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A computational model 
of epidemic process with three 
variants on a synthesized human 
interaction network
Seprianus *, Nuning Nuraini  & Suhadi Wido Saputro 

Virus mutations give rise to new variants that cause multiple waves of pandemics and escalate the 
infected number of individuals. In this paper, we develop both a simple random network that we 
define as a synthesized human interaction network and an epidemiological model based on the 
microscopic process of disease spreading to describe the epidemic process with three variants in a 
population with some features of social structure. The features of social structure we take into account 
in the model are the average number of degrees and the frequency of contacts. This paper shows many 
computational results from several scenarios both in varying network structures and epidemiological 
parameters that cannot be obtained numerically by using the compartmental model.
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All viruses change over time through mutations and give rise to new variants. Although most of them have little 
biological significance, a small number of them, called ’variants of concern’, appear to cause multiple waves of 
pandemic and escalate the infected number of  individuals1,2. New variants not only result in increased trans-
missibility, morbidity, and mortality but also cause reinfection in previously infected and recovered individuals, 
and ineffectiveness of  vaccines3. For example, SARS-CoV-2 the virus causing COVID-19 emerged originally 
in Wuhan, China, in December 2019. Several novel variants of SARS-CoV-2 emerged and took over the world 
since then. The alpha variant was initially detected in the UK in September 2020 and is more transmissible than 
the original strain. The beta variant was detected in South Africa in November 2020 and is more transmissible 
than previous strains. It can reinfect those infected with the original strain. The gamma variant was detected 
in November 2020 in Brazil. It can also reinfect and be more infectious. Delta variant was initially detected in 
India in October 2020. It is more transmissible, infectious, and  lethal4,5. Omicron variants were first detected in 
November 2021 in Africa and since December 2021 confirmed cases have been reported from many countries 
in  Europe6. To date, caused by COVID-19, more than 590 million confirmed cases and at least 6.5 million deaths 
have been reported  worldwide7. Although the virus is less fatal than it was in 2020, it is likely to continue to 
undergo mutation and produce future variants. It forces all countries in the world to enter the endemic stage 
of COVID-198.

Virus mutation is natural to occur. Once a virus invades a host (human or animal), it replicates itself to pro-
duce more viruses. In this process, some errors occur. We call the error a mutation and new variants are expected 
to  rise9. As a consequence, we can not stop the virus from mutating as long as the virus  infects10,11. Unfortunately, 
in this current era, globalization has made the world interconnected. It increases the amount, frequency, and 
speed of population mobility and in turn, causes the range of disease spread to become borderless. Every person 
in any country becomes vulnerable when a pandemic attacks a certain region. As a result, infectious diseases 
caused by mutating viruses spread over the world at an unprecedented frequency and  speed12.

Nowadays, although vaccination is the most effective way to control the epidemic  spreading13, no vaccine is 
100% effective in the prevention of the disease  spread3. Moreover, when the vaccination rate is low both in pro-
duction and administration, this provides enough time for the virus to mutate and become vaccine-resistant14. 
As a consequence, the emergence of new variants can not be  prevented15. The low rate of vaccination is caused by 
many factors such as uneven distribution of vaccination, and a lack of consideration of vaccination  scenarios16.

Most epidemiological models use a compartmental model to describe the epidemic process where each 
individual is supposed to be one of the compartments such as susceptible (S), infected (I), or recovered (R), and 
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commonly follow a general susceptible-infected-recovered (SIR)  model17. However, most of these models assume 
that the population is “fully mixed’ or “mass-action approximation”, meaning that every individual has an equal 
chance, per unit of time, of coming into contact with every other member of the population they  belong18,19. 
As a result, these models are not a realistic representation of the disease spread in a human population. Since 
in practice, each individual has a finite set of connections and frequency of contacts that the infection can pass 
through. It means that an infected individual does not have an equal probability of infecting a small number 
of others in the population. Therefore, a network will be used to capture the human interactions and how the 
disease spreads at the individual level or microscopic scale.

Networks and the epidemiology of directly transmitted infectious diseases are fundamentally  linked20. As 
we said above each individual in a human population has a finite set of connections and the intensity of inter-
actions, meaning there are certain connections among individuals in the population that can be a structure of 
human interaction. The structure underlying human interaction can be captured by a network. In a network, all 
individuals in the population can be represented by a set of nodes or vertices, and connections among them can 
be represented by edges. The number of edges incident to a node is called the degree of a node and the weight 
of an edge can represent the intensity of interaction between two nodes.

The epidemic model with two variants using the compartmental model has been studied  analytically2. It shows 
that the cumulative number of infected individuals of two variants can be well approximated by independent 
logistic functions. It also shows that the model can validate empirically the multiple waves of the COVID-19 
pandemic in some countries. The study of two variants of the epidemic by performing a numerical simulation 
of the microscopic model on the networks has been  done21. In the study, a new variant is added in the middle of 
a simulation. As a result, the infectivity of variants determines the epidemic size. When a highly infectious vari-
ant is added, the variant spreads quickly. The network structure also stimulates the rapid increase of infection.

Human interactions in a population can be represented as a contact network where each individual is regarded 
as a node and interaction between two individuals can be considered as an edge. The intensity of interaction 
between two nodes can be regarded as a weight given to the edge. In this study, the weight we give to each edge in 
the network is a natural number that represents how many times two connected individuals interact in proximity 
of each other in one day. This is what we call contact which is defined as a two-way conversation between two 
individuals in a certain range of distance such that possible for an infection to  transmit22.

In this paper, we first generate a synthesized human interaction network with a given average degree and 
random frequency of contacts. Then, we develop a mathematical model that can capture the microscopic process 
of disease spreading in the network. At the initial time, we choose randomly N0 individuals to get infected by 
Variant 1. Variant 2 will emerge from infections of Variant 1. It is described by randomly moving an infected 
individual due to Variant 1 to the infected individual due to Variant 2 with a certain probability. Likewise, Vari-
ant 3 will emerge from the infection of Variant 2, and Variant 2 mutates to Variant 3 with similar procedures.

With the varying average degrees and a certain range of contact frequency, we will show that the epidemic 
size is not only determined by varying the epidemiological parameters but also by a complex combination with 
the network structures. By varying the network structure, we can accommodate the mitigation strategies to 
suppress the spread of the disease when no vaccine and medicine are administered.

