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Predictive three‑biomarker panel 
in peripheral blood mononuclear 
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Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers and accounts for a 
significant proportion of cancer‑associated deaths worldwide. This disease, marked by multifaceted 
etiology, often poses diagnostic challenges. Finding a reliable and non‑invasive diagnostic method 
seems to be necessary. In this study, we analyzed the gene expression profiles of 20 HCC patients, 
12 individuals with chronic hepatitis, and 15 healthy controls. Enrichment analysis revealed that 
platelet aggregation, secretory granule lumen, and G‑protein‑coupled purinergic nucleotide receptor 
activity were common biological processes, cellular components, and molecular function in HCC and 
chronic hepatitis B (CHB) compared to healthy controls, respectively. Furthermore, pathway analysis 
demonstrated that “estrogen response” was involved in the pathogenesis of HCC and CHB conditions, 
while, “apoptosis” and “coagulation” pathways were specific for HCC. Employing computational 
feature selection and logistic regression classification, we identified candidate genes pivotal for 
diagnostic panel development and evaluated the performance of these panels. Subsequent machine 
learning evaluations assessed these panels’ performance in an independent cohort. Remarkably, a 
3‑marker panel, comprising RANSE2, TNF‑α, and MAP3K7, demonstrated the best performance in 
qRT‑PCR‑validated experimental data, achieving 98.4% accuracy and an area under the curve of 1. Our 
findings highlight this panel’s promising potential as a non‑invasive approach not only for detecting 
HCC but also for distinguishing HCC from CHB patients.

Primary liver cancer, approximately 75% histology of which is hepatocellular carcinoma (HCC)1, is the sixth most 
frequently occurring cancer and the third most common cause of cancer mortality in both sexes  worldwide2. 
Most HCC patients are diagnosed at late or advanced stages when the treatment options are limited and it is 
hard to cure if not untreatable. HCC is a complex multifactorial disease. The most important HCC risk factors 
mainly include cirrhosis, chronic infection with hepatitis B virus (HBV), hepatitis C virus (HCV), alcoholic 
liver disease, and nonalcoholic steatohepatitis (NASH). Additional risk factors that are also known to increase 
the chance of developing HCC include tobacco smoking, aflatoxin-contaminated food intake, diabetes, obesity, 
genetic factors, and  heredity3,4.

HCC is associated with poor prognosis and low survival rates. Therefore, early detection of HCC is beneficial 
for prolonging patient  survival5. To date, the gold standard for HCC diagnosis is liver biopsy, which is an invasive 
procedure as well as being time-consuming and expensive. This procedure also brings difficulties and complica-
tions to the patients such as tumor seeding, intra-abdominal bleeding, pain, discomfort, bacteremia, or even 
 death6–8. Therefore, non-invasive diagnostic methods are preferred nowadays. Even though detection of liver 
cancer in high-risk individuals has been improved by some imaging-based methods, including ultrasonography 
(US), computed tomography (CT), and/or high-cost magnetic resonance imaging (MRI), these radiological 
imaging techniques have shown some limitations like high false-positive rates leading to unnecessary patient 
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anxiety and may need to be followed by biopsy as an invasive  procedure9. Conventional serum markers, such 
as α-feto-protein (AFP), which is widely used in the clinical setting, lack specificity and show limited ability for 
the detection of  HCC10. Identifying new, reliable, non or minimally invasive biomarkers is important to improve 
the detection of HCC.

Peripheral mononuclear cells (PBMCs) including lymphocytes and monocytes are critical components in 
the host immune system. Previous studies demonstrated that alteration of PBMC genes was observed in vari-
ous malignancies and cancers such as non-small cell lung cancer (NSCLC), pancreatic and breast  cancers11–13. 
Therefore, the detection of these changes could serve as a potential non-invasive diagnostic method. The suitable 
biomarker should be characterized as widely used for screening purposes and diagnosing asymptomatic patients, 
having high sensitivity and specificity, low cost, and easy detection.

