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Murmur identification and outcome 
prediction in phonocardiograms 
using deep features based 
on Stockwell transform
Omid Dehghan Manshadi  & Sara mihandoost *

Traditionally, heart murmurs are diagnosed through cardiac auscultation, which requires specialized 
training and experience. The purpose of this study is to predict patients’ clinical outcomes (normal or 
abnormal) and identify the presence or absence of heart murmurs using phonocardiograms (PCGs) 
obtained at different auscultation points. A semi-supervised model tailored to PCG classification is 
introduced in this study, with the goal of improving performance using time–frequency deep features. 
The study begins by investigating the behavior of PCGs in the time–frequency domain, utilizing the 
Stockwell transform to convert the PCG signal into two-dimensional time–frequency maps (TFMs). 
A deep network named AlexNet is then used to derive deep feature sets from these TFMs. In feature 
reduction, redundancy is eliminated and the number of deep features is reduced to streamline the 
feature set. The effectiveness of the extracted features is evaluated using three different classifiers 
using the CinC/Physionet challenge 2022 dataset. For Task I, which focuses on heart murmur 
detection, the proposed approach achieved an average accuracy of 93%, sensitivity of 91%, and 
F1-score of 91%. According to Task II of the CinC/Physionet challenge 2022, the approach showed a 
clinical outcome cost of 5290, exceeding the benchmark set by leading methods in the challenge.
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The prevalence of cardiovascular diseases remains a leading global cause of mortality, constituting about one-
third of all recorded deaths worldwide 1. This issue is particularly critical in low-income countries, where health-
care systems face substantial challenges. Identifying and treating acquired and congenital heart conditions present 
formidable obstacles due to the scarcity of specialized cardiologists in remote and underprivileged areas with 
limited access to healthcare 2,3. Consequently, a vast majority of patients in these settings lack access to consulta-
tions with qualified cardiologists.

A digital cardiac examination provides an affordable and straightforward method for capturing heart sounds 
at various crucial points without extensive training 4. In spite of this, interpreting these sounds still requires 
significant and prolonged training 5,6. Automated detection and interpretation of PCGs is gaining traction as a 
way to overcome the limitations of manual examination of heart sounds, which requires extensive training. The 
automated examination of the heart enables the early detection of congenital and acquired diseases, especially 
in children, by examining the heart’s mechanical function without invasive procedures.

In the last two decades, significant research efforts have been dedicated to automating heart disorders diag-
nosis by leveraging PCG signals and artificial intelligence (AI) techniques. Noteworthy studies in PCG signal 
classification showcase diverse methodologies. El Badlaoui et al., applied principal component analysis (PCA) 
alongside a support vector machine (SVM) classifier 7. They experimented with various hyperparameters and 
kernels, employing this approach on two distinct private PCG datasets. Sawant et al. introduced a technique 
utilizing wavelet transform (WT) and gradient boosting (GB), achieving a notable 90.25% accuracy on both 
the PASCAL and the Computing in Cardiology Challenge (CinC) /Physionet challenge 2016 datasets 8. Abduh 
et al. utilized a mel-frequency coefficients (MFCC) along with fractional Fourier transform, employing k-nearest 
neighborhoods (KNN) and SVM analysis on the CinC /Physionet challenge 2016 dataset 9. Wu et al. classified 
PCG recordings using MFCC and the hidden Markov model (HMM) 10. Maglogiannis et al. employed WT and 
morphological analysis, integrating an SVM classifier on a representative global dataset 11. Li et al. classified heart 
sounds using fractals WT and SVM, focusing on the CinC /Physionet challenge 2016 dataset 12. Rujoie et al. 
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used MFCC and Hilbert transform (HT) for feature extraction, coupling it with KNN for PCG classification on a 
private database 13. Chen et al. applied S transforms, along with features based on discrete time–frequency energy, 
to classify heart sounds in a private dataset14. Additionally, in references 14–17, authors extracted time–frequency 
features through synchrosqueezing, polynomial chirplet transform, and spline chirplet-based methods from 
PCG signals, employing diverse classifiers for PCG signal classification.

