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Supervised representation learning 
based on various levels of pediatric 
radiographic views for transfer 
learning
Sunggu Kyung 3,4, Miso Jang 1,4, Seungju Park 1, Hee Mang Yoon 2, Gil‑Sun Hong 2 & 
Namkug Kim 1,2*

Transfer learning plays a pivotal role in addressing the paucity of data, expediting training processes, 
and enhancing model performance. Nonetheless, the prevailing practice of transfer learning 
predominantly relies on pre‑trained models designed for the natural image domain, which may not 
be well‑suited for the medical image domain in grayscale. Recognizing the significance of leveraging 
transfer learning in medical research, we undertook the construction of class‑balanced pediatric 
radiograph datasets collectively referred to as PedXnets, grounded in radiographic views using the 
pediatric radiographs collected over 24 years at Asan Medical Center. For PedXnets pre‑training, 
approximately 70,000 X‑ray images were utilized. Three different pre‑training weights of PedXnet 
were constructed using Inception V3 for various radiation perspective classifications: Model‑
PedXnet‑7C, Model‑PedXnet‑30C, and Model‑PedXnet‑68C. We validated the transferability and 
positive effects of transfer learning of PedXnets through pediatric downstream tasks including fracture 
classification and bone age assessment (BAA). The evaluation of transfer learning effects through 
classification and regression metrics showed superior performance of Model‑PedXnets in quantitative 
assessments. Additionally, visual analyses confirmed that the Model‑PedXnets were more focused on 
meaningful regions of interest.

Keywords Pediatric radiographs, Representation learning, Transfer learning, Bone age assessment, Deep 
learning, Fracture classification

The recent development of the convolution neural network (CNN)1–4 of deep learning has shown the human-level 
performance of computer vision in ImageNet large scale visual recognition challenge (ILSVRC)5. The number 
of studies showing outstanding research results by applying deep learning technology to medical imaging has 
increased significantly in recent  years6. Deep learning technology is also applied to pediatric domains, solving 
various tasks or showing excellent research results such as disease  classification7,8,  segmentation9, bone age 
assessment (BAA)10, and device  detection11. However, despite the impressive achievements of previous studies, 
there are still various obstacles to the real-world clinical application for pediatric tasks. In the realm of pediatric 
healthcare, the accessibility of AI-driven medical imaging solutions that exhibit dependable performance falls 
behind that of the adult population. This disparity can be attributed, at least in part, to the obstacles stemming 
from the stringent regulatory framework governing medical devices for use in children, as well as the limited 
availability of robust training data essential for the development of trustworthy AI  models12. These mainly need 
transfer learning because of data shortage.

Transfer learning is the enhancement of learning in a downstream task through the transfer of knowledge 
from a related upstream task that has already been  trained13, so it is primarily used to alleviate data short-
age problems, accelerate convergence during training, and improve  performance14–16. The problem is, existing 
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prevalent transfer learning relied inevitably on the representation of the pre-trained model by the natural image 
dataset—referred to as ImageNet—on RGB color  space7,8,10, it may not be suitable for medical images such as 
radiographs, computed tomography, and magnetic resonance images. The medical images typically have a higher 
resolution than the nature images and single-channel images in grayscale space. Thus, it could have a large 
domain shift when  transferring17. According to the  research18, in a large chest radiograph dataset task, ImageNet 
pre-trained model had a positive transfer effect on disease classification in most CNN models, but some models, 
including  InceptionV34, had a negative transfer effect. These results indicated we need to verify the effectiveness 
of ImageNet pre-trained models on various medical tasks. In addition, it is hard to interpret how the pre-trained 
models by natural images helped in the medical domain even if performance improves because the models could 
focus on minor local variations in texture. Due to the recent issue of ImageNet representation, there were recent 
studies in that the benefits of transfer learning with ImageNet may be limited that pre-training on in-domain 
medical imaging data is more  effective19,20. However, it is difficult to collect medical images, especially pediatric 
radiographs for representation suitable for the medical domain, so research attempts are limited.