However, this study has some limitations. The model we will develop relies heavily on computation and 
strongly depends on the real data of social contacts. The simulation we have performed is limited to 10, 000 indi-
viduals and in turn, the network we generate with this number of individuals does not represent the real social 
network in a big population. In addition, the real data on social contact is not easy to collect and has also not 
been provided yet. Therefore, we limit our model applications to smaller-scale environments such as campuses, 
schools, work environments, and public places as theoretical modeling and simulations. We also agree for ethical 
reasons that the process of the spread of infectious disease can never be experimentally studied in our  society23. 
This paper is just proposed to provide decision-makers with the predictive power of the epidemiological models 
with more than one variant in a smaller population from theoretic simulations.

Results
In this section, we will show some simulation results obtained from the model we developed in the “Method” 
Section. We perform each simulation with 100 samples for tf = 400 days. We set the total number of nodes 
N = 10, 000 and the initial condition N0 = 5 . By varying the average degree, the range of contact frequency, and 
some epidemiological parameters, we can obtain the various scenarios. We can also obtain abundant results by 
only varying the epidemiological parameters when the network structure is fixed. However, in this simulation, 
we want to show how the network structure greatly affects the dynamics of disease spread in the network with 
fewer variations in the value of epidemiological parameters. We want to show that mitigation strategies like 
containment measures can be considered as variations of the average degree and contact frequency. To simplify 
our choice in simulations, we also set the average duration of the infectious period τv = 15 days for each variant. 
Here, we chose only four types of scenarios based on our assumption when some containment measures are 
implemented in the population during the pandemic. The four types of scenarios are the following: 

1. Epidemic model with three variants on the synthesized human interaction network without any containment 
measure. We assume that k̄ = 7 and ω = 5.

2. Epidemic model with three variants on the synthesized human interaction network with self-quarantine but 
no physical distancing. We assume that k̄ = 3 and ω = 5.

3. Epidemic model with three variants on the synthesized human interaction network with no self-quarantine 
but with physical distancing. We assume that k̄ = 7 and ω = 1.
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4. Epidemic model with three variants on the synthesized human interaction network with self-quarantine and 
physical distancing. We assume that k̄ = 3 and ω = 1.

Scenario 1
The network structure of Scenario 1 with k̄ = 7 and ω = 5 is shown in Fig. 1. The black histogram shows the 
degree distribution of the network. The blue one shows the contact distribution of the network. We can refer to 
the nodes with high degrees as  hubs24. We will call the node a hub if its degree k ≥ 14 . The role of hubs in the 
epidemic process has been studied  in25.

From the black histogram in Fig. 1, we can infer that there are fewer nodes with no degree. We call them iso-
lated nodes. Almost all nodes in the network are connected. In addition, there are also many hubs in the network 
with degree 14–27. From the blue histogram in Fig. 1, we can infer that there are a lot of nodes with very high 
frequency of contact. Even, there are some nodes with contacts in the range 40–80. It makes sense if the disease 
spreads quickly as shown in Figure 2a. The figure is the time evolution of the number of individuals of all states 
(S, I, R) with 95% confidence interval. We divide this scenario into four cases.

In the first case we set µ
1→2

∼ Bernoulli(0.005), µ
2→3

∼ Bernoulli(0.005) and β1 = β2 = β3 = 0.01 . The 
emergence of variants causes multiple waves as shown in Fig. 2a as the red line. We can see the emergence of each 
variant and their time evolution in detail in Fig. 2b. The figure is the average plot of 100 samples. The infection 
peak of Variant 1 is 4480 nodes at the time t = 46 . The infection of Variant 2 is 614 nodes at the time t = 94 . 
The infection of Variant 3 is 197 at the time t = 227 . Variant 1 ends at time t = 118 . Variant 2 starts to spread 
at time t = 37 and ends at time t = 227 . Variant 3 starts to spread at time t = 140 and ends at time t = 337 . We 
can see the final value of the total number of infected individuals for each variant in Fig. 2c. From the total num-
ber of infected individuals of Variant 1 AIT1400 = 8250 and the length of epidemic time of Variant 1 is te1 = 117 
days, we can find the infection spread number of Variant 1 ρ1 = 0.241 . For Variant 2 and Variant 3, we obtain 
AIT2400 = 2305 with te2 = 190 and AIT3400 = 992 with te3 = 197 . Then, we have ρ2 = 0.109 and ρ3 = 0.049 . We 
can compare the number of infected neighbors to the degree of each node in Fig. 2d. The higher the degree of a 
node the more neighbor will be infected.

In the second case we still set µ
1→2

∼ Bernoulli(0.005), µ
2→3

∼ Bernoulli(0.005) but β1 < β2 < β3 . We 
choose β1 = 0.01, β2 = 0.02 and β3 = 0.03 to show how different infection rates play roles in the epidemic 
process. The dynamic of the epidemic process in this case is shown in Fig. 3a. We can see that Variant 2 and 
Variant 3 emerge earlier as shown in Fig. 3b compared to Fig. 2b. The infection peak of Variant 1 is 4241 nodes 
at the time t = 46 . The infection peak of Variant 2 is 4675 nodes at the time t = 87 . The infection peak of Vari-
ant 3 is 2510 at the time t = 152 . Variant 1 ends at time t = 134 . Variant 2 starts to spread at time t = 15 and 
ends at time t = 202 . Variant 3 starts to spread at time t = 51 and ends at time t = 245 . The final value of the 
total number of infected individuals for each variant is shown in Fig. 2c. From the total number of infected 
individuals of Variant 1 AIT1400 = 8181 and the length of epidemic time te1 = 133 days, we can find the infection 
spread number of Variant 1 ρ1 = 0.272 . For Variant 2 and Variant 3, we obtain AIT2400 = 4675 with te2 = 187 and 
AIT3400 = 2510 with te3 = 194 . We obtain ρ2 = 0.218 and ρ3 = 0.122 . The increase in the infection rate for each 
variant can increase the total number of infected individuals and in turn, increase the infection spread number.