In the present study, we integrated datasets retrieved from gene expression omnibus (GEO) and analyzed the 
data to identify differentially expressed genes (DEGs) between HCC, hepatitis B patients, and healthy individuals. 
Combining multiple datasets and integrated analysis can help in overcoming the individual dataset’s limitations, 
including batch effects and dataset specific biases, increasing the number of samples, generalizability, statistical 
power and  reliability14.

Furthermore, enrichment and functional analyses as well as network construction were performed to find 
important signaling pathways and key players in HCC. Feature selection using multinomial LASSO was done 
to find important genes in the diagnosis of each condition. Then, multinomial logistic regression as a machine 
learning algorithm was used to investigate the ability of selected features to distinguish cases from controls. 
Gene panels with the best performance were introduced as HCC diagnostic biomarker panels and verified in a 
real-life patient cohort.

Results
Basic clinical characteristics and patients’ information
In this study, the gene expression profiles of HCC patients, chronic hepatitis B (CHB) patients as positive controls, 
and healthy individuals of the GSE49515 and GSE58208 data series were integrated to form the discovery cohort 
(Supplementary Fig. S1 and Supplementary Table 1). This dataset was utilized to identify significantly altered 
molecular mechanisms in PBMCs of HCC patients, discover potential biomarker panels and develop a machine-
learning approach that can predict the diagnosis of the disease. To examine the predictive power and reproduc-
ibility, we conducted an experimental evaluation of the panel using gene expression data from 39 HCC patients, 
15 CHB patients and 24 healthy controls. The study workflow is depicted in Fig. 1. For participant characteristics 
in the validation cohort refer to Supplementary Table 2. HCC patients comprised 29 (74.4%) men and 10 (25.6%) 
women. Approximately 38% of these patients reported no history of smoking, while 31% were current smoker 
and another 31% were former smokers. Half of the patients were overweight, and 71.8% of patients reported no 
family history of liver disease. Additionally, 36% of all patients reported alcohol consumption. The average total 
bilirubin of HCC patients was 2.51 mg/dL, while the serum albumin level averaged at 3.63 g/dL. The mean values 
of aspartate transaminase, alanine transaminase, and alkaline phosphatase were 58.29, 57.29, and 320.57 IU/L, 
respectively. Additionally, the average alpha-fetoprotein level among HCC patients was 163.7 ng/mL.

PBMC transcriptome analysis of patients with HCC and CHB
In the present study first, we integrated samples of two datasets GSE58208 and GSE49515 by combat function of 
the sva package to form a unique dataset of 20 HCC, 12 CHB patients, and 15 normal controls called discovery 
cohort. Samples’ bar plot and PCA were plotted before and after performing combat to assure the batch effect 
removal (Supplementary Fig. S1).

A total of 107 (99 upregulated and 8 downregulated) and 54 (46 upregulated and 8 downregulated) genes 
were identified under the threshold of absolute  log2(fold change) ≥ 1 and adjusted p value < 0.05 for HCC and 
CHB compared to normal conditions, respectively (Fig. 2a,b). Correlation heatmap was plotted to demonstrate 
the relationship between groups (Fig. 2c,d), it clearly illustrated the similarities within groups and distinction 
between different groups in both HCC vs healthy controls (Fig. 2c) and CHB vs healthy controls (Fig. 2d) and 
the conditions were greatly separated. Furthermore, we conducted hierarchical clustering and visualized the 
results through the heatmap. The expression patterns of 107 and 54 DEGs of HCC and CHB versus control were 
illustrated in Fig. 3a,b, respectively. These heatmaps demonstrated the upregulated and downregulated patterns 
of DEGs in each condition.

