
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7658  | https://doi.org/10.1038/s41598-024-58266-6

www.nature.com/scientificreports

Optimal configuration method 
of demand‑side flexible resources 
for enhancing renewable energy 
integration
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Demand‑side flexible load resources, such as Electric Vehicles (EVs) and Air Conditioners (ACs), 
offer significant potential for enhancing flexibility in the power system, thereby promoting the full 
integration of renewable energy. To this end, this paper proposes an optimal allocation method for 
demand‑side flexible resources to enhance renewable energy consumption. Firstly, the adjustable 
flexibility of these resources is modeled based on the generalized energy storage model. Secondly, 
we generate random scenarios for wind, solar, and load, considering variable correlations based on 
non‑parametric probability predictions of random variables combined with Copula function sampling. 
Next, we establish the optimal allocation model for demand‑side flexible resources, considering 
the simulated operation of these random scenarios. Finally, we optimize the demand‑side resource 
transformation plan year by year based on the growth trend forecast results of renewable energy 
installed capacity in Jiangsu Province from 2025 to 2031.

Keywords Demand-side flexible resources, Generalized energy storage, Optimize configuration, Renewable 
energy consumption

In the context of an energy crisis and environmental pollution, China has proposed constructing a new power 
system with renewable energy as the main source. Wind power, photovoltaic, and other renewable energy sources 
are rapidly advancing. However, due to the increased integration of a high proportion of renewable energy, its 
volatility and uncertainty have led to a significant rise in the demand for power system flexibility. This poses 
substantial risks to the safe and stable operation of the system. Therefore, it is urgent to fully tap into the flexible 
adjustment potential of each aspect, including generation, transmission, consumption, and storage, establish-
ing a balance between demand and supply of  flexibility1. This is crucial to support the consumption of a high 
proportion of renewable energy and ensure the economic and safe operation of the system.

Flexibility aggregation, seen as a promising solution to invoke system flexibility resources, has been exten-
sively applied in various cluster studies such as electric vehicles (EVs), temperature-controlled loads, and micro 
energy  networks2–5. In  reference6, a generalized battery model is formulated, and the aggregated flexibility of 
controllable temperature loads is accurately calculated using power and capacity bounds derived from the con-
tinuous model.  References7,8 apply a geometric approach to represent individual cells as polyhedral feasible sets, 
and then aggregate the operating power of controllable temperature loads and distributed generation based on 
Minkowski sums. In  reference9, a real-time aggregation method based on reinforcement learning is proposed 
for fast aggregation of electric vehicles’ flexibility feedback design.  Reference10 simplifies the constraints of the 
aggregated feasible domain using k-order approximation and multi-timescale approximation models, aiming to 
reduce the complexity of large-scale multi-energy flexibility load aggregation, thereby enhancing computational 
speed while maintaining result accuracy.

Based on the aggregation of flexibility resources,  references11–13 have conducted studies on the participation of 
flexibility resources in grid optimization and dispatch. On the other hand,  reference14 fits the conditional prob-
ability distribution of wind power prediction error through nonparametric kernel density estimation. It applies 
numerical methods to obtain the upper and lower bounds of wind power prediction error under a certain level 
of confidence, quantifying it as flexibility demand.  Reference15, treats the forecast error of renewable energy and 
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load-shedding due to system failures as flexibility demands.  Reference16 develops a robust optimization model 
to address prediction errors in wind power by allocating reserves and energy storage (ES) for conventional 
units.  Reference17 uses the fluctuating power of net load, obtained based on the power of wind turbines, PV, 
and loads on a typical day, as a flexibility demand. Additionally,  reference18 incorporates the fluctuation of the 
net load forecast value in the neighboring moment and the net load output interval of the next moment as the 
flexibility demand.  Reference19 deems this approach not comprehensive enough and expresses the flexibility 
demand as the fluctuation of the net load forecast value in the neighboring moment plus the net load output 
interval of the current and next moments. Moreover,  reference20 derives the flexibility demand envelope based 
on the probability distribution of the fluctuating power of wind power at different time scales. However, none of 
these studies considered the conditional probability distribution of wind power fluctuation power. In contrast, 
 references21,22 determine the variation interval of wind power fluctuation power as flexibility demand based on 
the conditional probability distribution of the actual fluctuation power of wind power. However, the failure to 
analyze relevant quantities of wind power fluctuation might decrease the accuracy of the conditional probability 
distribution model, leading to inaccuracies in the obtained wind power fluctuation power interval. In summary, 
the current stage of studies on the quantification of flexibility demand primarily focuses on either uncertainty 
or volatility individually, without comprehensive consideration of both. Moreover, there is limited research on 
the conditional probability of wind power wave momentum.

Compared with direct control for demand-side flexible resources, indirect control method based on dynamic 
pricing reserves more autonomy for end users. The utility company or aggregator sets the electricity prices, and 
the consumers respond to the prices by adjusting the amount of energy they use. Various retail pricing models 
have been investigated in the existing literature. The dynamic pricing mechanisms, which denote the time vary-
ing pricing  schemes23–26, are well adopted due to the high efficiency.  In23, the authors investigate the required 
information and communications systems that are needed to realize the control-by-price concept for such units. 
The dynamic pricing algorithm is also used in demand response programs to maximize the retailer’s  profit24–26.