Now we turn to the third case where we set µ
1→2

∼ Bernoulli(0.001), µ
2→3

∼ Bernoulli(0.001) and 
β1 = β2 = β3 = 0.01 . Here we decrease the probability of the emergence of new variants. The dynamic of the 
epidemic process in this case is shown in Fig. 4a. The infected individuals are dominated by Variant 1 as shown 
in Fig. 4b. The infection peak of Variant 1 is 4482 nodes at the time t = 46 . The infection peak of Variant 2 is 158 
nodes at the time t = 104 . The infection peak of Variant 3 is 99 at the time t = 265 . Variant 1 ends at time t = 119 . 
Variant 2 starts to spread at time t = 65 and ends at time t = 240 . Variant 3 starts to spread at time t = 232 and 
ends at time t = 306 . The final value of the total number of infected individuals for Variant 2 and Variant 3 are 
much smaller than the total number of infected individuals for Variant 1 as shown in Fig. 4c. The total number 
of infected individuals of Variant 1 AIT1400 = 8256 and the epidemic duration te1 = 118 days give the infection 
spread number of Variant 1 ρ1 = 0.243 . For Variant 2 and Variant 3, we obtain AIT2400 = 496 with te2 = 175 and 

Figure 1.  The network structure of Scenario 1. The black histogram shows the degree distribution of the 
network with k̄ = 7 and ω = 5 . It shows that the network has a lot of hubs and fewer isolated nodes. The blue 
histogram shows the contact distribution. More than half of the population have a contact frequency of 20− 90.
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AIT3400 = 166 with te3 = 74 . We have ρ2 = 0.022 and ρ3 = 0.003 . The smaller probability of the emergence of 
new variants can reduce the total number of infected individuals of new variants.

To see how different infection rates from each variant play roles in a condition when the probability of the emer-
gence of new variants is smaller, we set the fourth case where µ

1→2
∼ Bernoulli(0.001), µ

2→3
∼ Bernoulli(0.001) 

and β1 < β2 < β3 . We still choose β1 = 0.01, β2 = 0.02 and β3 = 0.03 . The dynamic of the epidemic process 
in this case is shown in Fig. 5a. The infected individuals are still dominated by Variant 1 as shown in Fig. 5b. 
The infection peak of Variant 1 is 4448 nodes at the time t = 45 . The infection peak of Variant 2 is 376 nodes 
at the time t = 70 . The infection peak of Variant 3 is 181 at the time t = 192 . Variant 2 starts to spread at time 
t = 30 and ends at time t = 147 . Variant 1 ends at time t = 117 . Variant 3 starts to spread at time t = 174 and 
ends at time t = 217 . The smaller probability of the emergence of new variants causes the final values of the 
total number of infected individuals for Variant 2 and Variant 3 to be smaller than the total number of infected 
individuals for Variant 1 as shown in Fig. 5c. The total number of infected individuals of Variant 1 AIT1400 = 8249 
and the epidemic duration te1 = 116 days give the infection spread number of Variant 1 ρ1 = 0.239 . For Variant 
2 and Variant 3, we obtain AIT2400 = 939 with te2 = 117 and AIT3400 = 195 with te3 = 43 . We have ρ2 = 0.027 and 
ρ3 = 0.002 . Although a smaller probability of the emergence of new variants can reduce the total number of 
infected individuals of new variants, the higher infection rates still give a significant increase in the total number 
of infected individuals for each variant.

Scenario 2
The network structure of Scenario 2 where k̄ = 3 and ω = 5 is shown in Fig. 6. In this scenario, we contain the 
spread of infection in the network by implementing self-quarantine without physical distancing. We reduce 
individual connectivity without reducing their contact frequency.

The black histogram in Fig. 1 shows that there is no hub in this network. From the blue histogram in Fig. 1, 
there are fewer nodes with contacts in the range 30− 40 which is the high contacts in the network. The dynamic 
of the epidemic process is shown in Fig. 7a. The figure is the time evolution of the number of individuals of all 
states (S, I, R) with 95% confidence interval. Here, we still divide this scenario into four cases.

In the first case of Scenario 2, we set µ
1→2

∼ Bernoulli(0.005), µ
2→3

∼ Bernoulli(0.005) and 
β1 = β2 = β3 = 0.01 . The number of infected individuals from all variants indicated by the red line is shown 

Figure 2.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the first case of Scenario 1. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I146 = 4480 , I294 = 614 , and I3227 = 197 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 8250 , AIT

2400
= 2305 , and AIT

3400
= 992 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread number 
are ρ1 = 0.241 , ρ2 = 0.109 , and ρ3 = 0.049 respectively.
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in Fig. 7a. The emergence of new variants is shown in Fig. 7b. The figure is the average plot of 100 samples. The 
infection peak of Variant 1 is 381 nodes at the time t = 115 . The infection of Variant 2 is 74 nodes at the time 
t = 212 . The infection of Variant 3 is 30 at the time t = 384 . Variant 1 ends at time t = 328 . Variant 2 starts to 
spread at time t = 64 and it does not end even until the last time. Variant 3 starts to spread at time t = 83 and 
it does not end either. We can see the final value of the total number of infected individuals for each variant in 
Fig. 7c. From the total number of infected individuals of Variant 1 AIT1400 = 2426 and the length of epidemic time 
of Variant 1 is te1 = 327 days, we can find the infection spread number of Variant 1 ρ1 = 0.198 . For Variant 2 and 
Variant 3, we obtain AIT2400 = 688 with te2 = 336 and AIT3400 = 319 with te3 = 317 . Then, we have ρ2 = 0.058 and 
ρ3 = 0.025 . In this case, reducing the connectivity of each individual by reducing the average degree prolongs 
the length of the epidemic time of each variant. We can compare the number of infected neighbors to the degree 
of each node in Fig. 7d. The higher the degree of a node the more neighbor will be infected.

