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Complete electromagnetic 
consideration of plasmon mode 
excitation in graphene rectangles 
by incident terahertz wave
K. V. Mashinsky 1, V. V. Popov 1 & D. V. Fateev 1,2*

The excitation of terahertz plasmon modes in a graphene rectangle by normally incident linearly 
polarized electromagnetic wave has been theoretically studied. The complete electromagnetic 
approach based on formulation of the integral equations for sought-for electromagnetic quantities 
has been developed. The influence of edge-field effects on excitation of plasmon modes for different 
polarization of the incident wave and different shapes of graphene rectangle has been studied. The 
absorption cross-section spectra and the charge density distributions in graphene rectangle for 
different plasmon modes have been studied. It has been found that the edge-field effect, which results 
in spreading the plasmon field beyond the geometric boundaries of graphene rectangle, leads to 
considerable red shifts of the plasmon mode frequencies and modifies the plasmon mode dispersion.

Graphene  plasmonics1,2 is a vibrant and rapidly developing area of flatland optoelectronics. Plasmons in graphene 
structures are able to localize the electromagnetic field down to a sub-wavelength scale that is two orders of 
magnitude shorter than the wavelength of electromagnetic radiation of the same  frequency3.

Theoretical studies of terahertz (THz) plasmon excitations in two-dimensional electron systems (2DES) 
have been mainly conducted for infinitely wide 2DES or for 2DES which is confined only in one direction while 
infinite and homogeneous in the perpendicular  direction4–8. Such a statement of the problem conveniently 
simplifies the solution of both the plasmon dispersion problem and problem of plasmon excitation by an 
external electromagnetic wave. This theoretical approach is applicable to 2DESs where the width of the structure 
greatly exceeds the confinement length of plasmons in longitudinal direction. In a realistic 2DES, all its planar 
dimensions are often comparable to each other and also comparable to the wavelength of plasmons in 2DES. 
In this case, the full electromagnetic analysis is needed to treat the problem of excitation of plasmon modes in 
2DES cavity. The ultimately most symmetrical shape of 2DES cavity in the form of circular disk (and ring) has 
been  studied9–14. Some theoretical works for studying the elliptical form of plasmonic cavity were  performed15,16. 
Much fewer papers are devoted to the plasmon excitation in a rectangular 2DES (including graphene)  cavity17–19. 
A rectangular 2DES cavity has a reduced symmetry as compared to disk (or ring) geometry and therefore the 
theoretical consideration becomes more complex. Theoretical approaches applied for studying the plasmon 
excitations in rectangular 2DES cavities employ either commercial numerical  solvers17,19,20 or use simplifying 
 approximations18.

A number of new plasmonic effects were found in spatially confined 2DES. It was shown that taking into 
account the electromagnetic retardation leads to lowering the resonant frequencies of plasmon excitations in 
2DES  stripe21. Plasmon propagation along 2DES strip was investigated both  experimentally22 and  theoretically23. 
Near-field microscopy was used for exciting and imaging plasmons in disk and rectangular graphene nanocavities 
and strong interaction between the  edge24,25 and sheet plasmon modes was  demonstrated20. Excitation of edge 
plasmons allows for stronger localization of THz field below the diffraction  limit26. Lower-order plasmon modes 
in a square of 2DES in external magnetic field were studied both experimentally and theoretically in Ref.18. 
Plasmon resonances in graphene nanoribbons and nanoribbon arrays were investigated in Refs.27–29.

Commercial numerical solvers based on FEM or FDTD techniques for solving the electromagnetic (also 
plasmonic) problems in geometrically confined (even in all three dimensions) structures are often  used30–34. 
Unfortunately, the FEM and FDTD techniques encounter serious difficulties when applied to problems where the 
electromagnetic processes of strongly different scales are involved. In particular, this happens when investigating 

OPEN

1Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences (Saratov Branch), 
Saratov, Russia 410019. 2Saratov State University, Saratov, Russia 410012. *email: fateevdv@yandex.ru

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-58238-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7546  | https://doi.org/10.1038/s41598-024-58238-w

www.nature.com/scientificreports/

the scattering of quite long THz electromagnetic wave by short-wavelength plasma oscillations in micro- and 
nanostructures. Therefore, other theoretical methods are also used in this case, such as the integral equation 
 method29, plasmon wave eigen-function  technique30, time-dependent density-functional31 etc.