In the context of a high proportion of wind power integration, the demand for flexibility is growing. Con-
sequently, it is necessary to conduct reasonable capacity planning for flexibility resources and ensure adequate 
resource configuration to maximize their regulatory role through optimal scheduling. This will effectively 
enhance system flexibility, reduce the likelihood of wind and solar energy curtailment, and promote the utiliza-
tion of renewable energy.

The unit’s output and rotational reserve are the most conventional flexibility resources. Currently, research 
on unit scheduling has delved deeper.  Reference27–29 proposed a unit combination method for grid-connected 
wind power, considering the prediction error of wind power generation and the uncertainty of system operation 
in the optimization model.  Reference30 established a robust unit combination model incorporating transmission 
constraints and introduced a cost evaluation method to mitigate model conservatism.  Reference31 adopted the 
objective of maximizing social benefit to achieve optimal unit combination, considering demand-side response. 
Additionally,  reference32 integrated the operation risk model with the unit combination model for synergistic 
optimization of operation cost and risk.

In the context of optimal scheduling with storage, some studies focus on the joint operation optimization of 
storage and other resources.  Reference33 optimized the scheduling of a coupled PV-storage system under vari-
ous scenarios.  Reference34 comprehensively considered multiple resources, including distributed generation, 
energy storage, and controllable load, utilizing two models for flexibility regulation. Capacity-rich resources were 
directly involved, while capacity-scarce resources responded based on tariff incentives. A joint optimal scheduling 
model was established by combining these two models.  Reference35 proposed a two-phase optimization model 
for energy storage to maximize the integrator’s profit while considering the uncertainty of customer demand.

Several studies have applied energy storage in a narrowly defined flexibility demand scenario, particularly in 
peaking scenarios.  References36,37 investigated the economic potential of utilizing energy storage to provide peak-
ing capacity in shorter time scales.  Reference38 argued that configuring energy storage on the thermal power plant 
side is akin to increasing the depth of thermal power unit peaking. They established an optimized scheduling 
model for energy storage, thermal power units, and demand-side response, comprehensively considering the deep 
peaking initiative of thermal power units configured with energy storage and the moderating role of demand-
side response. However, optimizing the dispatch of thermal power plants and energy storage to maximize power 
sent to the electricity market for higher revenue, ensuring sufficient reserve capacity, and fully developing the 
reserve potential of energy storage to optimize unit capacity allocation remains a pressing issue to be addressed.

In addition to the two types of conventional flexibility resources, namely unit output and energy storage, some 
literature has also explored the optimal scheduling of other flexibility resources such as interruptible loads and 
electric vehicles.  Reference39 proposes three flexibility evaluation indices that can characterize the flexibility of 
distribution networks and establishes a two-stage flexibility enhancement optimization model for distribution 
networks, integrating EV charging with energy storage and interruptible load scheduling.  Reference40 considers 
heat pumps as a flexibility resource and establishes a day-ahead optimal dispatch model based on cooperative 
game theory for distribution networks.  Reference41 uses a virtual battery model to represent uncertain clusters 
of EVs and considers their flexibility, optimizing the day-ahead power generation and standby capacity of EVs 
to assist in regulating the operational flexibility of the system.  Reference42 explores the flexibility of soft switches 
in the distribution network and establishes an optimal scheduling model including soft switches, taking into 
account the operational constraints of soft switches and aiming to minimize operational costs while improving 
the system’s flexibility. An optimal scheduling model including soft switches is established.

The studies mentioned above have focused on aggregating flexibility resources and optimizing dispatching. 
However, few studies have addressed the optimal configuration of flexibility resources.

In this paper, a demand-side flexible resource optimal allocation method for renewable energy consumption 
enhancement is proposed. The main contributions of this work are three-fold.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7658  | https://doi.org/10.1038/s41598-024-58266-6

www.nature.com/scientificreports/

• To reduce the complexity of optimization model when dealing with numerous demand-side flexible devices, 
generalized energy storage model is adopted to characterize the aggregate flexibility of demand-side resource 
cluster;

• To consider the correlations among different random factors such as wind, photovoltaic and load, when 
generating stochastic scenarios for robust optimization, a non-parametric probability prediction method 
based on Copula function is developed;

• For obtaining an optimal demand-side flexible resources configuration scheme with high robustness against 
uncertainties, a robust optimization method based on stochastic scenario traversal is proposed. Besides, the 
effectiveness of the proposed method is evaluated based on a practical case in Jiangsu, China.

The rest of the paper is organized as follows. Section "Aggregate flexibility modeling for demand-side 
resources" presents the aggregate flexibility modeling method for demand-side resources. Section "Scenario 
generation considering wind, solar, and load correlations" introduces the scenario generation method considering 
wind, solar, and load correlations. The proposed optimal configuration method of demand-side flexible resources 
are explained in detail in Section "Robust optimal configuration method of demand-side flexible resources". In 
Section "Example analysis", the effectiveness of the proposed method is validated on real-world cases. Finally, 
Section "Conclusion" concludes the paper.

Aggregate flexibility modeling for demand‑side resources
The proportion of Flexible Load (FL) with regulation capability on the demand side is steadily increasing. Loads 
that can alter electricity consumption patterns are referred to as demand-side resources (DSRs). Numerous schol-
ars and experts worldwide have conducted relevant research on assessing the potential response of demand-side 
resources. When the grid experiences failures or encounters power supply inadequacies during peak periods, 
demand response utilizing controllable resources can achieve short-term load reduction. This helps maintain 
a balance between supply and demand on the grid and enhances the grid’s operational quality. Temperature-
controlled loads and electric vehicles possess significant response capacities, rapid response speeds, and good 
adjustability, making them valuable fast-response resources.