Moreover, several studies have utilized different techniques based on deep learning (DL) for PCG classifi-
cation. Singh et al. utilized 2D scalograms with continuous WT (CWT) and a convolutional neural network 
(CNN) on the CinC /Physionet challenge 2016 dataset 18. Baghel et al. employed a six-layer CNN for heart valve 
disorder (HVD) detection using PCG signals 19. Furthermore, Alkhodari and Fraiwan implemented a convo-
lutional recurrent neural network (RNN)-based model to identify various types of HVDs 20. Soares et al. used 
a neuro-fuzzy based modeling approach, combining CNN with different classifiers, achieving 93% accuracy 
on the CinC /Physionet challenge 2016 dataset 21. Li et al. introduced a fusion framework model incorporating 
multi-domain features and deep learning features extracted from PCG 22. Bozkurt et al. conducted research on 
time–frequency features combined with a deep model for heart sound classification, achieving an accuracy of 
86.02% on the CinC /Physionet 2016 dataset 23.

A substantial portion of the existing research in this domain heavily relies on the CinC /Physionet challenge 
2016 dataset 2, which were made available as part of a specific challenge. However, it’s essential to recognize 
that these datasets primarily rely on the binary classification of PCG signals. Additionally, a significant limita-
tion is observed in the analysis of different heart sound samples from the same patient independently, without 
considering their common source. This oversight disregards the potential benefits of leveraging multiple sounds 
from a single patient to enhance diagnostic accuracy. This is done by taking into account the varying intensity 
of murmurs across different auscultation locations24. The introduction of the CinC /Physionet challenge 2022 
dataset 25 marks a significant step in addressing certain limitations prevalent in current heart sound datasets. 
In addition to binary labels, this dataset introduces a novel unknown label. Notably, it presents multiple heart 
sound recordings from diverse auscultatory locations for each patient. This multifaceted feature opens up new 
avenues for leveraging this data to achieve more precise diagnostics.

Several research teams have recently developed distinct algorithms aimed at distinguishing between the mur-
mur presence, absence, and uncertain cases within multi-location PCGs, as part of the CinC /Physionet challenge 
2022. These teams underwent evaluation using a weighted accuracy metric for Task I and a cost-based scoring 
metric for Task II 25. The top three algorithms in Task I are documented as references 26–28. Lu et al. proposed a 
combination of the mel-spectrogram and various wide features as inputs for a CNN, resulting in an 80% accuracy 
on the CinC /Physionet challenge 2022 dataset 26. McDonald et al. utilized hidden semi-Markov models and 
RNN to detect murmurs and perform reliable PCG segmentation with an accuracy of 85% 27. Finally, Xu et al. 
proposed a CNN-based approach, where spectrograms at different scales were computed and combined into a 
single CNN, achieving an accuracy of 90% 28.

In our study, we introduce a new hybrid model to represent PCG signals by combining the Stockwell trans-
form with a DL technique. The Stockwell transform generates a time–frequency map (TFM) of the PCG, which 
is used for feature extraction using AlexNet. These extracted features are fed into different classifiers for murmur 
detection. Our experimental results demonstrate that our proposed method outperforms the leading techniques 
from the CinC /Physionet challenge 2022, highlighting its outstanding performance.

The paper is organized as follows in the subsequent sections: The section entitled "Materials and Methods" 
elucidates the dataset information and the proposed methodology for the study. Following that, the section titled 
"Results" presents the outcomes of the performance assessment. Finally, the paper delves into a discussion of 
these results. It concludes with the section "Discussion and Conclusion," which summarizes the main findings 
and provides a final overview of the study.