In this study, inspired by a class-balanced large-scale ImageNet dataset and its pre-trained representation, we 
first constructed the class-balanced pediatric radiographs datasets—referred to as PedXnets- by radiographic 
views labeling such as PedXnet-7C, PedXnet-30C, and PedXnet-68C. Subsequently, we conducted representa-
tion learning suitable for pediatric problems through a radiographic views’ classification task in a supervised 
manner. The Model-PedXnets, i.e. the pre-trained models on the PedXnets framework consists of upstream and 
downstream tasks; in an upstream task, we trained the network to learn the radiographic views information 
according to the range from seven basic classes to 68 detailed classes based on pediatric radiograph protocols; 
in a downstream task, transfer learning was conducted with the pre-trained models on PedXnets to solve the 
specific tasks including the fracture classification and the BAA. For verifying the effects of transfer learning 
with our radiographic views’ representations using PedXnets, it was compared with Model-Baseline, i.e., trained 
model with random initialization and without pre-trained representation, and Model-ImageNet, i.e., pre-trained 
model on ImageNet. In addition, an ablation study was performed to compare the effects of radiographic views 
representation in small-scale downstream datasets.

Materials and methods
This retrospective study was conducted according to the principles of the Declaration of Helsinki and was per-
formed in accordance with current scientific guidelines. The study protocol was approved by the Institutional 
Review Board Committee of Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (IRB 
No. 2019-0115). The requirement of patient informed consent was waived by the Institutional Review Board 
Committee of Asan Medical Center.

Upstream: pediatric dataset
A total of 2,598,404 pediatric radiographs were collected from 1995 to 2018 at Asan Medical Center (AMC) 
retrospectively, and we define this dataset raw original data (see Fig. 1). The age range of the original dataset was 
from 0 to 18. For reflection on the actual frequency of occurrence in the medical center, we divided the original 
dataset into the training and validation set based on the reference date; 2018 Jul. The validation set in the original 
dataset consists of a total of 81,131 radiographs over the period of 2018 Jul to 2018 Dec. The training dataset in 
the original dataset was composed of the remaining 2,499,598 radiographs. The original dataset had a severe 
imbalance distribution by prescription code. Therefore, when applying our proposed radiographic views labeling, 
the imbalance by class became highly severe. To address this, we under-sampled data according to the least fre-
quent class and matched the total number equally for a fair comparison between PedXnet-7C, PedXnet-30C, and 
PedXnet-68C datasets. After the sampling, PedXnet-7C dataset consisted of 70,000 total (i.e., 10,000 radiographs 
per class), PedXnet-30C dataset consisted of 69,000 total (i.e., 2,300 radiographs per class), and PedXnet-68C 
dataset consisted of 68,000 total (i.e., 1,000 radiographs each class). Additionally, we constructed a fine-tuning 
set by separating 10% per class from each training set for hyper-parameter tuning. For more information on the 
class details of the upstream datasets by radiographic views labeling type (see Supplementary Tables 1–3). The 
baseline characteristics of upstream dataset are in the Supplementary Table 5.

Downstream: fracture dataset
We utilized the publicly available GRAZPEDWRI-DX  dataset21, comprising annotated pediatric trauma wrist 
radiographs from 6091 patients who received treatment in the Department of Pediatric Surgery at the University 
Hospital Graz between 2008 and 2018. This dataset contains 20,327 images, predominantly featuring poster-
oanterior and lateral views. It represents a wide range of patient demographics, with a mean age of 10.9 years 
(ranging from 0.2 to 19 years; comprising 2,688 females, 3402 males, and one individual of unknown gender). 
To create a binary classification dataset, we filtered the ‘fracture visible’ column from the annotations to differ-
entiate between ‘fracture’ and ‘no fracture’ categories, thereby securing a binary label. The ratio of fractures to 
non-fractures was established at 2:1. The dataset was randomly divided into training, fine-tuning, and validation 
sets, adhering to a 3:1:1 ratio.