For electric vehicles and air conditioners, categorized as demand-side flexible resources with time-coupled 
characteristics, they demonstrate charging, discharging, and storage traits akin to energy storage. Instead of fixed 
boundary parameters as seen in traditional energy storage models, we employ time-varying power and energy 
boundaries. This accounts for the fact that loads like electric vehicles and air conditioners need to adhere to user 
comfort constraints during operation. Building upon the generalized energy storage model that encompasses 
individual devices, we derive the aggregated flexibility model of demand-side flexible resources by calculating 
the geometric centers of all device parameters.

For facilitating the management of these flexible DSRs, DSR aggregators are introduced to aggregates these 
massive DSRs and represent them in interactions with the electricity market and power system operators. In this 
paper, the DSR owners (i.e., users) enter into long-term contracts with aggregators. The contracts stipulate that 
users can access electricity at a rate lower than the general level, while the aggregators, through direct control 
means, conduct energy arbitrage by utilizing flexible resources, ensuring user comfort, travel needs, and other 
constraints are met.

Generalized battery model
The generalized battery model (GBM) includes the energy storage state change equation, energy constraint and 
power constraint:

where: ei,t denotes the energy of device i at moment t  ; ρi denotes the energy decay coefficient of device i ; �ei,t 
denotes the energy change of device i at moment t  ; pi,t denotes the power of i at moment t  ; e∧i,t and eVi,t denote 
the energy boundary of device i at moment t  ; p∧i,t and pVi,t denote the power boundary of device i at moment t  ; 
η in
i  in and η out

i  denote the charging and discharging efficiency of device i at moment t  , respectively.

Electric vehicle
The large-scale adoption of electric vehicles is of paramount importance in reducing fossil fuel consumption 
and safeguarding the environment. The widespread proliferation of electric vehicles will result in a significant 
increase in electricity demand. Electric vehicles, known for their energy efficiency and environmental friendli-
ness, can serve as unconventional energy storage devices, actively participating in demand response and offering 
auxiliary services to the power grid. Strategically planning the charging and discharging cycles of these vehicles 
can help smooth out peak demand, minimize troughs, stabilize the system, and effectively ease the burden on 
the power grid. Investigating the charging patterns of electric vehicles enables a comprehensive understanding of 
their charging habits. With the advancement of Vehicle-to-Grid (V2G) technology, electric vehicles can interact 
with microgrids to exchange energy. Leveraging the energy storage capabilities of electric vehicles can not only 

(1a)ei,t = ρiei,t−1 +�ei,t +

{

�t · η in
i · pi,t , pi,t > 0

�t · pi,t/η
out
i , pi,t < 0

(1b)eVi,t ≤ ei,t ≤ e∧i,t

(1c)pVi,t ≤ pi,t ≤ p∧i,t
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relieve stress on the power grid but also provide advantages to vehicle owners. Thus, to optimize the utilization 
of electric vehicle energy storage capabilities, accurate prediction of charging loads and an in-depth study of 
charging behavior are imperative.

Before calculating the GBM parameter set {p
∧

t , p
∨

t , e
∧

t , e
∨

t ,�et} for each individual EV, it is essential to 
introduce a fundamental knowledge: for vehicle owners, the most preferred charging trajectory is when the 
electric vehicle charges at the maximum power until the battery is fully charged. In this paper, we refer to it as 
the optimal charging trajectory. On the other hand, the least acceptable charging trajectory for vehicle owners 
is when the electric vehicle charges at the slowest speed until departing, ensuring the battery is fully charged 
before leaving. In this paper, we refer to it as the worst charging trajectory. Any charging trajectories within the 
region bounded by the optimal charging trajectory and the worst charging trajectory is acceptable for users. 
Therefore, the energy state corresponds to the best/worst charging trajectory is regarded as the upper/lower 
boundary of the GBM, which is calculated by Eq. (2). The power boundary is jointly determined by the GBM 
energy boundaries and the battery rated power, which is calculated by Eq. (3). The energy change of the GBM is 
defined as the remaining battery energy when plugged into the charging pile or the battery energy when leaving 
the charging pile, which is calculated by Eq. (4).

Energy boundaries
For each electric vehicle, in order to meet the charging needs of users, the upper and lower energy limits at each 
moment can be calculated using Eq. (2):

where Eq. (2a) represents the upper limit of the electric vehicle’s power at each moment; Eq. (2b) represents 
the power curve corresponding to the time when the electric vehicle starts charging from the lowest power and 
charges to the target power when it leaves the station, Eq. (2c) represents the power curve corresponding to the 
time when the electric vehicle arrives at the station and starts discharging until it reaches the lowest power, and 
Eq. (2d) represents the electric vehicle’s lower limit of the electric vehicle’s power at each moment, and it can be 
calculated to The lower limit of the electric vehicle’s power at each moment is obtained. Where: eev,∧/∨i,t  denote 
the upper/lower energy boundaries of EV; tai , tli denotes the driving-in/driving-out time of EV; eevi /eevi  denotes 
the upper and lower limits of battery capacity of EV; and pevi  denotes the rated power of EV.