In the second case of Scenario 2, we still set µ
1→2

∼ Bernoulli(0.005), µ
2→3

∼ Bernoulli(0.005) but 
β1 < β2 < β3 . We choose β1 = 0.01, β2 = 0.02 and β3 = 0.03 to show how different infection rates play roles 
in the epidemic process when the average degree is reduced. The dynamic of the epidemic process in this case 
is shown in Fig. 8a. There is an increase in the number of infections due to Variant 2 and Variant 3 as shown 
in Fig. 8b compared to Fig. 7b. The emergence of new variants is earlier than the emergence of new variants in 
the first case. The infection peak of Variant 1 is 337 nodes at the time t = 105 . The infection peak of Variant 2 is 
451 nodes at the time t = 101 . The infection peak of Variant 3 is 251 at the time t = 145 . Variant 1 ends at time 
t = 332 . Variant 2 starts to spread at time t = 29 and ends at time t = 306 . Variant 3 starts to spread at time 
t = 42 and does not end until the last time. The final value of the total number of infected individuals for each 
variant is shown in Fig. 8c. From the total number of infected individuals of Variant 1 AIT1400 = 2195 and the 
length of epidemic time te1 = 331 days, we can find the infection spread number of Variant 1 ρ1 = 0.182 . For 
Variant 2 and Variant 3, we obtain AIT2400 = 2610 with te2 = 277 and AIT3400 = 2078 with te3 = 358 . We obtain 
ρ2 = 0.181 and ρ3 = 0.186.

Now we set the third case of Scenario 2 where µ
1→2

∼ Bernoulli(0.001), µ
2→3

∼ Bernoulli(0.001) and 
β1 = β2 = β3 = 0.01 . The dynamic of the epidemic process in this case is shown in Fig. 9a. The infection of 
Variant 2 and Variant 3 is smaller than the two previous cases as shown in Fig. 9b. The infection peak of Variant 
1 is 454 nodes at the time t = 106 . The infection peak of Variant 2 is 29 nodes at the time t = 334 . There is no 
spread of Variant 3. Variant 1 ends at time t = 270 . Variant 2 starts to spread at time t = 115 and does not end 
until the last time. The final value of the total number of infected individuals for Variant 2 and Variant 3 are 

Figure 3.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the second case of Scenario 1. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I146 = 4241 , I287 = 977 , and I3152 = 519 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 8181 , AIT

2400
= 4675 , and AIT

3400
= 2510 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread number 
are ρ1 = 0.272 , ρ2 = 0.218 , and ρ3 = 0.122 respectively.
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much smaller than the total number of infected individuals for Variant 1 as shown in Fig. 9c. The total number 
of infected individuals of Variant 1 AIT1400 = 2498 and the epidemic duration te1 = 269 days give the infection 
spread number of Variant 1 ρ1 = 0.168 . For Variant 2 and Variant 3, we obtain AIT2400 = 277 with te2 = 285 and 
AIT3400 = 1 . We have ρ2 = 0.019 and ρ3 = 0.

To see how different infection rates from each variant play roles in a condition when the prob-
ability of the emergence of new variants is smaller, we set the fourth case of Scenario 2 where 
µ

1→2
∼ Bernoulli(0.001), µ

2→3
∼ Bernoulli(0.001) and β1 < β2 < β3 . We still choose β1 = 0.01, β2 = 0.02 and 

β3 = 0.03 . The dynamic of the epidemic process in this case is shown in Fig. 10a. The time evolution of infected 
individuals for each variant is shown in Fig. 10b. The infection peak of Variant 1 is 429 nodes at the time t = 102 . 
The infection peak of Variant 2 is 241 nodes at the time t = 140 . The infection peak of Variant 3 is 56 at the time 
t = 169 . Variant 1 ends at time t = 303 . Variant 2 starts to spread at time t = 59 and ends at time t = 303 . Vari-
ant 3 starts to spread at time t = 125 and ends at time t = 226 . The total number of infected individuals for each 
variant is shown in Fig. 10c. The total number of infected individuals of Variant 1 AIT1400 = 2547 and the epidemic 
duration te1 = 302 days give the infection spread number of Variant 1 ρ1 = 0.192 . For Variant 2 and Variant 3, 
we obtain AIT2400 = 1000 with te2 = 244 and AIT3400 = 143 with te3 = 101 . We have ρ2 = 0.061 and ρ3 = 0.003.

Scenario 3
We assume that the network structure of Scenario 3 where k̄ = 7 and ω = 1 is the epidemic process in the net-
work with measured physical distancing but no self-quarantine as shown in Fig. 11. In this scenario, we contain 
the spread of infection in the network by implementing physical distancing without self-quarantine. We reduce 
the individual frequency of contact without reducing the connectivity. Here, we still divide this scenario into 
four cases.

The black histogram in Fig. 11 is the same as the blue histogram. There are quite a lot of individuals who are 
hubs and have frequency contact of 14− 28 . The dynamic of the epidemic process is shown in Fig. 12a. The figure 
is the time evolution of the number of individuals of all states (S,I, R) with 95% confidence interval.

In the first case of Scenario 3, we set µ
1→2

∼ Bernoulli(0.005), µ
2→3

∼ Bernoulli(0.005) and 
β1 = β2 = β3 = 0.01 . The number of infected individuals from all variants indicated by the red line is shown 
in Fig. 12a. Although the infected individuals are still dominated by the infection of Variant 1, the total number 

Figure 4.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the third case of Scenario 1. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I146 = 4482 , I2104 = 158 , and I3265 = 99 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 8256 , AIT

2400
= 496 , and AIT

3400
= 166 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread number 
are ρ1 = 0.243 , ρ2 = 0.022 , and ρ3 = 0.003 respectively.
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Figure 5.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the fourth case of Scenario 1. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I145 = 4448 , I270 = 376 , and I3192 = 181 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 8249 , AIT

2400
= 939 , and AIT

3400
= 195 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread numbers 
are ρ1 = 0.239 , ρ2 = 0.027 , and ρ3 = 0.002 respectively.

Figure 6.  The network structure of Scenario 2. The black histogram shows the network’s degree distribution 
with k̄ = 3 and ω = 5 . The highest degree is 13. The network is dominated by the nodes with degree 2. The 
blue histogram shows the distribution of the total number of contacts. More than half of the population have a 
contact frequency of 10− 40.
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of infected individuals is much smaller than in all previous cases we obtained above. The emergence of new 
variants is shown in Fig. 12b. The figure is the average plot of 100 samples. We can see that the time evolution of 
infection of Variant 2 has no end. The infection peak of Variant 1 is 271 nodes at the time t = 122 . The infection 
of Variant 2 is 44 nodes at the time t = 177 . The infection of Variant 3 is 18 at the time t = 244 . Variant 1 ends at 
time t = 364 . Variant 2 starts to spread at time t = 38 and it does not end even until the last time. Variant 3 starts 
to spread at time t = 148 and it ends at time t = 343 . We can see the final value of the total number of infected 
individuals for each variant in Fig. 12c. From the total number of infected individuals of Variant 1 AIT1400 = 1925 
and the length of epidemic time of Variant 1 is te1 = 363 days, we can find the infection spread number of Variant 
1 ρ1 = 0.175 . For Variant 2 and Variant 3, we obtain AIT2400 = 592 with te2 = 362 and AIT3400 = 90 with te3 = 195 . 
Then, we have ρ2 = 0.054 and ρ3 = 0.004 . In this case, reducing the frequency of contact also prolongs the length 
of the epidemic time of each variant. We can compare the number of infected neighbors to the degree of each 
node in Fig. 12d.