Downstream: bone age prediction dataset
The dataset was released in RSNA Pediatric Bone Age Challenge (2017). The organizers provided the lists of 
training, fine-tuning, and validation sets. According to Halabi et al.10, the training and fine-tuning sets had 
similar age distributions with an average of 127.321 and 127.156 months, and the validation set had an age dis-
tribution with an average of 132.096 months. Radiographs for the training and fine-tuning sets were obtained 
from Children’s Hospital Colorado (Aurora, Colo) and Lucile Packard Children’s Hospital at Stanford. pediatric 
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radiographs for the validation set were collected from Lucile Packard Children’s Hospital. The radiographs were 
provided with skeletal age estimates and sex from the accompanying clinical radiology report provided at the 
time of imaging. The Greulich and Pyle standard method (G-P method)22 was used by reviewers to determine 
the ground truth bone age.

Preprocessing
For each image, two simple pre-processing methods were applied. First, min–max normalization with 0.5% clip-
ping of upper and lower bounds was performed to suppress the effect of the L/R mark in radiographs and remove 
the outlier pixel values. We utilized the raw DICOM (Digital Imaging and Communications in Medicine) files 
as is, hence the min–max normalization was applied to the stored bit value range. A set of pixel values of origi-
nal and scaled images is represented by X, Z respectively; the formula of min–max normalization is as follows:

Second, due to the limitation of GPU resources, all images size were resized down into 512 × 512 by bi-cubic 
interpolation with keeping the aspect ratio. The size of the image is based on the Kim et al.23. Due to the charac-
teristics of pediatric radiographs, there are various radiographic views protocols and the various size of the body 
depending on the age. Thus, we used strong image augmentations to alleviate the heterogeneity of the pediatric 
radiographs and make the model become robust t pediatric radiograph protocols in various anatomic locations. 
We used the image augmentation library,  Albumentation24, and adopted the eight augmentation methods as 
follows: ShiftScaleRotate, HorizontalFlip, RandomBrightness, RandomContrast, RandomGamma, GaussNoise, 
Sharpen, and RandomBlur. Considering these previous  studies25,26, we set the appropriate batch size emphatically 
depending on the upstream and downstream tasks. The batch sizes of upstream and downstream tasks were 60 
and 20. Each model is initialized by a uniform Xavier and trained with an Adam optimizer, a learning rate of 
1e−4 using a warm-up of 5 epochs, weight decay of 5e−4, and betas of (0.9, 0.999). The learning rate was reduced 
during the training following the polynomial learning rate schedule: (1− epoch/epochmax)

0.9.The total number 
of epochs is up to 500. However, each model was selected in the experiments as a converged model that has 
recorded the highest validation scores. All our models were implemented in Python version 3.6.9 with Pytorch 
version 1.6.0, accelerated by an NVIDIA TITAN RTX 24 GB graphics processing unit (GPU).

(1)Z =
X −min(X)

max(X)−min(X)
.

Figure 1.  Flow chart of processing of upstream dataset with proposed radiographic views labeling in real-world 
medical radiographs dataset. Sampling was performed independently to build balanced datasets for each type 
of radiographic views labeling. In the case of the upstream validation set, the same radiographic views labeling 
was applied to the fixed dataset after a reference date (2018 Jul), so the class-wise mean and variance per labeling 
type were different. N the total number of the data.
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Radiographic views labeling for PedXnets
We benchmarked the balanced class dataset,  ImageNet1, and its hierarchical structure labeling based on 
 WordNet27. As shown in Fig. 2, a hierarchical structure could be constructed with anatomical information for 
a major 7classes and radiographic views information for 68 classes in a large-scale original pediatric dataset. 
In detail, we divided it into seven major anatomic areas of the human body including the head, chest, upper 
extremity, abdomen, pelvis, spine, and lower extremity with all pediatric radiographs for construction of the 
PedXnet-7C. Furthermore, we subdivided from the 7 classes to 30 classes based on the detailed anatomic areas 
of radiographs for the composition of the PedXnet-30C; and much subdivided into 68 classes using radiographic 
protocols of radiographs for configuration of the PedXnet-68C. As shown in Fig. 1, there were strong imbalances 
between classes in the process of performing these radiographic views labeling in the collected raw original pedi-
atric dataset. Thus, we built PedXnet-7C, PedXnet-30C, and PedXnet-68C using random sampling to construct 
balanced datasets among classes with the total number of training data.