Power boundaries
For each electric vehicle, the upper and lower limits of charging and discharging power are limited by both the 
energy limit and the power rating:

where Eq. (3a) denotes the upper power limit of EV and Eq. (3b) denotes the lower power limit of EV. Where: 
p
ev,∧/∨
i,t  denote the upper/lower power boundaries of the electric vehicle; tai , tli denotes the electric vehicle drive-

in/drive-out time; and pevi  denotes the rated power of the electric vehicle.

Energy change
The energy change due to EVs leaving or entering the station can be calculated based on the state of the EV at the 
station, the initial energy at the time of entering the station, and the final energy at the time of leaving the station:

where: �eevt  denotes the amount of transferred electricity due to EVs leaving or entering the station; xi,t denotes 
the state of EVs at the station.

Air conditioner
Air conditioners, being the most prevalent flexible loads, have the ability to convert electrical energy into heat or 
refrigeration for short-term storage. The output of air conditioning loads is influenced by seasonal and weather 
conditions, resulting in significant loads during winter and summer, and lighter loads during spring and fall. 
Loads are higher during extreme temperatures and lower during moderate ones, closely related to human body 
temperature. The energy storage features of air conditioning can be effectively utilized for regulation and control, 
thus serving the microgrid as an energy storage device.

(2a)eev,∧i,t = min
{(

eevi,tai + pevi (t − tai)�t
)

, eevi
}

, t ∈ (tai , . . . , tli)

(2b)eev,min 1
i,t = max

{(

e
ev,exp
i − pevi (tli − t)�t

)

, eevi
}

, t ∈ (tai , . . . , tli)

(2c)eev,min 2
i,t = max

{(

eevi,tai − pevi (t − tai)�t
)

, eevi
}

, t ∈ (tai , . . . , tli)

(2d)eev,∨i,t = max
(

eev,min1
i,t , eev,min2

i,t

)

, t ∈ (tai , . . . , tli)

(3a)pev,∧i,t = min
{(

eev,∧i,t+1 − eev,∨i,t

)

/�t, pevi
}

t ∈ (tai , . . . , tli)

(3b)pev,∨i,t = min
{(

eev,∨i,t+1 − eev,∧i,t

)

/�t,−pevi
}

t ∈ (tai , . . . , tli)

(4)�eevt+1 = eev,max
i,t+1 · (xi,t+1 − xi,t)− eev,max

i,t · (xi,t − xi,t+1)
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To determine the GBM parameter set {p
∧

t , p
∨

t , e
∧

t , e
∨

t } for each individual AC, several optimization problems 
are formulated. In detail, the power boundaries, p

∧

t  and p
∨

t  , correspond to the minimum and maximum power 
consumption of the AC while ensuring the user’s thermal comfort constraints, which is calculated by Eqs. (5) and 
(6). Additionally, the energy boundaries, e

∧

t  and e
∨

t  , represent the energy levels at which the indoor temperature 
is maintained at the maximum acceptable and minimum acceptable levels, respectively. They are calculated by 
solving the optimization problem (7).

Reference power
To obtain the baseline power of a single air conditioner, an optimization model is established with the objective 
of minimizing the temperature deviation, considering the user comfort constraints and the dynamic equations 
of building room temperature:

where (5a) denotes the optimization objective, i.e., the indoor temperature deviation from the user’s temperature 
setpoint; (5b)–(5e) denote the constraints of the optimization model, where (5b) denotes the discrete form of the 
temperature variation equation, (5c) denotes the indoor temperature constraints, (5d) denotes the maximum 
and minimum temperature acceptable to the user and (5e) denotes the power constraints. Where: T = {1, · · · 24} 
denotes a discrete set of time points; P hvac,base

i,t  denotes the base power of the air conditioner to maintain the 
indoor temperature at the user set temperature; P hvac

i,t  denotes the rated power of the air conditioner; θ set
i  , θi,t , 

θ out
i,t  , �θi denote the user set temperature, the indoor temperature, the outdoor temperature, and the maximum 

deviation, respectively; and a, b denote the coefficients of the equation of variation of the indoor temperature, 
which are related to the equivalent heat capacity (C), the equivalent thermal resistance (R), and the operating 
efficiency (η) as:

Power boundaries
In order to obtain the maximum/minimum power limits for a single air conditioner, an optimization model is 
built with the objective of minimum or maximum power consumption at each moment, respectively:

After obtaining the minimum or maximum value of the power consumption at each moment, the adjustable 
power upper and lower bounds of the aggregation model can be obtained by subtracting the baseline power:

where: P hvac,∨/∧
i,t  denotes the lower and upper adjustable power limits of the air conditioner.