Common and distinct gene signatures associated with HCC in PBMC
We next investigated the gene ontologies (GOs) of DEGs in HCC (Fig. 4a) and CHB (Fig. 4b) patients compared 
to healthy controls using Enrichr. Terms and processes with p value < 0.05 were considered significant and the top 
10 biological processes (BP), molecular functions (MF), and cellular components (CC) were visualized for each 
condition in comparison to normal controls. Platelet aggregation was the most enriched BP when comparing 
both HCC and CHB groups to healthy subjects. The secretory granule lumen was among enriched CC in both 
comparisons. Furthermore, G-protein-coupled purinergic nucleotide receptor activity and hemoglobin alpha 
binding were enriched MF in HCC and CHB comparisons with the healthy group, respectively. Pathway analysis 
demonstrated that “estrogen response” was involved in both HCC and CHB pathogenesis (Fig. 4c,d). Further-
more, enrichment analysis showed that DEGs in the HCC group were significantly members of “apoptosis” and 
“coagulation” signaling pathways (Fig. 4c), while “Interferon alpha response” was a substantially enriched pathway 
in CHB patients compared to normal controls (Fig. 4d).



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7527  | https://doi.org/10.1038/s41598-024-58158-9

www.nature.com/scientificreports/

The protein–protein interaction network of DEGs in HCC
Significant altered genes of HCC compared to the healthy group were applied to construct the PPI network using 
STRING. Visualization of the network was achieved using Cytoscape, highlighting functional interactions. The 
network comprised 96 nodes and 107 edges as shown in Fig. 4e. Centrality parameters, including betweenness, 
closeness, degree, eccentricity, radiality, and stress of the nodes, were computed with the CentiScape plugin. 
The top 10 nodes with the highest values for each centrality were identified. Subsequently, genes appearing in 
the top 10 across all centrality measures were recognized as hub genes. Key nodes, according to the CentiScaPe 
analysis, included tumor necrosis factor (TNF), interleukin 1 beta (IL-1β), integrin subunit alpha 2b (ITGA2B), 
and purinergic receptor P2Y12 (P2RY12), as detailed in Supplementary Fig. S2.

Discovery of candidate predictive biomarker panels in PBMCs of HCC patients
To investigate the intersection of DEGs, a Venn diagram was constructed using all significant up regulated and 
down regulated genes in HCC and CHB compared to healthy controls (Fig. 5a). Upregulated genes that did not 
have an overlap for each condition compared to healthy controls were then selected for the feature selection step. 
There were 73 unique genes that were only upregulated in HCC compared to healthy controls, while 22 genes 
were upregulated in CHB in comparison with healthy controls. Furthermore, there were two genes that not 
only upregulated in HCC compared to normal samples but also upregulated in HCC patients compared to CHB 
ones. These 97 genes were then fed to multinomial LASSO for feature selection in R. A list of 11, 7, and 5 genes 
with non-zero LASSO coefficient were reported in Supplementary Table 3, which that may have the potential to 
detect HCC, CHB, and healthy, respectively.

To assess the diagnostic performance of candidate genes in distinguishing the three specified groups, we 
utilized the top three genes with the highest absolute LASSO coefficient for each condition. These genes included 

Figure 1.  The schematic overview of the study. In discovery phase, two datasets were retrieved form GEO, 
integrated and analyzed to identify predictive biomarkers of HCC using feature selection and machine 
learning (ML) algorithm. Additionally, in the validation phase, the predictive panel was experimentally 
confirmed on a real-life cohort.
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CCNA1, ANG, RNASE2, FADD, TNF-α, KCNJ2, ZNF324, DNAJB2, and MAP3K7, allowing for the creation 
of 3- to 7-biomarker panels. Then we used multinomial logistic regression, and built a model for each 3- to 
7-marker panel that is evaluated by fivefold cross-validation. Sensitivity and specificity of the best panels for 
each condition were reported in Table 1. The best 3-marker panel, comprising RNASE2, TNF-α, and DNAJB2 
genes, demonstrated an accuracy of 0.915. The accuracy increased with the addition of more markers: 0.936, 
0.957, and 0.979 for the 4-, 5-, and 6-marker panels, respectively. It reached 1 for the 7-marker panel, which 
consists of RNASE2, TNF-α, KCNJ2, CCNA1, FADD, ZNF325, and MAP3K7 genes. The expression profiles of 
these genes, contributing to the construction of the best 3- to 7-marker panels, are illustrated in Fig. 5b–h. The 
results indicated significant upregulation of RNASE2, TNF-α, CCNA1, and MAP3K7 in HCC compared to both 
CHB and healthy controls. Additionally, DNAJB2 and KCNJ2 were found to be upregulated in CHB relative 
to both HCC and healthy controls. ZNF324, on the other hand, was upregulated in both HCC and CHB when 
compared to healthy controls.