Supervised representation learning using radiographic views label
We performed radiographic views recognition tasks as upstream tasks with our PedXnet-7C, PedXnet-30C, and 
PedXnet-68C for making the model capture the representation of radiographic views information of radiographs 
(see Fig. 3a). The models were trained to classify pediatric radiographs into each corresponding radiographic 
views class. The classification task loss was defined as the cross-entropy loss (CE loss), as follows:

where M is the number of classes, ŷ  is the probability of M dimension outputs and y is the M dimension one-hot 
encoded ground truth. For radiographic views classification tasks,  InceptionV34, a widely used CNN architecture 
since the ILSVRC 2015, was chosen, because InceptionV3 is recognized for its performance and is often used 
in medical problems e.g., detecting  fractures8,28 and  BAA10. In addition, according to Ke et al.18, when transfer 
learning was performed on 14 radiological observations classification tasks on chest radiographs using ImageNet 
pre-trained weight, the performance of InceptionV3 was rather lower than when ImageNet pre-trained weight 
was not used. Thus, the inceptionV3 was selected as a basic CNN architecture to find a suitable representation 
for the medical domain. The InceptionV3 has 11 convolution layers of 1 × 1, 1 × 3, and 1 × 5 kernels, and convo-
lution blocks are applied along with the max-pooling layer for down sampling. All convolutional layers include 
batch normalization techniques and rectified linear unit (ReLU) layers. In the upstream tasks, predictions are 

(2)Cross entropy loss
(
y, ŷ

)
= −

1

N

N∑
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M∑
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yilog
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ŷi
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Figure 2.  Overview of radiographic views labeling process for PedXnets. i.e., the lower extremity class in the 
7 class can be divided into several classes: hip, femur, knee, lower leg, ankle, foot, and toe in the 30 class. These 
can be divided into several subclasses based on the protocol code of radiographs: Foot AP, Foot Calcaneus, Foot 
Hindfoot, Foot Lateral, and Foot Oblique in the 68 class. PA posteroanterior, AP anteroposterior, KUB kidney, 
ureter, and bladder, PNS paranasal sinus, SI sacroiliac.
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conducted for target classes with fully connected layer and SoftMax function. We redesigned the last fully con-
nected layer’s output dimension to the number of classes of each upstream task to perform the pre-defined tasks.

Transfer learning for medical problems
To assess whether our proposed radiographic views representations by PedXnets benefit applications for medical 
problems, we conducted two pediatric downstream tasks; Fracture classification, BAA (see Fig. 3b). First, the 
classification of fractures in the upper and lower extremity of pediatric radiographs is considerably  important29,30. 
A fracture can occur anatomically anywhere and frequently take place in childhood. In particular, fractures occur 
mainly in the upper and lower limbs of the body. Therefore, the model should be able to recognize fractures fea-
tures robustly in multi-view of radiographs. The task could evaluate the transferability of Model-PedXnets at the 
multi-view task. Second, BAA in hand pediatric radiographs is also meaningful for evaluating the transferability 
of Model-PedXnets at the single-view task. For each downstream task, the Model-Baseline, Model-ImageNet, 
Model-PedXnet-7C, Model-PedXnet-30C, and Model-PedXnet-68C were applied with the same training settings.

To solve the fracture classification task using transfer learning, the models should extract general features 
of fracture in the upper and lower extremities of radiographs. We trained the Model-Baseline from scratch 
and conducted transfer learning using the Model-PedXnet-7C, Model-PedXnet-30C, Model-PedXnet-68C, and 
Model-ImageNet for the binary classification task of fractures in the upper and lower extremities of radiographs. 
The classification task loss is defined as the binary cross-entropy loss (BCE loss), as follows:

where ŷ  is the probability of model output and y is the ground truth. The same preprocessing process and aug-
mentations at the upstream task were performed but inspired by Parveen et al.31 but contrast limited adaptive 
histogram equalization (CLAHE)32 was additionally applied to emphasize the bone contrast. For a fair compari-
son, the same batch size, optimizer, learning rate, and scheduler at the upstream tasks were used except total 
epoch. The number of epochs at this task is up to 300. However, each model was selected at a converged model 
that has recorded the highest validation scores.