Energy boundaries
When the aggregation model state is at the upper and lower energy boundaries, the indoor temperature is con-
sidered to be at the boundary of the user’s acceptable range. Therefore, when calculating the energy boundaries 
of the aggregation model, the optimization model is built with the objective of minimizing the deviation value 
between the indoor temperature and the maximum/minimum acceptable temperature, respectively:

(5a)p hvac,base
i,t = argmin

{P hvac
i,t }t∈T

∑

t∈T

(

θi,t − θ set
i

)2

(5b)θi,t = a · θi,t−1 + (1− a) ·
(

θ out
i,t−1 − b · Phvaci,t−1

)

(5c)θ min
i,t ≤ θi,t ≤ θmax

i,t ∀t ∈ T

(5d)θ
min /max
i,t = θ set

i ±�θi∀t ∈ T

(5e)0 ≤ p hvac
i,t ≤ p hvac

i,t ∀t ∈ T

(5f)a = e−�t/(RC), b = Rη

(6a)

p hvac,min
i,t = argmin

{P hvac
i,t }t∈T

p hvac
i,t

or p hvac,max
i,t = argmax

{P hvac
i,t }t∈T

p hvac
i,t

s.t. : (5b)− (5e)

(6b)p hvac,∨
i,t = p hvac,min

i,t − p hvac,base
i,t

(6c)p hvac,∧
i,t = p hvac,max

i,t − p hvac,base
i,t
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After obtaining the power values P hvac, -
i,t  and P hvac, +

i,t  corresponding to the maximum/minimum tempera-
tures, the upper and lower bounds of the energy of the aggregation model can be obtained by substituting the 
following equations:

where: e hvac,∨/∧i,t  indicates the min/max power of the air conditioner.

Aggregate flexibility modeling
When performing aggregation flexibility modeling, we obtain the parameters of the aggregates by directly sum-
ming or computing a weighted average of the parameters of the generalized energy storage model corresponding 
to the individual devices.

where: �agg denotes the set of all devices contained in the aggregator; ωi denotes the weighting factor of device 
i within the aggregator.

Scenario generation considering wind, solar, and load correlations
Wind power and photovoltaic power depend directly on natural meteorological conditions, resulting in natural 
uncertainty. Additionally, load is influenced by meteorological conditions, production, and lifestyle factors, 
further contributing to uncertainty. The combination of these factors amplifies the uncertainty in the distribu-
tion network trends, particularly in geographically similar regions. Within the same wind zone, wind turbines 
and photovoltaic equipment exhibit a correlation in power output. Similarly, in the same radiation zone, there is 
a strong correlation between wind speed, solar intensity, and load. These uncertainties and correlations signifi-
cantly impact the operation of the distribution network. Therefore, it is crucial to consider randomized scenario 
sampling that accounts for the correlations among wind, solar, and load for both wind and solar power.

Generation and load uncertainty modeling based on nonparametric probabilistic prediction
The existing forecasting methods for renewable energy and load are mainly categorized into point forecasting 
and probabilistic forecasting. Point prediction provides the single-point expected value of the forecasted object 
at a specific time in the future, yet it inherently incurs a prediction error due to its deterministic nature. On 
the other hand, probabilistic forecasting allows for the determination of the probability distribution associated 
with the forecasted object, enabling effective quantification of power system uncertainty. Within probabilistic 
prediction methods, nonparametric probabilistic prediction does not rely on assumptions about parametric 
probability distributions. This characteristic significantly enhances the accuracy of probabilistic prediction and 
forms a foundation for optimal decision-making in grid operations, taking uncertainty into account.

First, the historical data are normalized, and the direct quantile regression method is used to obtain the 
sequence of predicted quantile regression values, i.e., the discrete approximation form F̂t of the cumulative 
probability distribution function, which can be expressed as:

(7a)

p hvac, -
i,t = argmin

{P hvac
i,t }t∈T

(θi,t − θ max
i,t )2

or p hvac, +
i,t = argmin

{P hvac
i,t }t∈T

(θi,t − θ min
i,t )2

s.t. : (5b)− (5e)

(7b)e hvac,∨i,t =

∑T−1
t=0

(

p hvac, -
i,t − p hvac , base

i,t

)

·�t

(1− a)T
∀t ∈ T

(7c)e hvac,∧i,t =

∑T−1
t=0

(

p hvac, +
i,t − p hvac , base

i,t

)

·�t

(1− a)T
∀t

(8a)ρagg =
∑

i∈�agg

(ωiρi)

(8b)η in/out
agg =

∑

i∈�agg

(ωiη
in/out
i )

(8c)E
v/∧
agg ,t =

∑

i∈�agg

(e
v/∧
i,t )

(8d)P
v/∧
agg ,t =

∑

i∈�agg

(p
v/∧
i,t )

(8e)�Eagg ,t =
∑

i∈�agg

(�ei,t)
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where: q̂αk ,t , is the regression value of quantile qαk ,t at time t  ; αk is the kth quantile; m is the number of quantile 
points. The adjacent quantile points are approximated as random variables obeying a uniform distribution, and 
then an approximately complete probability distribution function Ft(xt) at each moment is obtained by the cubic 
interpolation method, where xt is the power of the predicted object at time t .

Typical scenario generation considering source and load correlation
At the current stage, there are numerous reports on methods for generating random scenarios for a single vari-
able, and these methods are relatively easy to implement. However, constructing and simulating joint distribution 
functions for multiple variables is challenging. The construction theory for most joint distribution functions is 
a simple extension of univariate distribution functions, often requiring all marginal distributions to follow the 
same distribution. In practical scenarios, it’s difficult to satisfy such a strict requirement because different types 
of random factors, such as wind, solar, and load, typically follow different probability distributions. Addressing 
this issue, this paper uses Copula functions (link functions) to describe the correlation between wind, solar, and 
load, proposing a method based on Copula functions to generate random scenarios for wind, solar, and load. 
This method imposes no restrictions on the marginal distributions and can capture nonlinearity, asymmetry, 
and tail correlation relationships between variables.