Material and method
This section presents the dataset we used in our study and describes our approach to classifying PCG signals. A 
visual representation of our method is shown in Fig. 1. It consists of four steps: (I) time–frequency analysis using 
the Stockwell transform, (II) extraction of deep features using the AlexNet model, (III) reducing dimensionality 
and (IV) classification. Each of these steps will now be explained in detail.

The PCG database
The dataset used in this study, the CinC /Physionet challenge 2022 dataset 29,30, constitutes a considerable compi-
lation of PCG signals collected from pediatric subjects in Brazil between 2014 and 2015. This dataset comprises 
3,163 audio files from 942 patients, recorded at a sampling rate of 4,000 Hz. The files have durations between 5 
and 65 s. Included within the dataset are multiple PCG recordings obtained from diverse auscultation locations, 
including the aortic valve (AV), pulmonary valve (PV), tricuspid valve (TV), and mitral valve (MV). While 
most patients have recordings at all four locations, some patients have fewer recordings. A few possess multiple 
recordings at each location. Notably, the recordings were obtained sequentially resulting in variations in the 
number, location, and duration of recordings among patients 24. The dataset underwent meticulous annotation 
by an expert annotator, categorizing each record as “murmur present” (2391 recordings), “absent” (616 record-
ings), or “unknown” (156 recordings, indicative of low-quality records). Additionally, the data was classified into 
two classes: normal (2575 recordings) and abnormal (665 recordings). For more detailed information about the 
dataset, refer to reference 29. It is imperative to note that the Physionet Challenge 2022 comprises two separate 
tasks. In Task I, PCG signals were classified into three different classes based on the initial categorization. In 
Task II, the objective was to identify normal and abnormal patients using the second categorization scheme.
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Time–frequency analysis using Stockwell transform
Due to the nonlinearity and non-stationarity behavior of PCG signals, different time–frequency transformations, 
such as the wavelet and chirplet transform, have traditionally been used for PCG analysis 8. However, the wavelet 
transform has limitations, including the necessity to select an appropriate mother wavelet and account for the 
loss of absolute phase information in the data. Hence, in this approach, we employed the Stockwell transform 
to depict PCG records in the time–frequency domain. This transform 31, denoted as Sz

(

τ , f
)

 , for a continuous 
time signal z(t) , is formulated as follows:

where d represents the inverse of frequency ( d = 1/f  ). Additionally, Wz(τ , d) denotes the continuous wavelet 
transformation of the signal z(t) , using the Gaussian mother wavelet:

Therefore, Eq. (1) is modified as:

As depicted in Eq. (4), the window width in the Stockwell transform is frequency-dependent, expanding as 
the frequency decreases and contracting as the frequency increases 31. For discrete-time signals, the discrete 
Stockwell transform is computed using the discrete Fourier transform (DFT). The N-point DFT of the discrete-
time signal z[nT] can be formulated as follows:

The discrete Stockwell transform is essentially a projection of a vector, which is determined by the time series 
z[nT], onto a spanning set. Each basis vector is divided by N Gaussian shifted into N local vectors in such a way 
that the sum of these N local vectors recreates the original basis vector. Consequently, the discrete Stockwell 
transform for the discrete signal at time z[nT] is defined:
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Figure 1.   Illustrates the pipeline representing the proposed method for PCG classification, where RFE stands 
for Recursive Feature Elimination and CNN represents Convolutional Neural Network.
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The function e
−2π2k2

n2  in the Eq. (6) represents the Gaussian function. The Stockwell transform produces a 
complex-valued function, where the amplitude of the Stockwell response is derived using the following relation-
ship, which considered the basis for feature extraction in our study.

Figure 2 illustrates a time–frequency map (TFM) of two PCG signals, one with and one without a murmur. 
In the presence and absence of a murmur, TFMs show distinct differences between PCG signals. PCG signals, 
including murmurs, exhibit higher-frequency components on TFMs compared to normal PCG signals. When 
murmurs are present, this variance may indicate irregularities in the PCG signal, which makes TFMs useful for 
murmur detection.