Experimental validation of the best in‑silico predictive panels in the real‑life HCC patient 
cohort
The expression of gene members in top models were then evaluated using qRT-PCR. Their expression levels were 
plotted using GraphPad Prism version 9. It was observed that RNASE2, TNF-α, MAP3K7, and CCNA1 were 
significantly differentially expressed in HCC patients compared to healthy controls. As expected, DNAJB2 and 
KCNJ2, showed no significant changes in HCC compared to healthy samples (Fig. 6a–f). Furthermore, RNASE2, 

Figure 2.  Distinct transcriptomes of HCC and CHB patients compared to healthy transcriptomes. Volcano 
plots show the number of statistically (adjusted p value < 0.05, absolute  log2(fold change) ≥ 1) significant DEGs 
in PBMCs samples of (a) HCC and (b) CHB patients compared to Healthy controls. The volcano plots were 
created using R. Pearson correlation analysis along with the hierarchical clustering of (c) 107 DEGs in HCC 
vs. healthy and (d) 54 DEGs in CHB vs. healthy reveals within groups’ cohesion and altered gene expression 
profiles of PBMCs in HCC development. Red represents the positive correlation and blue represents the negative 
correlation.
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a gene that was upregulated in HCC compared to CHB in the discovery cohort, also exhibited a similar upregula-
tion pattern in HCC compared to CHB in the experimental results.

Sensitivity, specificity, accuracy and AUC of these models were described in Table 2. The best in silico 
3-marker panel achieved an accuracy of 0.984 and an AUC of 0.99 based on experimental data. The 3-marker 
panel demonstrated the highest performance (Fig. 6g), suggesting that increasing the number of markers can 
lead to increased complexity of the model and decreased generalization ability.

Furthermore, we conducted machine learning on other combinations of 3-marker panels with the biomarkers 
presented in the best 4-marker panel. The panels consisting of RNASE2, TNF-α, and MAP3K7 demonstrated 
the best performance with an AUC of 1 (Supplementary Table 4).

Additionally, the best 3- to 5-marker panels, along with the best 3-marker panel from assessing the com-
binations, were utilized to build models to detect HCC from CHB. Results indicated that the 3-marker panel 

Figure 3.  Differentially expressed genes in PBMCs that may be involved in HCC development. The expression 
heatmaps represent upregulated (red) and downregulated (blue) genes in the PBMCs of (a) HCC and (b) CHB 
patients compared to healthy controls.
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Figure 4.  Gene ontology, signaling pathway and network analyses in HCC. Top 10 enriched biological 
processes, cellular components and molecular functions in (a) HCC and (b) CHB compared to healthy 
individuals. The most significant pathways of (c) HCC vs. healthy controls and (d) CHB vs. healthy controls. (e) 
PPI network of DEGs in HCC was created using Cytoscape (3.9.1). The network consists of 96 nodes and 107 
edges. The size of the nodes corresponds to absolute  log2(fold change). Blue and red border lines indicate the 
upregulated and downregulated genes, respectively. Yellow balls represent the hub genes of the network based 
on the betweenness, closeness, degree, eccentricity, radiality, and stress centralities.
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Figure 5.  Identification of specific genes for HCC and CHB cases. (a) Venn diagram represents the intersection 
between upregulated and downregulated genes in HCC and CHB compared to healthy controls. It demonstrated 
that there are 73, and 22 unique upregulated genes for HCC and CHB compared to healthy controls, 
respectively. The violin plots represent the expression levels of (b) RNASE2, (c) TNF, (d) MAP3K7, (e) CCNA1, 
(f) KCNJ2, (g) DNAJB2, and (h) ZNF324. X-axis represents HCC (left), CHB (middle) and healthy control 
(right), Y-axis represents mRNA expression in log2.
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comprising RNASE2, TNF-α, and MAP3K7, which showed the best performance in detecting HCC from healthy 
controls, also exhibited acceptable performance in distinguishing HCC from CHB patients with an accuracy of 
0.907 and AUC of 0.92 (Supplementary Table 5).