In this paper, we solve the problem of plasmon excitation in graphene rectangular microcavity by an external 
electromagnetic (THz) wave in a self-consistent-field approach using the complete system of Maxwell equations. 
The integral equation method developed by us previously for 2DES confined only in one direction is extended 
for rectangular cavity geometry. Using this method, we investigate the properties of different plasmon modes 
excited by incident THz wave with linear polarization in graphene rectangle. It is shown that the edge-field effect 
in graphene rectangle plasmon cavity plays important role, leading to red shift of plasmon resonance frequencies 
and stronger dispersion of plasmon modes.

Structure and methods
We study the excitation of plasmon modes in a graphene rectangle with sides w in the x-direction and l in the 
y-direction located in the x–y plane [Fig. 1(a)]. The x–y plane separates two half-spaces with dielectric constants 
ε1 and ε2. A linearly polarized electromagnetic wave is incident upon the x–y plane at normal direction from the 
medium with dielectric constant ε1.

The self-consistent-field electromagnetic method that we use consists of the following steps. At the first step, 
the electric and magnetic fields of the scattered waves are expressed by the double Fourier integral over the x- and 
y-coordinates, while the dependence on the z-coordinate is assumed to be exponential (only the expression for 
the electric field component Ex is given below as example):

where ω is the angular frequency, E(1,2)x,qx ,qy are the spatial Fourier harmonics of the electric field Ex
(

x, y, z, t
)

 , 
superscripts 1 or 2 refer to the dielectric media with dielectric constants ε1 and ε2, respectively, k(1,2)z,qx ,qy are the 
z-components of the wave vector in media 1 and 2, respectively, qx and qy are the in-plane components of the 
Fourier harmonic wave vector, which are the same in the both media in virtue of the boundary conditions in the 

x–y plane. Different components of the wave vector are related by the expression k(1,2)z,qx ,qy =
√

ω2

c2
ε1,2 − q2x − q2y .

We take into account that the scattered fields with the in-plane components of their wave vectors inside the 
light cone 

(

q2x + q2y < ω2ε1,2/c
2
)

 in a respective medium are outgoing from the structure waves with real 

component kz ( Rek(1)z,qx ,qy > 0 and Rek(2)z,qx ,qy < 0 ) and the scattered fields for 
(

q2x + q2y > ω2ε1,2/c
2
)

 are the 

evanescent waves with imaginary kz ( Imk
(1)
z,qx ,qy > 0 and Imk

(2)
z,qx ,qy < 0 ). In the second step, the Maxwell equations 

in the Fourier representation over the x- and y-coordinates are solved in semi-infinite dielectric media 
surrounding the graphene rectangle taking into account the boundary conditions for the in-plane components 
of the electric and magnetic fields in the interface between the dielectric semi-infinite media containing the 
graphene rectangle. We use the conventional boundary conditions for each Fourier-harmonic in the graphene 
plane z = 0, which are the continuity of the in-plane components of electric field and the discontinuity of the 
in-plane components of magnetic field with the jump defined by the current density in graphene when crossing 
the graphene plane z = 0 in z-direction. In the third step we formulate the system of integral equations for the 
components of electric currents densities jx and jy in graphene by using the obvious condition of zero electric 

E(1,2)x
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)

= exp (−iωt)
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Figure 1.  (a) Schematic representation of the studied graphene rectangle located on the interface between 
two semi-infinite media. (b) Dependence of the absorption cross-section (normalized to the geometric area of 
rectangle) on the frequency and polarization angle of the incident wave for l = 5 μm and w = 1 μm.
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current outside graphene rectangle in the plane z = 0 and Ohm’s law for electric current in graphene with the 
dynamic graphene conductivity σ(ω) given in Ref.32 with both the intraband and interband transitions of charge 
carriers included:

where

are the kernels of the integral equations with superscripts m and k possessing the values x or y, and

with ε0 and µ0 being the electric and magnetic constants. Finally, the system of integral equations is numerically 
solved by using the Galerkin procedure via expanding the sought-for current densities jx and jy in series by the 
Legendre polynomials over the x- and y-coordinates within the graphene rectangle:

where Pn(χx) is the Legendre polynomial of the n-th degree, β(m)
n,n1 are the expansion coefficients, χx and ξy are the 