Deep features with Alexnet
In our study, we leverage the capabilities of a deep convolutional neural network, AlexNet 32, to extract deep 
features from the prepared TFMs derived from PCG signals. AlexNet could capture intricate patterns within 
TFMs due to its effective architecture. AlexNet initiates its architecture with an initial convolutional layer (Conv) 
including 96 filters of size 11 × 11 and a stride of 4 × 4, accompanied by a Rectified Linear Unit (ReLU) activation 
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Figure 2.   PCG examples in time domain and their corresponding absolute of Stockwell TFM. In the time 
domain, n.u. indicates normalized units.
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function. Following each convolutional layer, a 3 × 3 max-pooling layer (Pool) with a stride of 2 × 2 is employed 
to progressively downscale the TFMs and extract increasingly complex features. This process is visually illus-
trated in Fig. 3. Subsequent convolutional layers further process the TFMs of varying sizes and strides, aimed at 
extracting nuanced and intricate features from the data. Once the convolutional and pooling stages are completed, 
the resulting features are passed through a flatten layer, transforming them into a one-dimensional vector. The 
model consists of several fully connected (FC) layers, which are crucial to the processing of the extracted data.

Feature reduction
Following the extraction of deep features, the input TFM transforms into a high-dimensional vector. Some of 
these features may lack informativeness and exhibit high correlations with each other. To address this, RFE 
and PCA are employed to reduce the feature vector’s dimensionality and choose the most meaningful features.

•	 Recursive feature elimination (RFE): is a feature selection method commonly used in classification problems. 
It aims to improve the generalization performance of the classification model by iteratively removing the 
least important features 33 . In the context of RFE, the weight vector ( W ) of a linear support vector machine 
(SVM) is calculated, and the least unimportant feature is determined based on the smallest weight value in 
W . By eliminating these features, RFE seeks to reduce overfitting and enhance classification accuracy 33.

•	 Principal Component Analysis (PCA): is a well-known statistical method used to simplify and extract key 
information from complex data with multiple variables. It seeks to identify a group of perpendicular vectors 
called principal components that capture the most significant variations in the data. By projecting the data 
onto these principal components, PCA converts the original high-dimensional data into a lower-dimensional 
form while retaining essential patterns and structures. The principal components are determined by ana-
lyzing the eigenvectors and eigenvalues of the covariance matrix. The eigenvectors signify the directions of 
maximum variance, while the eigenvalues quantify the variance explained by each principal component 34.

Classification
In this study, three widely recognized machine learning classifiers were employed for PCG classification, and 
their outcomes were compared. These classifiers are as follows:

Support Vector Machine (SVM): It is known for its robust classification capabilities. It’s preferred for its reduced 
computational complexity and suitability for managing small datasets. SVM works by identifying an optimal 
hyperplane that maximizes the margin between different classes 35. In this research, a linear SVM was utilized.

•	 Gradient Boosting (GB): An influential ensemble learning method, which builds a predictive model through 
the sequential fusion of numerous weak learners. By continually refining its accuracy through a focus on 
misclassified data points, this technique proves adept at managing intricate datasets and delivering strong 
predictive capabilities 36.

•	 Random Forest (RF): It is a well-known ensemble machine learning classifier 37. RF classifiers gather deci-
sions from multiple decision tree (DT) classifiers. RF creates an ensemble of decision trees, each trained 

Figure 3.   The structure of the used Alexnet.
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on a different subset of features. It aggregates their decisions to improve overall classification accuracy and 
generalization to new data.

Tackling data imbalance
To address class imbalance during training, we conducted experiments using resampling techniques, specifi-
cally SMOTE 38. From our preliminary findings, it seems that employing SMOTE, along with a combination 
of up-sampling the minority class and down-sampling the majority class, resulted in the highest performance.