Discussion
HCC is the most common type of primary liver cancer with a raising global burden of mortality. Being asymp-
tomatic in the early stages delays timely diagnosis and leads to limited curative options in advanced  stages15. 
PBMCs including monocytes, lymphocytes, and natural killer (NK) cells have a critical role in immune system 
functions. Studies showed that they have applications in the diagnosis, screening, and prognosis of diseases. 
Accumulating evidence has indicated that gene expression and methylation profiles of PBMCs alter in differ-
ent types of disorders and  malignancies16, such as  HCC17. Alpha-fetoprotein (AFP) and imagining techniques 
are conventional methods for screening and early detection of HCC. However, the sensitivity of these methods 
even in combination is still suboptimal, ranging from 39 to 65% for  AFP18 and just 63% for the combination of 
ultrasound and  AFP19, highlighting the need for more reliable and accurate methods to improve the prognosis 
and diagnosis of HCC patients. Furthermore, transcriptome analysis and identifying key players could help to 
understand the underlying mechanism of tumorigenesis of  HCC20.

In this study, two different datasets, retrieved from the GEO database, were integrated to improve the sample 
size and reduce the study bias. The unified dataset which contained 20 HCC, 12 CHB patients, and 15 healthy 
controls was used to identify genes with significant alteration in their expression known as DEGs. Our findings 
showed that 107 and 54 genes were significantly expressed in HCC and CHB compared to healthy controls, 
respectively. Functional annotation analysis that was conducted using DEGs, revealed that platelet aggregation 
was the common enriched term among the BPs for both HCC and CHB conditions in comparison to healthy 
controls. Accumulating evidence suggests that platelets play a pivotal role in both inflammation and the pro-
gression of  cancer21,22. Their contact with PBMCs modulated the immune response against viral  infections23. 
Furthermore, it has been observed that platelets modulate T cell immunity against cancer, emphasizing they role 
in the immune response in the tumor  microenvironment24. The interaction of platelet-leukocyte, as a predomi-
nant member of PBMCs, can lead to inflammatory immune reactions in different  diseases25, including  cancer26. 
The effector functions of innate leukocyte are modulated by platelets that are involved in immune responses but 
also promote thrombosis and  metastasis26.

Platelets are small anucleate cellular fragments, that has functional organelles including mitochondria, Golgi 
apparatus, and endoplasmic reticulum (ER). Megakaryocytes generate platelets in bone marrow and release them 
into the blood  stream27–29. In homeostasis and the initiation of coagulation, platelets play a crucial role by binding 
to injured vascular sites, forming aggregates, and subsequently arresting  bleeding28,29. The role of platelets extends 
beyond clotting. Notably, they possess mRNA, which equips them with the capability to synthesize, express, and 
release  proteins28,29. Upon activation, platelets initiate the release of various bioactive molecules, including multi-
ple growth factors, serotonin, inflammatory cytokines, tumor necrosis factor alpha, chemokines, adrenaline, and 
more, via platelet granules. Bioactive molecules released from activated platelets can exhibit multifaceted effects, 
such as shielding cancer cells against immune surveillance, creating a stimulant environment for tumor growth, 
invasion and facilitating metastasis, or even exerting all of these actions  concurrently22,29,30. While a reduction in 
platelet counts has been consistently reported in patients afflicted with chronic HBV infection and various other 
chronic liver diseases, it is noteworthy that an elevated platelet count has frequently been associated with HCC 
aggressiveness and tumor size, an increased propensity for tumor recurrence, and an elevated risk of metastatic 
 dissemination30. Henceforth, conventional antiplatelet medications or platelet activation inhibitors may have the 
capacity to impede platelet aggregation, diminish hepatocyte damage arising from viral infection, and suppress 
the development of  HCC30. Moreover, multiple BPs related to platelet function demonstrated significant enrich-
ment in HCC compared to healthy controls. Key processes included platelet degranulation, which pertains to the 
platelet response to aggregating agents, and the regulation of megakaryocyte differentiation.

