest accuracy for each classifier 
is highlighted in bold font. The highest overall accuracy is highlighted in bolditalic font.

Model DNN Linear Dis. KNN Naïve Bayes SVM Tree

AlexNet & VGG16 0.45 0.79 0.79 0.90 0.69 0.95 0.45

AlexNet & VGG19 0.41 0.78 0.74 0.93 0.62 0.97 0.45

AlexNet & GoogleNet 0.45 0.71 0.81 0.88 0.67 0.95 0.41

AlexNet & InceptionV3 0.48 0.74 0.79 0.88 0.66 0.95 0.41

AlexNet & ResNet50 0.50 0.84 0.81 0.88 0.66 0.95 0.55

AlexNet & ResNet101 0.55 0.69 0.81 0.88 0.67 0.93 0.43

AlexNet & InceptionResNetV2 0.53 0.78 0.74 0.88 0.66 0.95 0.43

AlexNet & SqueezeNet 0.43 0.60 0.79 0.88 0.66 0.95 0.47

VGG16 & VGG19 0.59 0.81 0.78 0.86 0.62 0.97 0.45

VGG16 & GoogleNet 0.72 0.79 0.76 0.88 0.66 0.91 0.45

VGG16 & InceptionV3 0.66 0.81 0.79 0.86 0.69 0.93 0.45

VGG16 & ResNet50 0.71 0.81 0.81 0.86 0.69 0.93 0.59

VGG16 & ResNet101 0.76 0.86 0.84 0.86 0.67 0.93 0.52

VGG16 & InceptionResNetV2 0.72 0.79 0.84 0.86 0.66 0.91 0.43

VGG16 & SqueezeNet 0.60 0.79 0.78 0.81 0.64 0.93 0.48

VGG19 & GoogleNet 0.79 0.74 0.78 0.84 0.64 0.95 0.47

VGG19 & InceptionV3 0.78 0.79 0.76 0.88 0.69 0.97 0.43

VGG19 & ResNet50 0.76 0.81 0.72 0.88 0.66 0.93 0.55

VGG19 & ResNet101 0.72 0.79 0.74 0.88 0.66 0.98 0.41

VGG19 & InceptionResNetV2 0.78 0.84 0.79 0.88 0.64 0.95 0.47

VGG19 & SqueezeNet 0.60 0.78 0.76 0.86 0.57 0.95 0.52

GoogleNet & InceptionV3 0.88 0.86 0.74 0.79 0.62 0.90 0.47

GoogleNet & ResNet50 0.91 0.78 0.78 0.84 0.62 0.84 0.57

GoogleNet & ResNet101 0.88 0.78 0.86 0.79 0.62 0.90 0.55

GoogleNet & InceptionResNetV2 0.84 0.79 0.67 0.78 0.62 0.84 0.47

GoogleNet & SqueezeNet 0.47 0.57 0.79 0.83 0.59 0.86 0.53

InceptionV3 & ResNet50 0.97 0.81 0.79 0.83 0.71 0.90 0.50

InceptionV3 & ResNet101 0.88 0.83 0.74 0.81 0.66 0.86 0.50

InceptionV3 & InceptionResNetV2 0.84 0.78 0.76 0.84 0.66 0.84 0.57

InceptionV3 & SqueezeNet 0.57 0.62 0.78 0.88 0.66 0.93 0.53

ResNet50 & ResNet101 0.88 0.84 0.71 0.84 0.62 0.90 0.47

ResNet50 & InceptionResNetV2 0.93 0.83 0.76 0.84 0.60 0.91 0.41

ResNet50 & SqueezeNet 0.64 0.67 0.83 0.86 0.62 0.91 0.52

ResNet101 & InceptionResNetV2 0.84 0.79 0.79 0.86 0.67 0.84 0.45

ResNet101 & SqueezeNet 0.59 0.53 0.81 0.88 0.55 0.93 0.53

InceptionResNetV2 & SqueezeNet 0.62 0.59 0.81 0.90 0.57 0.91 0.48
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A good future direction is to perform ensemble fine-tuning of more than one pre-trained model at the same 
time, which requires powerful computational resources. We believe that it is worth experimenting given the 
success of this method in other domains. Furthermore, we will work on increasing the number of images in the 
LDR dataset by collaborating with healthcare providers and institutions. Expanding the dataset is a crucial step 
in enhancing the robustness and generalizability of our diagnosis system.

In addition, we plan to validate these findings on different types of medical images, i.e., Human Epithelial 
type 2 cells (HEp-2)62 microscopic medical image dataset that is captured using Indirect ImmunoFluorescence 
(IIF). This will show the generalization ability of the proposed system on a larger and more diverse dataset with 
different clinical settings, i.e., light microscopic imaging instead of MRI imaging. Finally, an ensemble fine-tuning 
approach should be considered as a future work. It is important to evaluate the effect of concatenating the last 
learnable layers of each of the two pre-trained models, or even more, to fine-tune them at the same time. That 
is worth investigating because fine-tuning produced the best results on our dataset. Since feature concatenation 
enhanced the performance of every model, it is necessary to evaluate the performance of ensemble fine-tuning 
techniques.

Data availability
The dataset analyzed during the current study is not publicly available because they are owned by the Jordan 
University of Science and Technology, but is available from the corresponding author upon reasonable request.
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