normalized spatial coordinates reduced to the segment [-1,1] (χx = 2x/w, ξy = 2y/l). The Galerkin procedure 
transforms the system of integral equations into an infinite system of linear algebraic equations for the expansion 
coefficients β(m)

n,n1 . These expansions (and hence the system of linear algebraic equations) are truncated by taking 
into account only N polynomials over each coordinate to reach a desired level of the solution convergence. With 
retaining only N polynomials, the system of integral Eqs. (1) generates 2N2 linear algebraic equations for the 
expansion coefficients β(m)

n,n1 . The elements of matrix M̂ of the system of linear algebraic equations M̂β̂ = R̂ , where

and the column-vector of the free terms
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are

where

with J(s)n

(wqx
2

)

 being the spherical Bessel function of the first kind of the n-th order, ñ = nN + n1 and r̃ = rN + r1 
are the matrix row and column numbers, respectively, n,n1,r , and r1 are the indexes of expanding the current 
densities  jx and jy into series by the Legendre polynomials (each of them runs through all values from 0 to 
N–1), and δi,j is the Kronecker delta. The total size of the square matrix M̂ is 2N2 × 2N2. The next problem is the 
numerical calculation of the matrix elements, each of which involves a double integral over wave vector compo-
nents qx and qy . The numerical integration of each integral W (m,k)

n1,r1,n,r involves separation the infinite integration 
interval into two subintervals. One subinterval within the light cone qx , qy ≤ ω

c

√
ε and the other outside the 

light cone qx , qy > ω
c

√
ε with ε being the greatest dielectric constant of the media above and below graphene. 

This separation of the integration interval allows for speeding up calculations since, for sub-wavelength scatter-
ers, the outgoing and evanescent scattered fields have strongly different wave vector scales. The resulting system 
of linear algebraic equations is solved using the Gaussian elimination method, by reducing the system matrix 
to a triangular form. To achieve the convergence within the error of 1% for describing the plasmon modes of 
our interest, we have to use typically N = 17 and integrate the spherical Bessel functions within the intervals 
qx < 400 2π

w  and qy < 400 2π
l .

Upon finding the current densities jx and jy in graphene rectangle, we can calculate the absorption cross 
section

where

is the value of the absorption power and

is the Pointing flux density of incident THz wave with Ein being the amplitude of the electric field of incident 
wave. In all figures below, we show the absorption cross-section normalized to the geometric area of graphene 
rectangle. The distribution of the charge density ρ(x, y) in plasma oscillations over the graphene rectangle is 
calculated by the continuity equation

In the calculations, we used the Fermi energy value EF = 150 meV , carrier momentum relaxation time 
τ = 2 ps , and dielectric constants ε1 = 1 and ε2 = 4, which are typical parameters for graphene structures.