Other significant BPs in HCC against healthy controls were regulation of nitric oxide synthetic and meta-
bolic processes. Nitric oxide (NO) serves as a transcellular signaling molecule, and its production is catalyzed 
by enzymes known as nitric oxide synthases (NOS). All isoforms of NOS have been identified in tumor cells, 
and they play a pivotal role in both promoting and suppressing cancer progression. NOS exhibits a dual role in 
cancer pathogenesis, correlating with tumor grade, proliferation rate, and the expression of cancer-development 
signaling molecules, such as the estrogen receptor. As a free radical gas molecule at room and body temperature, 

Table 1.  The best 3- to 7-marker panels on microarray data (discovery cohort).

Panel No. features HCC sen CHB sen Healthy sen HCC spe CHB spe Healthy spe Accuracy

RNASE2, TNF-α, DNAJB2 3 0.95 0.833 0.933 0.963 0.943 0.969 0.915

RNASE2, TNF-α, MAP3K7, KCN2 4 0.95 0.917 0.933 0.926 1 0.969 0.936

RNASE2, TNF-α, MAP3K7, 
KCN2, DNAJB2 5 0.95 0.917 1 0.963 0.971 1 0.957

RNASE2, TNF-α, KCNJ2, CCNA1, 
FADD, ZNF324 6 1 0.917 1 1 1 0.969 0.979

RNASE2, TNF-α, KCNJ2, CCNA1, 
FADD, ZNF325, MAP3K7 7 1 1 1 1 1 1 1
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Figure 6.  Real-life cohort evaluation of predictive panels and ROC curves for the 3- to 5-marker panels. 
Experimental validation of the predictive panels in the real-life cohort. Relative expression of candidate markers 
(a) RNASE2, (b) TNF, (c) MAP3K7, (d) CCNA1, (e) KCNJ2, and (f) DNAJB2 in PBMC samples of patients with 
HCC, CHB and healthy controls. Green violin plots represent the expression levels of genes in normal patients 
(n = 24), blue and red violin plots represent the expression levels of genes in patients with HCC (n = 39) and 
CHB (n = 15), respectively. Relative expression of genes represents as -ΔCt on y-axis. (g) The ROC curve depicts 
the performance of the three-marker panel comprising RNASE2, TNF-α, and DNAJB2 (red line), as well as the 
four-marker (yellow line) and five-marker (green line) panels, alongside the best introduced three-marker panel 
containing RNASE2, TNF-α, and MAP3K7 (blue line) for distinguishing HCC from healthy controls. (h) The 
ROC curve illustrates the ability to distinguish HCC from CHB, showing the performance of the three-marker 
panel containing RNASE2, TNF-α, and DNAJB2 (red line), the best three-marker panel introduced, RNASE2, 
TNF-α, and MAP3K7 (blue line), as well as the four-marker (yellow line) and five-marker (green line) panels. 
The AUC is displayed in the plot.
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NO is highly diffusible and participates actively in various BPs due to its high reactivity. It generates metabolites 
that are central to genotoxic effects, including DNA damage. High concentrations of NO can hinder cancer 
growth and trigger cell apoptosis, whereas lower concentrations can stimulate tumor growth and  proliferation31.

Furthermore, there were several remarkable pathways in HCC such as estrogen response, that known to be 
involved in the development and progression of  cancers32,33, including  HCC34. Coagulation was another signifi-
cantly enriched pathway in HCC vs healthy controls. Various studies indicated the role of blood coagulation 
proteins in tumor  progression35. Since the main site of coagulation factor production is liver, it has been suggested 
that these factors could be associated with the progression of  HCC36.