Results
Metrics
To evaluate the performance of our models, we utilized various evaluation metrics recommended by the Phy-
sioNet Challenge 202239. For the murmur detection task (Task I), the proposed metric is weighted accuracy 
(WAcc), defined as follows:

where P, A, and U denote the presence of a murmur, absence of a murmur, and the unknown class, respectively. 
For instance, NPA indicates the number of patients predicted by the model to have a murmur (presence of mur-
mur) while identified as not having a murmur (absent of murmur) by the expert.

For clinical outcome identification (Task 2), the PhysioNet Challenge 2022 recommended a cost-based scoring 
metric. This metric takes into account the costs associated with human diagnostic screening, as well as the costs of 
timely, delayed, and missed treatments 25. It is crucial to emphasize that smaller values of this metric are desirable.

Here, N represents the total number of patients, while M represents the number of patients the model recog-
nized as abnormal. This is regardless of whether the prediction was correct or false. TP denotes the number of 
patients that both the model and the expert correctly identified as abnormal. FN indicates the number of patients 
the model falsely predicted as normal. Additionally, we evaluated the proposed method’s performance using 
total accuracy (Acc), sensitivity (SE), specificity (SP), and F-score. Furthermore, we employed receiver operating 
characteristic (ROC) analysis and computed the area under the ROC curve (AUC)41.

Data preparation and feature extraction
In this study, data preparation involved several steps. Initially, we considered a signal duration of 12.5 s, fol-
lowing the reference 42 recommendation. To achieve this, we truncated longer records and repeated shorter 
records, ensuring a consistent duration of 12.5 s for all records. To optimize processing efficiency, we applied a 
down-sampling technique, reducing the signal’s sample rate to 1000. Our focus was specifically on the Stockwell 
transform output within the frequency band of 20–350 Hz. This was a choice made after experimenting with 
various frequency ranges. This meticulous selection aimed to optimize the model’s sensitivity while mitigat-
ing unnecessary computational costs associated with less informative frequency bands, especially given the 
infrequent occurrence of murmurs at higher frequencies 42. The Stockwell transform was applied to each PCG 
recording (PV, MV, TV, and AV recordings) for each patient, generating respective TFMs. These TFMs were then 
individually subjected to AlexNet for deep feature extraction. They amalgamated the extracted deep features from 
each segments into a single feature vector for each patient. This consolidated feature vector underwent feature 
reduction algorithms for further analysis and processing. It is crucial to emphasize that the proposed method 
leveraged all PV, MV, TV, and AV records to provide a comprehensive depiction of each individual patient. No 
records pertaining to a single patient were incorporated into both training and testing procedures concurrently. 
Specifically, during the training phase, 80% of patient records were designated for training, while the remaining 
20% were reserved for testing. This ensures the model encounters previously unseen data during testing. The 
proposed method was executed using Google Colab (T4 GPU), with the training process taking approximately 
1 h and 37 min and 17 s.

Classification results
In this section, our objective is to demonstrate the efficiency of combining the Stockwell transform and deep 
networks for representing PCG data. To assess this, we apply the extracted features to various classifiers and 
analyze their performance in terms of WAcc, Acc, SE, and SP. This is presented in Table 1. The results obtained 

(8)WAcc =
5NPP + 3NUU + NAA

5
∑

i=P,A,U NiP + 3
∑

i=P,A,U NiU +
∑

i=P,A,U NiA
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1

N
(35N + 397M − 1718

M2

N
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M4

N3
+ 10000TP + 50000FN)

Table 1.   Comparing the performance of the various classifiers without feature reduction.

Acc WAcc SE(M) SE(N) SE(U) SP(M) SP(N) SP(U)

SVM 0.88 0.87 0.97 0.65 1.0 0.76 0.96 0.93

RF 0.95 0.94 0.92 0.94 0.97 0.93 0.91 1.0

GB 0.92 0.91 0.85 0.92 0.97 0.91 0.85 0.99
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from these experiments indicate that the extracted features consistently exhibit good performance across all 
evaluation metrics when used with all classifiers. This suggests that the extracted features are highly effective at 
representing PCG data time–frequency characteristics, regardless of the classifier type. Furthermore, it is worth 
mentioning that while both RF and GB classifiers demonstrate strong performance, RF notably outperforms the 
other classifiers in similar scenarios.