In the second case of Scenario 3, we still set µ
1→2

∼ Bernoulli(0.005), µ
2→3

∼ Bernoulli(0.005) but 
β1 < β2 < β3 . We still choose β1 = 0.01, β2 = 0.02 and β3 = 0.03 to show how different infection rates play 
roles in the epidemic process when the frequency of contact is reduced. The dynamic of the epidemic process 
in this case is shown in Fig. 13a. There is an increase in the number of infections due to Variant 2 and Variant 3 
as shown in Fig. 13b compared to Fig. 12b. The emergence of new variants is earlier than the emergence of new 
variants in the first case. The infection peak of Variant 1 is 196 nodes at the time t = 139 . The infection peak of 
Variant 2 is 540 nodes at the time t = 100 . The infection peak of Variant 3 is 297 at the time t = 211 . Variant 1 
spreads until the last time. Variant 2 starts to spread at time t = 19 and has no end. Variant 3 starts to spread at 
time t = 59 and has no end either. The final value of the total number of infected individuals for each variant is 
shown in Fig. 13c. From the total number of infected individuals of Variant 1 AIT1400 = 1617 and the length of 
epidemic time te1 = 399 days, we can find the infection spread number of Variant 1 ρ1 = 0.161 . For Variant 2 and 
Variant 3, we obtain AIT2400 = 3472 with te2 = 381 and AIT3400 = 1794 with te3 = 341 . We obtain ρ2 = 0.331 and 
ρ3 = 0.153 . In this case, if the infection rate of the new variant is larger than the previous one, we can see that 
not only does the total number of infected individuals increase but also the length of the epidemic time is longer.

Now we set the third case of Scenario 3 where µ
1→2

∼ Bernoulli(0.001), µ
2→3

∼ Bernoulli(0.001) and 
β1 = β2 = β3 = 0.01 . In this case, we want to see what happens if we reduce the probability of the emergence 
of new variants. The dynamic of the epidemic process in this case is shown in Fig. 14a. We can see that the time 

Figure 7.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the first case of Scenario 2. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I1115 = 381 , I2212 = 74 , and I3384 = 30 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 2426 , AIT

2400
= 688 , and AIT

3400
= 319 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread numbers 
are ρ1 = 0.198 , ρ2 = 0.058 , and ρ3 = 0.025 respectively.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7470  | https://doi.org/10.1038/s41598-024-58162-z

www.nature.com/scientificreports/

evolution of total infections indicated by the red line increases very slowly and levels off for quite a long time, then 
decreases until the end. The infection number of Variant 2 and Variant 3 is much smaller as shown in Fig. 14b. 
The infection peak of Variant 1 is 226 nodes at the time t = 126 . The infection peak of Variant 2 is 1 nodes at the 
time t = 127 . It means there is only one infection of Variant 2. Thus, there is no spread of Variant 2. The infection 
peak of Variant 3 is 10 nodes at the time t = 314 . Variant 1 ends at time t = 304 . Variant 3 starts to spread at 
time t = 259 and does not end until the last time. The final value of the total number of infected individuals for 
Variant 2 and Variant 3 are much smaller than the total number of infected individuals for Variant 1 as shown in 
Fig. 14c. The total number of infected individuals of Variant 1 AIT1400 = 1599 and the epidemic duration te1 = 303 
days give the infection spread number of Variant 1 ρ1 = 0.0121 . Since there is no spread of Variant 2, we write 
ρ2 = 0 . For Variant 3, we obtain AIT2400 = 51 with te2 = 141 and then ρ3 = 0.002.

To see how different infection rates from each variant play roles in a condition when the probability of 
the emergence of new variants is smaller and the frequency of contact is reduced, we set the fourth case of 
Scenario 3 where µ

1→2
∼ Bernoulli(0.001), µ

2→3
∼ Bernoulli(0.001) and β1 < β2 < β3 . We still choose 

β1 = 0.01, β2 = 0.02 and β3 = 0.03 . The dynamic of the epidemic process in this case is shown in Fig. 15a. The 
time evolution of infected individuals for each variant is shown in Fig. 15b. The infection peak of Variant 1 is 
258 nodes at the time t = 118 . The infection peak of Variant 2 is 187 nodes at the time t = 256 . The infection 
peak of Variant 3 is 100 at the time t = 226 . Variant 1 ends at time t = 323 . Variant 2 starts to spread at time 
t = 46 and ends at time t = 375 . Variant 3 starts to spread at time t = 73 and ends at time t = 173 . The total 
number of infected individuals for each variant is shown in Fig. 15c. The total number of infected individuals of 
Variant 1 AIT1400 = 1751 and the epidemic duration te1 = 322 days give the infection spread number of Variant 1 
ρ1 = 0.141 . For Variant 2 and Variant 3, we obtain AIT2400 = 1357 with te2 = 329 and AIT3400 = 328 with te3 = 100 . 
We have ρ2 = 0.111 and ρ3 = 0.008.

Scenario 4
We assume that the network structure of Scenario 4 where k̄ = 3 and ω = 1 is the epidemic process in the net-
work with measured physical distancing and self-quarantine as shown in Fig. 16. In this scenario, we contain 
the spread of infection in the network by implementing both self-quarantine and physical distancing. We reduce 
both the connectivity and the individual frequency of contact.