To solve the bone assessment task using transfer learning, BAA is mainly measured from hand radiographs, 
and the model should extract detailed features from the bones of the wrist, hand, and finger in only hand anter-
oposterior radiographs. We trained the Model-Baseline from scratch and executed transfer learning using the 
Model-PedXnet-7C, Model-PedXnet-30C, Model-PedXnet-68C, and Model-ImageNet for the regression task 
of bone age in the hand radiographs. The regression task loss is defined as the mean square error loss (MSE 
loss), as follows:

(3)Binary Cross Entropy Loss
(
y, ŷ

)
= −

1

N
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Figure 3.  Overview of the Model-PedXnets framework. The framework consists of upstream and downstream 
tasks. In upstream tasks, radiographic views recognition of pediatric radiographs as a pretext for developing 
pre-trained models. In downstream tasks, transfer learning with the pre-trained weights for solving two medical 
problems including fracture classification and bone age assessment. GAP global average pooling, ReLU rectified 
linear unit.
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where ŷ  is the probability of model output and y is the ground truth. The same preprocessing process and 
augmentations at the upstream task were performed, but we additionally adopted the CLAHE to emphasize the 
bone contrast as in Halabi et al.10.

Statistical analysis
To validate the Model-PedXnets representation in the upstream task, we employed F1-score (F1), accuracy 
(ACC), precision, and recall for the quantitative  evaluations33 of multi-class classification in the upstream tasks. 
We visualized the Model-PedXnets representation with gradient-weighted class activation mapping (Grad-
CAM)34 and t-distributed stochastic neighbor embedding (t-SNE)35 according to the anatomical hierarchy of 
radiographic views. To evaluate the effects of transfer learning with the pre-trained model on PedXnets in the 
downstream tasks, in the fracture task, receiver operating characteristic (ROC), the area under the ROC curve 
(AUC), F1, ACC, sensitivity (SEN), specificity (SPE), positive predictive values (PPV), and negative predictive 
values (NPV) were measured for binary-class classification, and in the BAA task, mean absolute error (MAE), 
mean square error (MSE), and  R2 score were calculated for regression task. In addition, the activation maps were 
obtained using the Grad-CAM or channel-wise mean activation like Zhou et al.36 to interpret the representation 
of the Model-PedXnets in the downstream tasks. The output features of the last convolution layer of the Incep-
tionV3 were used to be averaged channel-wise, normalized with sigmoid activation, and subsequently interpo-
lated to match the input resolution. Each model was evaluated using weights saved at the minimum loss point 
of the fine-tuning set. The performance of each model was evaluated by the validation set. The comparisons of 
the Model-Baseline, Model-ImageNet, and Model-PedXnets in fracture classification and BAA were performed 
using DeLong’s ROC  comparison37 and the paired t-test, respectively. The statistical significance level was set 
at the p-value of 0.05.

Ethics approval
This retrospective study was conducted according to the principles of the Declaration of Helsinki and according 
to current scientific guidelines. The study protocol was approved by the Institutional Review Board Committee 
of Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (IRB No.2019-0115).

Consent to participate
The requirement of patient informed consent was waived by the Institutional Review Board Committee of Asan 
Medical Center.

Results
Upstream results of supervised radiographic views representation task
As shown in Table 1, when the highest value epoch model was selected from the fine-tuning set results and 
referred to the validation set, Model-PedXnet-7C, Model-PedXnet-30C, and Model-PedXnet-68C all have 
high performances (F1 > 0.78, Accuracy > 0.90, Precision > 0.84, Recall > 0.79). The upstream results indicated 
the Model-PedXnets learned the representation without overfitting, so we could use the model weights of the 
upstream task for application to downstream tasks. Figure 4 indicates Model-PedXnet-7C’s activation maps were 
visualized using Grad-CAM. The Model-PedXnet-7C was activated in the region of interest (ROI) and the activa-
tion maps demonstrate that Model-PedXnet-7C could capture clinically meaningful features. After pretraining, 
the Inception V3 model serves as a learnable feature extractor when applied to downstream tasks. It is initialized 
with its PedXnet pre-trained weights, excluding the last three layers that make up the fully connected layer. The 
training methodology for downstream tasks employs a comprehensive strategy that involves the entire model.