Based on the probabilistic prediction results, we generate stochastic scenarios of renewable energy output, 
which can significantly reduce the difficulty of solving the problem by transforming the complex problem con-
taining random variables into a deterministic optimization problem under each scenario when formulating the 
scheduling plan. Based on the Sklar theorem of multivariate distribution, the Copula function C(·) is used to 
construct the multivariate probability distribution function F(x1, x2, . . . , xT ) that takes into account the time 
dependence of PV output due to the correlation of renewable energy output, i.e.

where: T is the duration of a scheduling cycle. By performing N times Monte Carlo sampling on the multivariate 
Copula function, we can obtain N renewable energy output scenarios with correlation. To avoid the huge renew-
able energy computational burden caused by the excessive number of scenarios, this paper clusters the generated 
scenarios to achieve scenario size reduction and obtain several typical PV output scenarios. In this paper, the 
K-Medoids clustering algorithm is used to cluster the scenes, which can avoid the clustering bias caused by the 
presence of anomalies, where the optimal number of clusters is determined by the combination of the contour 
coefficient method and the elbow method.

Robust optimal configuration method of demand‑side flexible resources
Since wind power, photovoltaic, and other renewable energy sources are significantly influenced by weather and 
environmental factors, the complexity of system planning increases upon their integration with the grid. Many 
scholars, both domestically and internationally, have extensively researched the uncertainty issue surrounding 
renewable energy. Ultimately, the solutions obtained from these efforts can be categorized into three groups: 
stochastic optimization, robust optimization, and fuzzy optimization. The stochastic optimization method pos-
sesses inherent limitations. Firstly, the probability density function, fundamental to stochastic optimization, is 
derived from fitting a vast amount of historical data. Secondly, as historical and sample data accumulates, the 
complexity of analysis escalates, and biased data can introduce errors in the analysis results. The fuzzy optimiza-
tion method employs fuzzy numbers to represent uncertain variables and address the uncertainty issue. However, 
determining the affiliation function of fuzzy variables is challenging, resulting in a highly subjective and arbitrary 
affiliation function. The proposed robust optimization method overcomes the subjective and arbitrary nature 
of fuzzy optimization methods by defining the problem through the uncertainty set. It identifies the optimal 
solution that satisfies all specified conditions based on proposed constraints. In contrast to the previous two 
optimization methods, the robust optimization method does not necessitate fitting the distribution function of 
uncertain parameters using extensive historical data or constructing the affiliation function. It simply delineates 
the range of variation for each parameter to determine the optimal solution for the problem. Moreover, most 
decision schemes obtained through this method are robust against a range of disturbances.

In summary, the robust optimization method not only rectifies the shortcomings of the aforementioned two 
methods but also exhibits advantages that the other two methods lack. Simultaneously, the proposed robust 
optimization method contributes to enhanced operational efficiency.

Optimization model
In the demand-side flexible resource optimal allocation model, the demand-side resource flexibility is modeled 
using a generalized energy storage model with the objective of minimizing the investment cost, while considering 
the power balance constraint of the system and the thermal generating unit output constraint. In addition to this, 
the constraints are simulated using N wind, solar and load day typical scenarios for the annual operation of the 
grid, with the aim of ensuring the robustness of the proposed configuration scheme, i.e., to be able to guarantee 
100% grid consumption of renewable energy throughout the year. The specific optimization model is as follows:

(9)F̂t =
{

q̂αk ,t |0 ≤ α1 < · · · < αk < · · · < αm ≤ 1
}

(10)F(x1, x2, . . . , xT ) = C(F1(x1), F2(x2), . . . , FT (xT ))

(11a)min(NHVAC · cHVAC + NEV · cEV + NESS · cESS)
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where: NHVAC , NEV denote the number of air conditioners and electric vehicles involved in the retrofit, respec-
tively, and NESS denote the quantity of renewable energy storage; cHVAC , cEV denote the unit investment cost of 
air conditioners and electric vehicles involved in the retrofit, respectively, and cESS denote the unit investment 
cost of energy storage; PRESs,t  denotes the power generation of renewable energy at moment t  under scenario s ; 
PGENs,t  denotes the generation capacity of thermal power plant at moment t  under scenario s . Pagg ,vt  and Pagg ,∧t  
denote the minimum and maximum generation capacity constraints, respectively; Paggs,t  Represents the electric-
ity consumption of flexible resources on the demand side at moment t  in scenario s . In the above optimization 
model, the objective function contains the retrofitting cost of installing intelligent control terminals for air con-
ditioners and electric vehicles and the investment cost of adding renewable energy storage, and the constraints 
(11b) denote the power balance constraint; (11c)–(11e) denote the operation constraint of generalized energy 
storage, and (11g) denotes the generation capacity constraint of thermal power plants.