Results and discussion
The dependence of the absorption cross section on frequency and polarization angle is shown in Fig. 1b for the 
length of graphene rectangle l = 5 μm and its width w = 1 μm. Generally, geometrical dimensions of graphene 
rectangle should be chosen being of the order of the plasmon wavelength in graphene (which is typically on 
the micron scale in THz frequency range). This allows for exciting the plasmon modes in graphene rectangle 
in THz  frequencies35. Two types of absorption resonances are seen in this figure: the resonances predominantly 
excited by THz wave polarized at small angles α and resonances predominantly excited by THz wave polarized 
in the perpendicular direction. For an arbitrary polarization angle between 0 and 90°, both types of plasmon 
resonances are excited with different intensities. The frequencies of all absorption resonances are independent 
of the polarization angle. The strongest absorption occurs for the two fundamental (having the lowest frequen-
cies) plasmon resonances excited for polarization angles near α = 0° and α = 90°. To simplify the consideration, 
we further consider two limiting cases of the incident wave polarization, α = 0° and α = 90°.
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Let us first consider the case when the electric field of incident wave is polarized along the shorter side w of 
graphene rectangle (in the x-direction). The normalized absorption cross section depending on the frequency 
of the incident THz wave and the length of the graphene rectangle l is shown in Fig. 2a. For better visualization 
of all resonances, the normalized absorption cross-section is shown in the logarithmic scale in Fig. 2a. We also 
show the instantaneous spatial distributions of the oscillating charge density ρ in Fig. 2c–j for different plasmon 
resonances indicated by stars in Fig. 2a (for l = 2.25 μm). The charge density distributions for frequencies 3.5 
THz [Fig. 2(c)] and 7.4 THz [Fig. 2(f)] correspond to the bright (i.e., strongly excited) plasmon modes with the 
charge density oscillations executing predominantly along the direction of electric field of the incident wave. 
The bright plasmon modes have strong dipole moments due to accumulation of charges of opposite signs at the 
opposite edges of graphene rectangle and hence these plasmon modes can be effectively excited by incident THz 
wave. The charge density in plasmon resonances for frequencies 5, 6.6, 8, and 8.8 THz shown in Fig. 2d,e,g,j 
oscillates in two perpendicular directions along different sides of graphene rectangle. Those are the resonances 
of hybrid plasmon modes in which the plasma oscillations of different parities (even and odd) in two mutually 
perpendicular x- and y-directions are involved. The plasma oscillations in the direction perpendicular to that 
of the electric field of incident wave arise due to confinement of the graphene rectangle in two perpendicular 
(x- and y-) directions. The charge density oscillations in all plasmon modes shown in Fig. 2d,e,g,j correspond 
to zero dipole moment of these oscillations in the y-direction and smaller dipole moment in the x-direction as 
compared to that for the bright plasmon modes shown in Fig. 2c,f. Therefore, the hybrid plasmon modes shown 
in Fig. 2d,e,g,j are darker (i.e., less excited) than the bright ones.

It is really instructive to compare the obtained results with the model of ideally reflecting boundaries for 
plasmons in graphene rectangle in the electrostatic approximation used in Ref.18.The ideal reflection boundaries 
model in the electrostatic approximation deals with the non-zero electric potential within the geometric area 
of graphene rectangle only and assumes it zero outside this area, while the complete electromagnetic approach 
that we employ considers the electric (and magnetic) fields in the whole space within and outside the geometric 
area of graphene rectangle self-consistently. Since the intraband transitions of charge carriers in graphene make 
a major contribution to the conductivity of graphene in THz frequencies, the contribution from the interband 

Figure 2.  (a) The normalized absorption cross section for the x-polarized electric field in incident wave 
depending on frequency and the length of graphene rectangle l for w = 1 μm. Stars in the raster map in panel (a) 
denote the resonances for which the distributions of charge density oscillations are shown in panels (c–j). (b) 
Dispersion curves for different plasmon modes calculated by dispersion relation (5) as functions of frequency 
and the length of graphene rectangle l for w = 1 μm. (c–j) Distributions of charge density oscillations in graphene 
rectangle for l = 5 μm and w = 1 μm for different frequencies denoted by stars in panel (a). Blue and red colors in 
panels (c–j) correspond to the opposite phases of charge density oscillations.
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transitions can be neglected and the dispersion relation for plasmons in graphene (in the electrostatic approxi-
mation for lossless graphene) can be written  as36,37

where e is the elementary charge, q is the plasmon wave vector, and � is the reduced Planck constant. Expression 
(5) is valid for low temperatures T ≪ EF.

In a rectangular plasmonic cavity with ideally reflecting boundaries, the selection rules for the x- and y-com-
ponents of the plasmon wave vector are qx = pxπ

/

w and qy = pyπ
/

l, where px and py are 0, 1, 2, 3 etc. We 
denote different plasmon modes by the indices 

(

px , py
)

 where index px indicates the number of charge density 
oscillation nodes in the graphene cavity in the x-direction while index py stands for the number of charge density 
oscillation nodes in the y-direction. In Fig. 2b, the dispersion curves for different plasmon modes calculated 
by dispersion relation (5) are plotted depending on the frequency and the length l of the graphene rectangle 
for w = 1 μm. Figure 2b shows the dispersion curves for two bright plasmon modes (1,0) and (3,0), and for a 
number of hybrid modes (those with even mode indices py). The frequencies of the bright plasmon modes are 
independent of the graphene rectangle length l in the simplified model [see Fig. 2(b)]. The dispersion curve of 
any hybrid plasmon mode (px,py) merges into dispersion of the corresponding bright mode (px,0) with increasing 
l because the wavelength of the hybrid mode with any finite mode index py along the y-direction grows to infinity 
as l tends to infinity. Therefore, the hybrid modes become indistinguishable from the bright mode (px,0) in this 
case. Note that, in principle, the dispersion relation (5) describes also the plasmon modes with the even index px 
and both even indices px and py. However, those plasmon modes cannot be excited by incident electromagnetic 
wave with the electric field polarized in the x-direction because they have zero dipole moments. Therefore, such 
plasmon modes are not seen in the absorption spectrum [Fig. 2(a)] and we do not show those modes in Fig. 2b.