Downstream task result for fracture classification task
As presented in Table 2, a comparison between Model-PedXnets and Model-Baseline reveals that the AUC scores 
of Model-PedXnets significantly surpassed those of Model-Baseline, indicating statistically significant differences. 
Notably, Model-PedXnet-30C demonstrated superior performance across all metrics, with the exceptions of 
specificity, and PPV. The features of the last InceptionV3 convolution layer for Model-Baseline, Model-PedXnet-
30C, and Model-ImageNet were visualized using Grad-CAM to verify their representations. The radiographs 
selected for this visualization were randomly chosen from the test dataset. As illustrated in Fig. 5, the Grad-CAM 
region of interest (ROI) for Model-PedXnet-30C is represented most effectively. Intriguingly, the Grad-CAMs 
for Model-Baseline demonstrate a biased focus towards casts, while that of Model-PedXnet shows the most 

(4)Mean Square Error Loss
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Table 1.  The performance comparisons of radiographic views recognition task as an upstream task.

Upstream validation set F1 score Accuracy Precision Recall

Model-PedXnet-7C (N = 73,448) 0.892 0.911 0.915 0.874

Model-PedXnet-30C (N = 63,334) 0.823 0.952 0.933 0.797

Model-PedXnet-68C (N = 46,183) 0.785 0.904 0.847 0.798
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concentrated depiction of a fracture lesion among the three models. We additionally validated the downstream 
fracture task using internal data from Asan Medical Center. For further details, please refer to the “Expansion 
of downstream task” section in the Supplementary Materials.

Downstream task result for bone age assessment task
Model-PedXnet-7C achieved the best performances of 5.245 in MSE, 42.857 in MAE, and 0.974 in R-square 
in the BAA task in Table 3. The Model-PedXnet-7C and Model-PedXnet-30C showed performance improve-
ments in MAE compared to the baseline model. Figure 6 indicates that Model-PedXnet-7C captured the most 
important regions to predict bone age such as carpus and metacarpophalangeal joints, most intensively. The 
plotted radiographs were randomly chosen in the validation set. We added more plots of activation maps in 
Supplementary Fig. 3.

Discussion
Most of the previous medical tasks mainly use transfer learning because the scarcity of various cases and pri-
vacy protection issues cause the difficulty of medical data collection. Especially most pediatric studies rely on 
ImageNet representation. However, it is still debated whether the ImageNet representation is suitable for the 
medical  domain38. In this study, we constructed the class-balanced pediatric dataset, PedXnets, and proposed our 
Model-PedXnets framework to reap the benefits of transfer learning in medical domains. In Tables 2 and 3, the 
Model-PedXnets showed superior performances improvements by a large margin compared to Model-Baseline 
in downstream pediatric tasks including fracture classification and bone age assessment. Even though using only 
approximately 70,000 images, PedXnets, smaller-scale datasets than ImageNet, the Model-PedXnets showed 
equal or superior performances compared with Model-ImageNet. The findings of this study revealed that data 
including medical content, even if it is not as large as ImageNet, is better for solving medical problems. To the 
best of our knowledge, this is the first study to demonstrate representative learning with pediatric radiographs 
and compare the effects of transfer learning with two major pediatric tasks.

In addition, these differences expressed in the activation maps were more pronounced in qualitative results. 
In the fracture downstream task, the Model-ImageNet focused on some minor local context, while the Model-
PedXnet focused on more medically meaningful ROI. The Model-PedXnet accurately concentrates the fracture 

Figure 4.  Plots of Model-PedXnet-7C model’s Grad-CAM activation maps of radiographic views recognition 
task as an upstream task with independent validation sets according to each labeling method. Grad-CAM 
gradient-weighted class activation mapping.

Table 2.  The performance comparisons of the fracture classification task. DeLong’s test method was adopted 
for pairwise ROC comparison between the baseline and each model. Mean of all reader group is shown with 
95% confidence interval. ROC receiver operating characteristic, AUC  area under the ROC curve, PPV positive 
predictive value, NPV Negative predictive value, Model-Baseline scratch model, Model-PedXnet-7C the model 
pretrained from PedXnet-7class task, Model-PedXnet-30C the model pretrained from PedXnet-30class task, 
Model-PedXnet-68C the model pretrained from PedXnet-68class task, Model-ImageNet the model pretrained 
from ImageNet. *p < 0.05. Significant values are in bold.