In this study, we constructed a biological network based on the detected DEGs. The genes TNF-α, IL1B, 
ITGA2B, and P2RY12 were subsequently identified as hub genes in the PBMCs of HCC and can be considered 
therapeutic targets in HCC management. TNF-α is a crucial cytokine implicated in numerous signaling path-
ways, including inflammation, immunity, and even tumorigenesis. Predominantly generated by macrophages, its 
production is also observed in other cell types such as endothelial  cells37. Its overexpression has been observed 
in monocytes isolated from PBMCs of colorectal cancer patients in comparison to normal  controls38. However, 
in the liver, TNF-α possesses a dichotomous role: it can instigate liver tissue damage through hepatocyte apop-
tosis, while concurrently stimulating a regenerative effect and possibly promoting hepatocarcinogenesis via cell 
proliferation. Experimental findings suggested that complete inhibition or ablation of TNF-α attenuates liver 
cancer progression in laboratory mice. However, this modulation also correlates with reduced survival and the 
onset of hepatic failure.

Dysregulation of IL-1, another hub gene in the network, has been reported to be associated with various types 
of human malignancies. Accumulating evidence suggests that IL-1 plays an important role in tumorigenesis, 
cancer progression, metastasis, and the response to cancer treatment. IL-1β is one of the main agonists of the 
IL-1  family39 which is produced by tumor and immune  cells40. The serum level of IL-1B shows an elevation in the 
case of hepatitis, cirrhosis, liver fibrosis and HCC. The elevation of IL-1β serum levels can lead to overexpression 
of gankyrin which is an oncoprotein. Its overexpression induces the cell growth, invasiveness, and metastasis by 
regulating IL-1β/IRAK-1  signaling39. COX-2 expression that is also induced by IL-1β, inhibits antigen presenting 
cells from maturation and activation at the tumor  microenvironment40.

ITGA2 constitutes one of the pivotal subunits, forming a heterodimer along with the β1 subunit. The protein 
encoded by this gene functions as a transmembrane receptor integral to cellular adhesion processes, facilitating 
both cell–cell adhesion and the adherence of platelets and various cell types to the extracellular matrix. Moreover, 
it involves in cell surface-mediated signal transduction, modulating cellular growth and differentiation through 
the interaction with growth factors and  chemokines41. In normal tissues and organs, the expression of ITGA2 
remains very low; however, its overexpression has been identified in multiple cancer types, including  HCC42. 
This is attributed to its role in critical cellular processes such as tumor cell proliferation, migration, invasion, 
angiogenesis, and  metastasis41,43.

P2RY12 is an adenosine diphosphate (ADP)-responsive G protein–coupled receptor, whose expression 
is not exclusive to the surface of platelets but is also prominently observed in lymphocytes, monocytes, and 
 megakaryocytes44, as well as cancer  cells45. Research has elucidated that adenosine triphosphate (ATP) and ADP 
are secreted into the tumor site by both platelets and tumor cells, serving as activators for P2Y12, subsequently 
modulating the inflammatory response. Further investigations have shown that hepatic macrophages also express 
P2Y12 receptor. This receptor plays a crucial role in the induction of ER stress pathways. The induction of these 
pathways has a pivotal role in the pathogenesis of chronic liver diseases and  HCC46.

In the next step, a computational feature selection was conducted on the selected DEGs. LASSO algorithm 
was used for multinomial computational feature selection. The three most significant features with the most 
absolute coefficient in each condition were utilized to construct 3 to 7-biomarker panels. Panels with the best 
performances included TNF-α, RNASE2, MAP3K7, CCNA1, DNAJB2, and KCNJ2.

Ribonuclease A family member 2 or RNASE2, also known as eosinophil-derived neurotoxin (EDN), belongs 
to the RNase superfamily, playing a pivotal role in the immune system and host defense mechanisms against 
pathogens. Upon activation by proinflammatory stimuli, eosinophils secrete a suite of proteins, with EDN being 
one of the four major  proteins47. Additionally, monocyte-derived macrophages produce EDN upon stimulation, 
demonstrating capabilities in inducing cell proliferation, migration, and  invasion48. Recent literature reports an 
overexpression of EDN in various  tumors48–50. While existing studies have underscored the influence of immune-
related genes on the tumor microenvironment, facilitating the progression of  HCC51,52, this study marks the 
inaugural mention of RNASE2 in the context of HCC.