Figure 8.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the second case of Scenario 2. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I1105 = 337 , I2101 = 451 , and I3145 = 251 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 2195 , AIT

2400
= 2610 , and AIT

3400
= 2078 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread numbers 
are ρ1 = 0.182 , ρ2 = 0.181 , and ρ3 = 0.186 respectively.
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The black histogram in Fig. 16 is the same as the blue histogram. There is no hub in this network. The dynamic 
of the epidemic process is shown in Fig. 17a. The figure is the time evolution of the number of individuals of all 
states (S, I, R) with 95% confidence interval. Here, we still divide this scenario into four cases.

For the first case of Scenario 4, we set µ
1→2

∼ Bernoulli(0.005), µ
2→3

∼ Bernoulli(0.005) and 
β1 = β2 = β3 = 0.01 . The number of infected individuals from all variants indicated by the red line is shown 
in Fig. 17a. The emergence of new variants is shown in Fig. 17b. The figure is the average plot of 100 samples. 
The infection peak of Variant 1 is 8 nodes at the time t = 16 . There is no spread of Variant 2 and Variant 3. The 
spread of Variant 1 ends at time t = 39 . We can see the final value of the total number of infected individuals for 
each variant in Fig. 17c. From the total number of infected individuals of Variant 1 AIT1400 = 11 and the length of 
epidemic time of Variant 1 is te1 = 38 days, we can find the infection spread number of Variant 1 ρ1 = 0.0001 . 
We can compare the number of infected neighbors to the degree of each node in Fig. 17d.

In the second case of Scenario 4, we still set µ
1→2

∼ Bernoulli(0.005), µ
2→3

∼ Bernoulli(0.005) but 
β1 < β2 < β3 . We still choose β1 = 0.01, β2 = 0.02 and β3 = 0.03 to show how different infection rates play 
roles in the epidemic process when the two containment measures are implemented. The dynamic of the epi-
demic process in this case is shown in Fig. 18a. There is an increase in the number of infections due to Variant 
3 as shown in Fig. 18b. The infection peak of Variant 1 is 9 nodes at time t = 16 . There is no spread of Variant 2. 
The infection peak of Variant 3 is 34 at time t = 147 . Variant 1 ends at time t = 47 . Variant 3 starts to spread at 
time t = 76 and ends at time t = 225 . The final value of the total number of infected individuals for each variant 
is shown in Fig. 18c. From the total number of infected individuals of Variant 1 AIT1400 = 12 and the length of 
epidemic time te1 = 46 days, we can find the infection spread number of Variant 1 ρ1 = 0.0001 . Since there is no 
spread of Variant 2, we write ρ2 = 0 . For Variant 3, we obtain AIT3400 = 134 with te3 = 149 . We obtain ρ3 = 0.005 . 
In this case, reducing the connectivity and the frequency of contact is not strong enough to contain the spread 
of variants if the infection rate of the new variant is more infectious.

Now we set the third case of Scenario 3 where µ
1→2

∼ Bernoulli(0.001), µ
2→3

∼ Bernoulli(0.001) and 
β1 = β2 = β3 = 0.01 . In this case, we want to see what happens if we reduce the probability of the emergence of 
new variants in the network with reduced connectivity and frequency of contact. The dynamic of the epidemic 
process in this case is shown in Fig. 19a. There is no infection by Variant 2 and Variant 3 as shown in Fig. 14b. 
The infection peak of Variant 1 is 9 nodes at the time t = 16 . There is no spread of Variant 2 and Variant 3. Thus 
ρ2 = ρ3 = 0 . Variant 1 ends at time t = 59 . The total number of infected individuals of Variant 1 AIT1400 = 14 
and the epidemic duration te1 = 58 . We have ρ1 = 0.0002.

Figure 9.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the third case of Scenario 2. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. The 
infection peaks of all variants are indicated by I1106 = 454 , I2334 = 29 , and I3139 = 1 respectively. (c) The total 
number of infections for all variants are AIT

1400
= 2498 , AIT

2400
= 277 , and AIT

3400
= 1 . (d) Comparison between 

the number of infected neighbors and each node’s degree for all variants. The infection spread numbers are 
ρ1 = 0.168 , ρ2 = 0.019 , and ρ3 = 0 respectively.
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Figure 10.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the fourth case of Scenario 2. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I1102 = 429 , I2140 = 241 , and I3169 = 56 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 2547 , AIT

2400
= 1000 , and AIT

3400
= 143 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread numbers 
are ρ1 = 0.192 , ρ2 = 0.061 , and ρ3 = 0.003 respectively.

Figure 11.  The network structure of Scenario 3. The black histogram shows the network’s degree distribution 
with k̄ = 7 and ω = 1 . It is the same distribution as the blue histogram because the contact frequency is 1 for 
each link in the network. There are many hubs with a contact frequency of 14− 28.
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To see how different infection rates from each variant play roles in a condition when the probability of 
the emergence of new variants is smaller and all contained measures are implemented, we set the fourth case 
of Scenario 3 where µ

1→2
∼ Bernoulli(0.001), µ

2→3
∼ Bernoulli(0.001) and β1 < β2 < β3 . We still choose 

β1 = 0.01, β2 = 0.02 and β3 = 0.03 . The dynamic of the epidemic process in this case is shown in Fig. 20a. The 
time evolution of infected individuals for each variant is shown in Fig. 20b. The infection peak of Variant 1 is 9 
nodes at time t = 16 . The infection peak of Variant 2 is 5 nodes at time t = 158 . There is no infection of Variant 
3. Variant 1 ends at time t = 41 . Variant 2 starts to spread at time t = 114 and ends at time t = 224 . The total 
number of infected individuals for each variant is shown in Fig. 20c. The total number of infected individuals 
of Variant 1 AIT1400 = 12 and the the length of epidemic time of Variant 1 te1 = 40 days give the infection spread 
number of Variant 1 ρ1 = 0.0001 . For Variant 2 we obtain AIT2400 = 26 with te2 = 110 . We have ρ2 = 0.0007.