Overall flow of the proposed method
The overall flow of the algorithm is shown in Fig. 1. Generalized energy storage modeling for DSR aggregators 
and Copula-based stochastic scenario generation is conducted firstly. With the obtained DSR aggregator models 
and the uncertainty representations, the robust configuration optimization for DSRs is carried out. The step-by-
step process is detailed as:

Step 1 The predicted information (outdoor temperature, users’ thermal comfort limits, charging demands of 
EVs) and device parameters (parameters of ACs, EV batteries and ESs) for DSRs are collected and utilized as 
inputs for GBM parameter extraction (Section "Aggregate flexibility modeling for demand-side resources");

Step 2 Based on the historical data of wind power, solar power and load consumption, Copula function is 
adopted to model the multivariable distribution with consideration of the dependence structure of wind 
power, solar power and load consumption. Stochastic scenarios sampling considering multivariable correla-
tions is then achieved using Monte Carlo sampling from the predicted multivariable distribution (Section 
"Scenario generation considering wind, solar, and load correlations");

Step 3 After getting the DSR aggregator models based on GBM and the uncertainty representations based on 
scenario set, the robust optimization model is built as presented in Section "Robust optimal configuration 
method of demand-side flexible resources";

Step 4 Using commercial solution software to solve the optimization problem, the optimal configuration 
results are obtained, which is consist of the number of ACs, EV charging stations for retrofit, and additional 
ES capacity.

The above optimization models are linear programming models, which can be solved efficiently with the help 
of commercial solution software (e.g. Gurobi, Cplex).

Example analysis
Case setup
To verify the effectiveness of demand-side flexible resources in delaying grid transformation, reducing invest-
ment costs, and improving grid consumption, we applied the proposed method to optimize the configuration of 
demand-side flexible resources in Jiangsu province as an example. The installed capacities of wind, PV, and coal 
power planned for the province from 2025 to 2031 are shown in Table 1, and the investment/remodeling costs 
and maximum allocated capacities of each type of demand-side resources are presented in Table 2. According 
to Table 1, the installed capacity of coal-fired units shows a slight upward trend. The reason for the continuous 
increase in the installed capacity of coal-fired units is because, in the foreseeable future, coal-fired units remain 
irreplaceable. Despite the abundance of demand-side resources, the flexibility provided by individual resources 
is very limited, and they exhibit a high degree of randomness. It is unreliable and impractical to rely entirely on 
demand-side resources for achieving 100% renewable energy integration.

(11b)s.t. :
PRESs,t + PGENs,t = PHVACs,t + PHVAC,bases,t + PEVs,t + ·PESSs,t PLoads,t

∀s ∈ �, ∀t ∈ T

(11c)
E
agg
s,t = ρ

agg
s,t E

agg
s,t−1 +�E

agg
s,t +�t · P

agg
s,t

∀s ∈ �, ∀t ∈ T , ∀agg ∈ {HVAC,EV , }

(11d)
Nagg · E

agg ,V
t ≤ E

agg
s,t ≤ Nagg · E

agg ,�
t

∀s ∈ �, ∀t ∈ T , ∀agg ∈ {HVAC,EV}

(11e)Nagg · P
agg ,v
t ≤ P

agg
s,t ≤ Nagg · P

agg ,∧
t

(11f)∀s ∈ �, ∀t ∈ T , ∀agg ∈ {HVAC,EV}

(11g)PGEN ,v
t ≤ PGENs,t ≤ PGEN ,v

t
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Stochastic scenario generation results
Using a method for generating random scenarios that takes into account the correlation of random variables, we 
can derive N typical scenarios that depict the fluctuations in renewable energy and inflexible load. To streamline 
the optimization process, we’ve set the number of typical scenarios to 12, representing the 12 months in a year. 
The outcomes of the scenario generation are illustrated in Fig. 2.

Figure 1.  Over flow of the proposed method.

Table 1.  2025–2031 installed capacity of wind power, photovoltaic and coal power planning in Jiangsu 
Province.

Year Wind power/MW Solar/MW Coal power/MW

2025 28,000 35,000 86,750

2026 30,000 46,000 88,750

2027 32,000 58,000 90,750

2028 35,400 65,000 92,750

2029 38,800 70,000 94,750

2030 45,000 75,000 96,750

2031 48,500 83,000 98,750

Table 2.  Investment/modification costs and maximum allocation capacity for each type of demand-side 
resource.

Distributed energy resources Investment/retrofit costs Maximum capacity/size

Grid-side energy storage 3000RMB/kWh 30GWh

Electric Vehicles 3500RMB/pile 1.6 million

Air Conditioning 2500RMB/set 15 million units/25 million units
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Figure 2 displays the sampling results of wind, solar, and load random scenarios. These results reveal that 
among the three types of random factors, wind power output exhibits the strongest uncertainty due to various 
environmental factors like wind speed, temperature, and humidity. This uncertainty is prominently manifested 
in the significant fluctuations shown in the figure, displaying the most pronounced differences among different 
random scenarios. Influence by user electricity consumption behavior, the power curve randomness of the load 
comes next in intensity, presenting certain regularities. Specifically, it reaches peaks in electricity demand around 
10:00 in the morning and approximately 20:00 in the evening due to user consumption patterns. In the case of 
photovoltaic power generation, influenced by factors such as sunlight intensity, temperature, and humidity, the 
power curve demonstrates relatively strong regularity. It consistently exhibits a characteristic shape, peaking 
around noon.

Overall, the random scenarios sampled based on the proposed methodology accurately and comprehensively 
cover the uncertainty distribution of supply and demand. These can effectively enhance the robustness and risk 
resistance of decision results in subsequent robust optimization.
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Figure 2.  Typical daily fluctuation curves of wind, solar and load during the year.

Table 3.  Annual planning for distributed energy resources 2025–2031 (15 million AC units).