Network AUC F1 score Accuracy Sensitivity Specificity PPV NPV

Model-baseline 0.912 0.874 0.838 0.829 0.857 0.925 0.701

Model-PedXnet-7C 0.969* 0.946 0.927 0.939 0.901 0.953 0.874

Model-PedXnet-30C 0.971* 0.950 0.932 0.950 0.891 0.949 0.894

Model-PedXnet-68C 0.966* 0.948 0.929 0.945 0.896 0.951 0.884

Model-ImageNet 0.967* 0.940 0.917 0.945 0.858 0.934 0.881
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part without being affected by casts compared to other methods. In Supplementary Figs. 1 and 5, we presented 
radiographs of the upper and lower extremity and Model-PedXnet appropriately highlights the fracture site in 
various radiographic views. In the BAA downstream task, we presented some hand radiographs and activation 
maps in Supplementary Fig. 3 and Fig. 6. Our activation maps were dynamic changes according to age and 
important areas for predicting were carpus, thumb, and metacarpophalangeal  joints39. Model-PedXnet less 
highlighted meaningless information with high intensity, such as L or R marks and lines of films in the radio-
graphs. As shown in Supplementary Figs. 2 and 4, there was no significant difference in ROI activity between the 
Model-PedXnets in the downstream tasks. Because Model-PedXnets training strategy was designed to extract 
pediatric radiographs’ context features with the radiographic views labeling, which could help the models to 
understand the important pediatric regions of the radiographs.

Figure 5.  Comparisons of activation maps in the intermediate layer of Model-PedXnet, Model-Baseline, and 
Model-ImageNet models using Grad-CAM in the fracture downstream task. Grad-CAM gradient-weighted class 
activation mapping, Model-Baseline scratch model, Model-PedXnet the model pretrained from PedXnet-7class 
task, Model-ImageNet the model pretrained from ImageNet.

Table 3.  The performances comparisons of bone age assessment. Paired t-test method was adopted for 
MAE comparison between the baseline and each model. stdev. standard deviation, MAE mean average error, 
MSE mean squared error, Model-Baseline scratch model, Model-PedXnet-7C the model pretrained from 
PedXnet-7class task, Model-PedXnet-30C the model pretrained from PedXnet-30class task, Model-PedXnet-
68C the model pretrained from PedXnet-68class task, Model-ImageNet the model pretrained from ImageNet. 
Significant values are in bold.

Network MAE (Month) ± Stdev. MSE (month) R
2 score

Model-baseline 5.645 ± 4.576 52.694 0.968

Model-PedXnet-7C 5.245 ± 3.927 (p-value: 0.241) 42.857 0.974

Model-PedXnet-30C 5.567 ± 4.295 (p-value: 0.815) 49.347 0.971

Model-PedXnet-68C 5.851 ± 4.578 (p-value: 0.594) 55.082 0.970

Model-ImageNet 5.308 ± 4.422 (p-value: 0.213) 47.630 0.971
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As shown in Supplementary Table 4, similar results were shown in the ablation study where the number 
of training data was limited in the downstream task. In addition, comparing the results of the among Model-
PedXnets, it was found that radiographic views representation made with fewer classes of datasets, Model-
PedXnet-7C, was more effective, unlike ImageNet representation with 1000 various class distributions. Radio-
graphs serve as essential tools for medical diagnosis, and due to the risks associated with radiation exposure, the 
protocols for their use are meticulously regulated. Especially, pediatric radiographs include views of various sizes 
according to age. Therefore, the excessive dividing of the data class up to the protocol of the radiographs could 
collect simple and almost identical images, which would decrease the transfer learning effects because it was a 
highly trivial task. It also occurred in overlapping regions between classes, for example, chest AP view images 
were similar to abdomen AP views in newborns and infants, which would act as a kind of label noise. The network 
would miss meaningful features and result in a negative transfer phenomenon. Additionally, the performance 
decline in more detailed classes may be due to the diminished training data per class as their number increases, 
likely leading to insufficient learning for the radiologic view in PedXnet-68C.