Effect of feature reduction on accuracy
Since not all extracted features are informative and many are redundant, we employed and compared the per-
formance of two distinct techniques, namely PCA and RFE.

This was done to reduce the feature vector’s dimensionality. We selected varying numbers of the most sig-
nificant features, chosen by PCA and RFE. We compared the performance of different classifiers using different 
feature subsets, as presented in Table 2. Results demonstrate that both feature reduction methods, PCA and 
RFE, exhibit promising performance across Task I when choosing 120, 240, and 500 features. However, in Task 
II, RFE outperforms PCA in terms of the weighted accuracy scoring metric (WAcc). Table 2 shows that while 
RFE-selected 240 and 500 features showed improved performance in Task II, computational complexity and 
the slight increase in WAcc should be carefully considered. Consequently, the choice of 120 features strikes a 
good balance. Considering the outcomes outlined in Table 2, we opted for the combination of RFE and RF for 
Task I and RFE with SVM. We employed 120 features for its superior performance in both tasks. Moreover, for 
a comprehensive analysis of the selected features and the chosen classifier, additional evaluation metrics have 
been included. Figure 4 illustrates the results of RF classification based on the top 120 ranked features obtained 
from RFE. It showcases the ROC curve and confusion matrix for each class separately. Notably, among the AUC 
values, a 0.99 AUC underscores the remarkable effectiveness of murmur detection. Additionally, Table 3 presents 
various evaluation metrics such as Acc, SE, SP, and AUC attained by the RFE_RF for Task I. Correspondingly, 

Table 2.   Performance Comparison of Proposed Method for Different Numbers of Features in Task I and Task 
II (in terms of WAcc).

# Features

RFE PCA

10 60 120 240 500 10 60 120 240 500

WAcc (Task I)

SVM 0.35 0.62 0.76 0.87 0.91 0.36 0.55 0.70 0.81 0.83

RF 0.52 0.86 0.93 0.94 0.93 0.73 0.94 0.94 0.94 0.95

GB 0.48 0.80 0.86 0.86 0.88 0.63 0.82 0.90 0.90 0.92

WAcc (Task II)

SVM 0.46 0.65 0.71 0.73 0.79 0.49 0.42 0.42 0.51 0.49

RF 0.56 0.55 0.55 0.49 0.52 0.55 0.42 0.42 0.51 0.46

GB 0.55 0.54 0.60 0.54 0.47 0.49 0.44 0.44 0.47 0.46

Figure 4.   ROC curves and confusion matrix for different classes obtained from feature selection by RFE and RF 
classification for murmur detection (Task I). (a) ROC curves, (b) confusion matrix.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7592  | https://doi.org/10.1038/s41598-024-58274-6

www.nature.com/scientificreports/

mirroring Task I, Fig. 5 displays Task II’s ROC curve and confusion matrix, while Table 4 outlines diverse evalu-
ation metrics achieved by RFE_SVM for clinical outcome prediction (Task II).

Performance comparison
Table 5 presents the outcomes derived from the proposed method. It compares with the validation scores of the 
five best entries in the 2022 CinC/PhysioNet challenge in Task I. The results highlight the superior performance 
of our proposed method across Task I.

Furthermore, Table 6 contrasts our proposed method’s performance with other studies. This includes the 
top five ranked studies featured in the CinC/Physionet Challenge 2022 Task II. The results strongly indicate that 
the proposed method exhibits superior performance in terms of Coutcome compared to other methods. Notably, 

Table 3.   Different evaluation metric obtained by RFE-RF for murmur detection (Task I).

Classifier Acc (%) SE (%) SP (%) F-score (%) AUC (%)

RF 92.1 91 91 91 98

Figure 5.   ROC curves and confusion matrix for different classes obtained from feature selection by RFE and 
SVM classification for clinical outcome prediction (Task II). (a) ROC curves, (b) confusion matrix.