Year Wind power/MW Solar/MW Coal power/MW
Air conditioner/
million units

Charging piles/
million

Energy Storage/
GWh

Total investment 
cost/billion yuan

Annual 
investment cost 
growth rate/
billion yuan

2025 28,000 35,000 62,500 0.00 0.51 0.00 17.92 17.92

2026 30,000 46,000 64,000 1.00 1.60 0.00 80.98 63.06

2027 32,000 58,000 66,000 5.40 1.60 0.00 190.94 109.96

2028 35,400 65,000 68,000 8.74 1.60 0.00 274.58 83.64

2029 38,800 70,000 70,000 11.28 1.60 0.00 338.08 63.50

2030 45,000 75,000 72,000 14.88 1.60 0.00 428.05 89.97

2031 48,500 83,000 75,000 15.00 1.60 25.44 1194.32 766.27
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Demand‑side flexible resource configuration results
Based on the forecasted planned installed capacities of wind, PV, and coal power in Jiangsu Province from 2025 
to 2031, we conducted year-by-year optimization for demand-side flexible resource allocation. The optimized 
configuration results are presented in Tables 3 and 4. To demonstrate the influence of various demand-side 
flexible resources on investment economics, different maximum retrofit table AC quantities are considered in 
Tables 3 and 4, respectively. Figure 3 depicts the cumulative investment cost curve and the cumulative investment 
cost of each component for the period 2025–2031.

As indicated in Table 3, the period from 2025 to 2030 demonstrates a steady and balanced increase in the 
number of air conditioners and electric vehicles in the absence of energy storage. However, as the scale of electric 
vehicle and air conditioner upgrades approaches its maximum limit in 2031, the grid is compelled to address the 
mounting pressure of renewable energy consumption by integrating energy storage. In 2031, a critical juncture 
is reached where the grid grapples with the necessity of incorporating energy storage due to the saturation of 
electric vehicle and air conditioner upgrades. However, it’s important to note that this strategic shift comes at 
a cost. The investment required for energy storage significantly outweighs the transformation expenses associ-
ated with other distributed energy resources at this stage. Consequently, there is a remarkable upswing in the 
investment costs for power grid renovation in 2031, clearly depicted in Fig. 3a where the cumulative investment 
cost curve for the grid displays a sharp incline during this pivotal year. In summary, the flexibility and relatively 
modest retrofitting costs of air conditioning and electric vehicles play a pivotal role in extending the need for 
substantial grid retrofitting investments. This delay in major investments underscores the efficacy of leverag-
ing the adaptability and cost-effectiveness of air conditioning and electric vehicles to manage the burgeoning 
demands on the power grid.

To further illustrate the significant role of demand-side flexible resources in postponing investments for grid 
upgrades, we increased the upper limit of air conditioner retrofitting scale from 15 to 25 million, and compared 
the investment costs between these two scenarios. A comparison between Tables 3 and 4 reveals that with the 
increase in the upper limit of air conditioner retrofitting scale, the cumulative investment cost by 2031 decreased 
from 1194.32 billion to 706.13 billion, reducing by approximately 42.2%. This clearly underscores the pivotal 
role of demand-side flexible resources in deferring investments for grid upgrades. It emphasizes the importance 
of fully exploiting the flexibility potential of demand-side resources and utilizing policies, markets, and other 
means to encourage active participation from demand-side users. This approach facilitates a win–win situation 
for the supply, demand, and grid stakeholders.

Conclusion
In this paper, we propose an optimal configuration method for demand-side flexible resources to enhance 
renewable energy consumption. Firstly, we model the adjustable flexibility of demand-side resources based on 
the generalized battery model. Secondly, we generate random scenarios of wind, solar, and load with variable 
correlations using non-parametric probability prediction results of random variables combined with Copula 
function sampling. Next, we establish an optimal configuration model for demand-side flexible resources based 
on an improved robust optimization method. Finally, we optimize the demand-side resource renovation plan on 
an annual basis, considering the growth trend of installed renewable energy capacity in Jiangsu Province from 
2025. The simulation results verify that the utilization of demand-side flexible resources can efficiently mitigate 
the costly investment in energy storage equipment.

Under price-based indirect control strategies, user responsiveness to prices is a significant factor influencing 
the adjustability of flexible resources. For our future work, users’ demand elastic to dynamic pricing strategy will 
be investigated by considering interactions between the aggregator and users.

Table 4.  Annual planning for distributed energy resources 2025–2031 (25 million AC units).

Year Wind Power/MW Solar/MW Coal power/MW
Air conditioner/
million units

Charging iles/
million

Energy Storage/
GWh

Total investment 
cost/billion yuan

Annual 
investment cost 
growth rate/
billion yuan

2025 28,000 35,000 62,500 0.00 0.51 0.00 17.92 17.92

2026 30,000 46,000 64,000 1.00 1.60 0.00 80.98 63.06

2027 32,000 58,000 66,000 5.40 1.60 0.00 190.94 109.96

2028 35,400 65,000 68,000 8.74 1.60 0.00 274.58 83.64

2029 38,800 70,000 70,000 11.28 1.60 0.00 338.08 63.50

2030 45,000 75,000 72,000 14.88 1.60 0.00 428.05 89.97

2031 48,500 83,000 75,000 17.23 1.60 7.31 706.13 278.08
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