Despite the improved performance, our method has some limitations. First, as our proposed methodology 
can rely on the backbone network and pre-processing, it can lead to sufficiently different results by the different 
backbone networks and pre-processing. However, we fixed the InceptionV3 and the preprocessing because of 
the limited GPU in our study and left it open for discussion. Second, as shown in Fig. 1, we performed excessive 
random under-sampling in the raw original dataset to build class-balanced datasets according to the anatomical 
hierarchy of radiographic views. This has reduced the total number of training data and there might be a possibil-
ity that the total number of data was insufficient compared to ImageNet, so it did not show an appropriate  effect40. 
Third, since the radiographic views labeling may vary depending on the radiologist and our proposed method is 
a supervised manner, the results could be greatly changed by the label method. Labeling the data class from an 
anatomical or radiographic perspective can be somewhat subjective. Fourth, the developed pretraining model 
was trained and validated exclusively on pediatric data. The domain gap between upstream and downstream 
tasks in pre-training research is a critical factor, as it can significantly impact the effectiveness of pretraining 
models. The influence of pretraining with pediatric data on other medical datasets remains an area for future 
investigation. Our research is focused on demonstrating the effects of pre-training through supervised learning, 
using the radiographic views labeling in pediatric data. Comparing the pretraining model with the adult chest 
X-ray dataset,  CheXNet41, is considered as future work. Recent advancements in unsupervised learning and the 
growing need for pre-trained models tailored to medical domains have led to significant developments. Specifi-
cally, previous  studies42–44 have successfully developed pre-trained weights designed for reconstruction tasks, 
resulting in substantial performance improvements in dense prediction tasks. Building on these foundations, 
future work will aim to establish a more effective framework for unsupervised representation of radiographic 
views. Fifth, we verified the effect of pretraining exclusively through the full fine-tuning method when applied 
to downstream tasks. Investigating the pretraining effect via other transfer learning techniques, such as Linear 
Probing and Gradual Unfreezing, remains a subject for future research. Sixth, to improve the reliability and 
objective quantification of the Grad-CAM results, we intend to incorporate the implementation of a blind test 

Figure 6.  Plots of activation maps in the intermediate layer of Model-ImageNet, Model-Baseline, and Model-
PedXnet using channel-wise mean activation map in the BAA. Please refer to Supplementary Fig. 4 for the 
activation map according to PedXnet types. The sample in the first row is 152 months old, and the sample in 
the second row is 167 months old. The carpus and metacarpophalangeal joints are critical regions for bone age 
 assessment39. BAA bone age assessment, Model-Baseline scratch model, Model-PedXnet the model pretrained 
from PedXnet-7class task, Model-ImageNet the model pretrained from ImageNet.
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into future work. In this test, human evaluators will identify the most accurate Grad-CAM focus among images 
without knowledge of the model that produced each.

Conclusion
In this study, we introduced a supervised manner of medical representation learning for pediatric tasks with 
radiographic views labels. First, we designed the class-balanced pediatric radiographs datasets (PedXnets) by 
radiographic views labelings. And by using the PedXnets, we conducted representation learning helpful for 
pediatric problems through a radiographic views’ classification task in a supervised manner. According to the 
evaluation results, the representation of major anatomical information was effective and the transfer effect of 
Model-PedXnet was positive in both pediatric downstream tasks including fracture classification and bone age 
assessment tasks. The Model-PedXnets showed superior results by a large margin compared to Model-Baseline 
and even showed results equivalent or improved to the Model-ImageNet even though the PedXnets were smaller 
than ImageNet. In addition, the proposed representation learning allowed networks to capture more semantic 
features in the ROI of radiographs. Our study could be helpful for medical domains, particularly pediatric radio-
graphs research, which is difficult to collect data, so we aim to disclose the PedXnet’s weights.

Data availability
Data available upon request to corresponding author with allowance of IRB. After organizing the code, the code 
will be uploaded at https:// github. com/ babbu 3682/ PedXn et.
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