The absorption cross section spectrum calculated in the electromagnetic approach [Fig. 2(a)] reveals substan-
tial red shifts of the plasmon mode frequencies as compared with the plasmon mode dispersion in the simplified 
model [Fig. 2(b)]. This happens because, in the complete electromagnetic consideration, the fields of plasmon 
modes extend beyond the graphene rectangle boundaries so that the effective (electrical) area of plasmonic cavity 
exceeds its geometric area, while the latter is only taken into account in the simplified model with ideally reflect-
ing boundaries of plasmonic cavity. The red shift of the plasmon mode frequency is much more pronounced 
for the fundamental plasmon mode (1,0). Its frequency in Fig. 2a is lower than that in Fig. 2b by a factor of 1.35 
on the average for l between 1 and 5 μm. Decrease of the higher plasmon mode frequencies is smaller (but still 
pronounced) because the major part of higher plasmon mode oscillates within the geometric area of graphene 
rectangle. Also, the frequencies of the bright plasmon modes (1,0) and (3,0) change as a function of graphene 
rectangle length l in the complete electromagnetic consideration [Fig. 2(a)], while they are independent of l in the 
simplified model [Fig. 2(b)]. This is due to the edge-field effect seen at the lateral sides (with width w) of graphene 
rectangle in Fig. 2c,f. The role of edge-field effect becomes more pronounced for shorter l leading to even greater 
excess of the effective area of plasmonic cavity over its geometric area. The edge-field effect increases near the 
corners of graphene rectangle because of the strongest geometrical inhomogeneity in these areas.

For the bright plasmon modes oscillating predominantly along the x-direction, the edge-field effect can be 
assessed in the simplest way by introducing the effective width weff of the plasmonic cavity along the direction 
of the electric field in incident wave. Effective width weff is defined as the width of the region covering the gra-
phene rectangle in which the amplitude of the electric field component Ex decreases not more than by a factor 
of e (2.718) as compared with the maximum electric field amplitude of this plasmon mode in the cavity. Due to 
inhomogeneity of the edge-field effect, the effective width depends on the y-coordinate, and weff(y) increases near 
the corners of graphene rectangle (see Fig. 3 for the fundamental plasmon mode). This effect can be integrally 
described by the average effective width of a graphene rectangle

The electric field of the fundamental plasmon mode [shown in Fig. 3(a,b)] extends beyond the geomet-
ric boundaries of graphene rectangle with the average effective width of plasmonic cavity �weff� = 1.383w for 
l = 1.25 μm [Fig. 3(a)] and  �weff� = 1.254w for l = 4.75 μm [Fig. 3(b)]. With decreasing l, the average effective 
width 〈weff〉 of the plasmonic cavity increases [cf. Figure 3(a) and 3(b)] and, therefore, the plasmon mode fre-
quency decreases. This edge-effect leads to a decrease of the frequency of the fundamental plasmon mode by a 
factor of 1.13 with decreasing l from 5 to 1 μm [see Fig. 2(a)].

Now let us consider the polarization of electric field of the incident wave along the y-direction (α = 90°). 
The normalized absorption cross section calculated in the complete electromagnetic approach depending on 
frequency of the incident wave and the length of the graphene rectangle l is shown in Fig. 4a. The stars in Fig. 4a 
indicate the points for which the charge density distributions of different plasmon modes over the graphene 
rectangular cavity are plotted in Fig. 4c–j. For α = 90°, the bright plasmons oscillate predominantly along the 
y-direction [Fig. 4(c,d,f,j)]. Please note that the dispersion curves of any hybrid plasmon mode (px,py) merges 
asymptotically with increasing l into the dispersion curve of the dark (i.e., not exited) plasmon mode (px,0) [not 
shown in Fig. 4(b)] which cannot be excited itself by incident THz wave. The reason is similar to that for hybrid 
plasmon modes (px,py) in Fig. 2 whose dispersion curves merge into dispersion curve of the corresponding (bright 
in that case) mode (px,0) with increasing l. The wavelength of the hybrid mode with a finite even mode index px 