Table 4.   Different evaluation metric obtained by RFE-SVM for clinical outcome prediction (Task II).

Classifier Acc (%) SE (%) SP (%) F-score (%) AUC (%)

SVM 71.3 66 76 69 78

Table 5.   Performance comparison of various studies of Task I.

Refs. Physionet challenge ranking Method WAcc (train) F-score (train) WAcc (test) F-score (test)

Reference 26 1 Mel-spectrogram and lightweight 
CNN 0.804 0.647 0.747 0.622

Reference 27 2 Parallel hidden semi-Markov 
models 0.817 0.645 0.758 0.625

Reference 28 3 Hierarchical multi-scale convolu-
tional network 0.836 0.714 0.768 0.699

Reference 44 4 Hybrid Network – – 0.768 0.731

Reference 45 5 Multiple instance learning 
framework 0.828 0.568 0.734 0.544

This study – Deep features + RFE + RF 0.96 0.94 0.93 0.91
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Reference43 demonstrated a higher AUC, utilizing both the Physionet 2016 and Physionet 2022 datasets. How-
ever, details about its performance in terms of the cost-based scoring metric (a crucial metric for Task II) and its 
performance in Task I were not reported. An interesting observation from these tables is that while the highest 
ranked teams in Task I, except reference 27, may not necessarily be among the top five teams in Task II. This 
underscores the efficacy and superiority of the proposed method in achieving exceptional performance across 
both tasks.

Discussion and conclusion
Discussion
The results demonstrate that Stockwell effectively represents PCG signals by producing TFMs. This, in turn, 
enables Alexnet to extract meaningful features from TFMs for murmur identification. Notably, the robust per-
formance of the Stockwell and Alexnet combination in representing PCG appears independent of the classifier 
algorithm. This is indicated in Table 1. Moreover, Tables 5 and 6 show that the proposed method outperformed 
other methods in both tasks of the 2022 Physionet challenge.

A noteworthy limitation of the present study is the constraint of analyzing 12.5-s segments of PCG signals, 
potentially restricting the scheme’s performance, especially when PCG signals quality varies throughout the signal 
duration. To overcome this limitation, a potential enhancement involves integrating a signal quality assessment 
algorithm during preprocessing. This addition would facilitate the selection of high-quality 12.5-s segments for 
analysis. Alternatively, future studies could explore the utilization of various segments from each PCG record 
to ensure a more comprehensive analysis.

Additionally, despite the overall commendable performance of the proposed method in both tasks, it is 
essential to acknowledge that the accuracy of classifying normal from abnormal PCG signals (Task II) remains 
suboptimal and necessitates improvement (Table 4).

Conclusion
This study introduced a novel approach that leverages the Stockwell transform and deep features extracted 
from PCG signals to significantly improve classification accuracy. The selection of the Stockwell transform was 
motivated by its superior time–frequency resolution compared to other methods, such as the wavelet transform, 
enabling a more detailed decomposition of PCG signal content. This study utilized all available records in the 
CinC/Physionet 2022 dataset for each patient. AlexNet’s deep features provide a comprehensive description of 
each patient’s heart condition. Given the abundance of deep features generated by AlexNet, RFE was employed 
to trim them down to 120 key features, which were then applied to the classifier. Impressively, the proposed 
method achieved a weighted accuracy of 93% for murmur detection (Task I) and a clinical outcome cost of 5290 
for clinical outcome prediction (Task II). These results highlight the method’s robust performance in both tasks 
when compared to high-ranking methods in the CinC/Physionet challenge 2022.

Data availability
The data that support the findings of this study was downloaded from https://​physi​onet.​org/​conte​nt/​circor-​heart-​
sound/1.​0.​3/#​files-​panel . The dataset does not require specific permission for access and is publicly available 
for use.
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