Discussion
We developed a computational model of disease spreading with three variants that can capture the microscopic 
process in a synthesized human interaction network. In generating the network we need some social features in 
human interaction such as connectivity and contact frequency or interaction intensity. Both features determine 
the network structures such that every individual has an unequal chance of coming into contact with any other 
individual in the population. Of course, it is more realistic to describe a human population although not a real 
representation of the social network of the human population. Therefore, discussing the spread of contact-based 
diseases in a human population is more relevant in smaller-scale environments. However, we need to develop 
some critical aspects. Because it is a microscopic process and we brought the model to an individual scale, as a 
consequence, unlikely the classical SIR model, our model does not use merely infection rate β . we also do not 
use a recovery rate as usual we use it in the common SIR model. Incorporating more epidemiological param-
eters such as the average duration of the infectious period, the probability of the emergence of new variants, the 
length of the infection period, the length of the incubation period, and many more, has also consequences. In 
our model, we perform some tricks to the parameters such that they can be incorporated into the model and 
more applicable for both mathematics and computation purposes. We can also generalize our model to any 
number of variants and incorporate more epidemiological parameters such that the model is more complicated 
and realistic. Hopefully, there will be a study to analyze our model rigorously.

Our model has rich computational results by varying several parameters such as the number of individuals 
in the network, the average degree, the range of contact frequency, the values of epidemiological parameters, the 

Figure 12.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the first case of Scenario 3. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. The 
infection peaks of all variants are indicated by I1122 = 271 , I2177 = 44 , and I3244 = 18 respectively. (c) The total 
number of infections for all variants are AIT

1400
= 1925 , AIT

2400
= 592 , and AIT

3400
= 90 . (d) Comparison between 

the number of infected neighbors and each node’s degree for all variants. The infection spread numbers are 
ρ1 = 0.175 , ρ2 = 0.054 , and ρ3 = 0.004 respectively.
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initial conditions, the probability of the emergence of the new variants, and the infection rate of each variant. In 
the simulation, we chose to vary the average degree and contact frequency to elucidate the role of social network 
structures in disease spreading by keeping several epidemiological parameters and initial conditions constant. By 
varying the average degree and contact frequency we also address the containment measures implemented into 
the network to contain the spreads. The simulation results gave us a particular insight into how the social network 
structures determine epidemic behaviors such as the peak values of infection curves, the time to reach them, 
the increasing and decreasing rate of the infection curves, the infection spread numbers, and the final size of the 
epidemic. Here, we try to describe the disease spreading between the population that implements the contain-
ment measures and the one that does not. Next, from the model, we can develop a model that incorporates more 
interventions to derive efficient and realistic strategies for curbing the spread of disease throughout the network.

Method
The first step to generate a synthesized human interaction network with size N and an average degree k̄ is using 
the simplest examples of a random network in which we fix only the number of nodes N and the number of edges 
L = k̄N/2 . We take N nodes and place L edges among them at  random19. The next step is to attach each edge 
with a natural number which is randomly chosen from set W = {1, 2, . . . ,ω} ⊆ N , where ω is the maximum of 
contact frequency. Here, we obtain the weighted adjacency matrix A =

(

ωij

)

 with ωij ∈ W ∪ {0} to represent 
the network. We assume that the network is undirected. If ωij = 0 , then there is no interaction or link between 
node i and node j. From A , we can obtain Ni as a set containing all neighbors of node i.

To simplify the discrete-time process we assume that one day is a unit time step and we write t = 0, 1, 2, . . . , tf  
as a time discretization. We denote tf  as the duration of the epidemic process. At time t, a node i can be in a state 
Xi

t
 belonging to a finite set of states � =

{

Si
t
, Ii1t ,R

i
1t
, Ii2t ,R

i
2t
, Ii3t ,R

i
3t

}

 . The state Xi
t
∈ {0, 1} and

Since we put three variants into the network, we write v = 1, 2, 3 to denote the variants, and the original virus is 
Variant 1. All states are explained in the following table (Table 1).

To introduce the infections due to the Variant 1 at the initial time, we choose randomly N0 individuals. Variant 
2 will emerge from Variant 1 by moving the infected individual in the state Ii1t to the state Ii2t which is denoted by 
a Bernoulli random variable µ

1→2
 with a small probability. Variant 3 will emerge from Variant 2 with a similar 

(1)Si
t
+ Ii1t + Ri

1t
+ Ii2t + Ri

2t
+ Ii3t + Ri

3t
= 1 for all nodes i and for all time t

Figure 13.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the second case of Scenario 3. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I1139 = 196 , I2100 = 540 , and I3211 = 297 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 1617 , AIT

2400
= 3472 , and AIT

3400
= 1794 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread number 
of all variants are ρ1 = 0.161 , ρ2 = 0.331 , and ρ3 = 0.153 respectively.
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procedure. The infected individual in the state Ii2t will move to the state Ii3t which is denoted by a Bernoulli random 
variable µ

2→3
 with a small probability.

For each variant v = 1, 2, 3 , we let ξvt as a Bernoulli random variable with a probability βv to denote viral 
transmission between two nodes. We define that βv is the average rate of infection in one contact for Variant 
v. The process of viral transmission from one of the infected neighbors of node i to node i can be illustrated in 
Fig. 21. The viral transmission to node i at time t for each variant can be expressed by the following equation.

Note that the Eq. (2) describes how viral transmission occurs at the individual level or microscopic scale. Not 
only does the equation consider all neighbors for each individual but also considers the frequency of contact 
with all neighbors. It also tells us that the bigger the number of neighbors and weight, the more likely a node i 
to get an infection.

To make clear when the neighbors of node i contain the infected individuals with more than one variant, 
the viral transmission to node i occurs when the first infected individual succeeds in transmitting the infection. 
With this rule, we avoid an individual getting more infections at one time. Thus, we write

We assume that each individual will gain permanent immunity after she or he recovers from one variant but lose 
immunity if she or he gets infected by other variants.

Unlike the common SIR model, we do not use the recovery rate. Instead, we use the parameters tiv , τv and 
the unit-step functions u

(

t, tiv
)

 and u
(

t, tiv + τv
)

 for each variant v. The parameter tiv is the time when a node i 
gets infected by Variant v for the first time. Meanwhile, the parameter τv is the average duration of the infectious 
period for each variant. The functions u

(

t, tiv
)

 and u
(

t, tiv + τv
)

 will move the individual from the susceptible state 
to the infected state and from the infected state to the recovery state respectively. The process of state transition 
for each node in the network is shown in Fig. 22 and the process is governed by the following system of equations.