(5)ω = e

�

√

EF

πε0(ε1 + ε2)
|q|,

(6)�weff� =
1

l

∫ l/2

−l/2
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along the y-direction grows to infinity as l tends to infinity. Therefore, the hybrid modes become indistinguishable 
from the dark plasmon mode (px,0) in this case. Similar to the case of polarization of the electric field of incident 
wave in the x-direction, we do not show the plasmon modes with the even index py and both even indices px and 
py because these modes cannot be excited by incident electromagnetic wave with the electric field polarized in 
the y-direction. Accordingly, such plasmon modes are not seen in the absorption spectrum in Fig. 4a.

Figure 3.  Distribution of the normalized amplitude of Ex component of electric field in the fundamental 
plasmon mode in the plane of a graphene rectangle for w = 1 μm and (a) l = 1.25 μm and (b) l = 4.75 μm. Blue 
dashed rectangles indicate the geometric boundaries of graphene. Yellow vertical straight dashed lines indicate 
the calculated average effective width 〈weff〉 of the plasmonic cavity. The plasmon field decreases by a factor of e 
as compared with the maximum electric field of the plasmon mode in the regions bounded by the green solid 
lines.
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As it was explained before, the hybrid modes are exited exclusively due to the edge-field effect at lateral sides 
of graphene rectangle. This effect is more pronounced for situation shown in Fig. 4 where the lateral width w of 
graphene rectangle is smaller than its longitudinal length l. Similarly to the case of α = 0 (Fig. 2), the frequencies 
of all plasmon modes shown in Fig. 4a calculated in the complete electromagnetic approach are red-shifted from 
those calculated in the simplified model, due to spreading the plasmon field beyond the geometric boundaries of 
graphene rectangle and, as a result, increasing the effective area of plasmonic cavity. For example, the frequencies 
of plasmon modes (0,1), (0,3), and (0,5) are red-shifted by factors of 1.6, 1.42, and 1.28, respectively, for l = 5 μm 
and w = 1 μm.

Conclusion
The complete electromagnetic consideration of plasmon mode excitation in graphene rectangle by normally 
incident electromagnetic (THz) wave has been performed for different polarization of the incident wave. Polari-
zations of the electric field of incident wave along one or the other side of graphene rectangle are considered in 
detail. The properties of different types of plasmon modes have been studied for various aspect ratios of graphene 
rectangle. It was found that, when the electric field of incident wave is polarized along one of the sides of graphene 
rectangle, the bright-type plasmon modes executing predominantly along the electric field of incident THz wave 
are excited. The charge density distributions of these modes are odd across the area of graphene rectangle. The 
incident wave also excites the hybrid plasmon modes with even charge density distributions in the transverse 
direction. The complete electromagnetic analysis demonstrates that the plasmon field expands well beyond the 
geometric boundaries of graphene rectangle. This edge-field effect results in the increase of effective (electrical) 
plasmon cavity area and considerable red shifts of the frequencies of plasmon modes. The hybrid modes are 
exited exclusively due to the edge-field effect at lateral sides of graphene rectangle. Therefore, this effect is more 
pronounced for shorter lateral dimension of graphene rectangle. Our analysis reveals rather intricate character 
of the plasmon mode spectrum in a graphene cavity of rectangular shape. The results of this study can be useful 
for designing graphene devices with multimode plasmon cavities, such as THz detectors, mixers, sources, and 
near-field enhancement units for the THz near-field microscopy technique.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.

Figure 4.  (a) The normalized absorption cross section as a function of frequency and the length of graphene 
rectangle l for polarization of the electric field of incident wave in the x-direction for the graphene rectangle 
width w = 1 μm. (b) Frequencies of different plasmon modes as functions of the length of graphene rectangle 
l calculated in the simplified model of ideally reflecting boundaries of graphene rectangle for w = 1 μm. (c–j) 
Charge density distributions of different plasmon modes in graphene rectangle for w = 1 μm and l = 1.5 μm at 
frequencies marked by stars in panel (a).
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