(2)φi
vt
= 1−

∏

j∈Ni

ωij
∏

k=1

(

1− ξvt I
j
vt−1

)

(3)φi
1t
+ φi

2t
+ φi

3t
= 1 for all node i and for all time t

Figure 14.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the third case of Scenario 3. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. The 
infection peaks of all variants are indicated by I1126 = 226 , I2127 = 1 , and I3314 = 10 respectively. (c) The total 
number of infections for all variants are AIT

1400
= 1599 , AIT

2400
= 1 , and AIT

3400
= 51 . (d) Comparison between 

the number of infected neighbors and each node’s degree for all variants. The infection spread numbers are 
ρ1 = 0.121 , ρ2 = 0 , and ρ3 = 0.002 respectively.
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Figure 15.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the fourth case of Scenario 3. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I1118 = 258 , I2256 = 187 , and I3226 = 100 respectively. (c) The 
total number of infections for all variants are AIT

1400
= 1751 , AIT

2400
= 1357 , and AIT

3400
= 328 . (d) Comparison 

between the number of infected neighbors and each node’s degree for all variants. The infection spread numbers 
are ρ1 = 0.141 , ρ2 = 0.111 , and ρ3 = 0.008 respectively.

Figure 16.  The network structure of Scenario 4. The black histogram shows the network’s degree distribution 
with k̄ = 3 and ω = 1 . The black histogram is the same as the blue one. There is no hub in this network.
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To indicate whether a node i has been infected, we use the following equations.

(4)Sit+1 = Sit

(

1−

(

φi
1t+1

+ φi
2t+1

+ φi
3t+1

))
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= Ii1t

(

1− u
(

t, ti1 + τ1
)

− µ
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)
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(
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2t
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)
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Figure 17.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the first case of Scenario 4. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of Variant 1 and Variant 2 are indicated by I116 = 8 and I233 = 1 . (c) The total number of 
infections for all variants are AIT

1400
= 11 , AIT

2400
= 1 , and AIT

3400
= 0 . (d) Comparison between the number 

of infected neighbors and each node’s degree for all variants. The infection spread numbers are ρ1 = 0.0001 , 
ρ2 = 0 , and ρ3 = 0 respectively.
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Based on Eqs. (4)–(10), we can calculate the number of nodes for each state at time t with the following equations.

The final number of infections for each variant at the final time can be calculated by the following equations.

(13)AIi3t+1
= AIi3t + φi

3t+1

(

Sit + Ri
1t
+ Ri

2t

)

(14)St =

N
∑

i=1

Sit , Ivt =

N
∑

i=1

Iivt , Rvt =

N
∑

i=1

Ri
vt
, v = 1, 2, 3

(15)AIT1 =

N
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AIi1t , AI
T
2t
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N
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AIi2t , AI
T
3t
=

N
∑

i=1

AIi3t

Figure 18.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the second case of Scenario 4. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of all variants are indicated by I116 = 9 , I2121 = 1 , and I3147 = 34 respectively. (c) The total 
number of infections for all variants are AIT

1400
= 12 , AIT

2400
= 1 , and AIT

3400
= 134 . (d) Comparison between 

the number of infected neighbors and each node’s degree for all variants. The infection spread numbers are 
ρ1 = 0.0001 , ρ2 = 0 , and ρ3 = 0.005 respectively.
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In epidemiology, we used to consider basic reproduction number R0 to describe the ability of the disease to 
spread in a population. It is an average number of additional infected individuals produced by such individual 
passes the disease onto before it  recovers19. Referring to the classic SIR model, when R0 > 1 , infected individu-
als will grow geometrically, causing an  epidemic26. When R0 < 1 , the disease will die out. It can be calculated 
straightforwardly by finding the ratio of infection and recovery rate. However, it is not easy to find the number 
from our model. We do not have a recovery rate for each variant. In addition, our model uses three variants 
and relies on the microscopic process in discrete time. We consider the epidemic process on an individual scale. 
The size of the population is limited to a certain number which is much smaller than the size of the population 
in the common SIR model. Trying to find the basic reproduction number of the model in this research is no 
longer relevant. Thus, we do not deal with the basic reproduction number for our model because the model we 
developed is fully different from the common SIR model. Instead of using it, we define a number that represents 
how big and long an epidemic spreads. We call the number the infection spread number and denote it with ρ . 
We define it explicitly for each variant as the following.

where tev is the length of epidemic time which is defined as when the infection starts to spread and when it ends. 
The infection spread number has no dimension. We can interpret the number to infer how severe the epidemic 
is. The larger its value takes, the bigger and the longer, the size and duration of the epidemic will be.

(16)ρv =

AITvtf
tev

N tf
, v = 1, 2, 3

Figure 19.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the third case of Scenario 4. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of Variant 1s is I116 = 9 . (c) The total number of infections for all variants are AIT

1400
= 14 , 

AI
T
2400

= 0 , and AIT
3400

= 0 . (d) Comparison between the number of infected neighbors and each node’s degree 
for all variants. The infection spread numbers are ρ1 = 0.0002 , ρ2 = 0 , and ρ3 = 0 respectively.
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Figure 20.  The dynamics of the epidemic process with three variants on a synthesized human interaction 
network for the fourth case of Scenario 4. (a) The time evolution of all states with 95% confidence interval. The 
red lines indicate all infected nodes from all variants. (b) The average of 100 infection plots for each variant. 
The infection peaks of Variant 1 and Variant 2 are I116 = 9 and I2158 = 614 . (c) The total number of infections 
for all variants are AIT

1400
= 12 , AIT

2400
= 26 , and AIT

3400
= 0 . (d) Comparison between the number of infected 

neighbors and each node’s degree for all variants. The infection spread numbers are ρ1 = 0.0001 , ρ2 = 0.0007 , 
and ρ3 = 0 respectively.

Table 1.  The Description of states.

State Description

S
i

t
State at time t when a node i is susceptible ( Si

t
= 1 ) or not ( Si

t
= 0)

I
i
vt

State at time t when a node i is infected by Variant j ( Iivt = 1 ) or not ( Iivt = 0)

R
i
vt

State at time t when node i is recovered from Variant j ( Ri
vt
= 1 ) or not ( Ri

vt
= 0)
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Data availability
The datasets generated and/or analyzed during the current study are available in the https:// github. com/ sepri 
anus9 981/ sepri anus_ paper/ blob/ main/ simva rian3. tex.
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