Mitogen-activated protein kinase kinase kinase 7 or MAP3K7, which is also known as transforming growth 
factor-β activated kinase 1 (TAK1), is a pivotal member of the MAPKKK family. This kinase can be activated by 
a plethora of molecules, encompassing TGF-β, cytokines (e.g., TNF-α and IL-1), Toll-like receptors, CD40, and 
B cell receptors. Additionally, several viruses, notably HBV and HCV, which are associated with a heightened 
risk of HCC, can induce MAP3K7 activation. Notably, there exists a positive correlation between MAP3K7 and 

Table 2.  Performance of machine learning on the real-life patient cohort data (validation cohort).

Panel Sensitivity Specificity Accuracy AUC 

RNASE2, TNF-α, DNAJB2 0.974 1 0.984 0.99

RNASE2, TNF-α, MAP3K7, KCNJ2 0.949 1 0.968 0.98

RNASE2, TNF-α, MAP3K7, KCNJ3, DNAJB2 0.949 1 0.968 0.97
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the expression of the mammalian target of rapamycin (mTOR), which is often linked to poor survival in HCC 
 patients53. Furthermore, MAP3K7 can activate pathways such as NF-κB and MAPK, both of which are implicated 
in  tumorigenesis54. Consequently, in agreement with our findings, overexpression of MAP3K7 can play a pivotal 
role in the inflammation and the progression of  HCC53.

Among biomarker candidates, Cyclin A1 is a member of the A-type cyclin protein family that plays a piv-
otal role in regulating the G1/S phase transition of the cell division cycle. This regulation is achieved through 
its interaction with cyclin-dependent kinase 2 (CDK2) and cell division cycle 2 (CDC2) kinase. Additionally, 
Cyclin A1 has been identified to be associated with key cell cycle regulators such as retinoblastoma (Rb), p21 
family proteins, and transcription factor E2F-155. Dysregulation of Cyclin A1 has been implicated in various 
cancers including breast and thyroid  cancers56. While the roles of cyclins CCNE1 and CCNB1 in HCC have been 
 elucidated57,58, the involvement of CCNA1 in HCC remains unreported.

Potassium inwardly rectifying channel subfamily J member 2 or KCNJ2 belongs to the potassium inwardly 
rectifying channel family. Previous studies have highlighted the oncogenic roles of members of this family in 
various cancers. For instance, the interaction between KCNJ2 and the HIF1α transcription factor has been shown 
to establish a positive-feedback loop, contributing to osteosarcoma  metastasis59. Furthermore, inhibition of 
KCNJ2 has been associated with reduced proliferation, migration, and epithelial-mesenchymal transition (EMT) 
progression in papillary thyroid carcinoma  cells60. In prostate cancer cells, KCNJ2 promotes proliferation by 
binding to the RELA protein in the nucleus, thereby activating the NF-κB signaling  pathway61. Based on these 
findings, it is suggested that KCNJ2 might exert similar effects on HCC cells.

DnaJ heat shock protein family (HSP40) member B2, a member of HCC biomarker panels, belongs to HSP40 
subclass DNAJB proteins. Emerging evidence indicates that DNAJB proteins play a crucial role in cancer inva-
sion and metastasis by modulating diverse signaling pathways. However, certain members, such as DNAJB2, 
remain under-investigated. Even with limited data on these specific DNAJB proteins, they are believed to have 
a potential role in cancer  development62.

While previous studies have been conducted to identify biomarkers for diagnosing  HCC63, some have merely 
identified and introduced biomarkers based on bioinformatic analyses, lacking validation in independent real-life 
patient  cohorts64,65. Using feature selection method, 3- to 7-biomarker panel was utilized as machine learning 
entry. Then, multinomial logistic regression algorithm was performed with fivefold cross validation to prevent 
the model from overfitting. Performing machine learning on experimental data obtained from an independent 
patient cohort and finding a 3-marker panel with the best performance confirmed the in-silico results.

Although some studies have introduced diagnostic biomarkers for HCC in  PBMCs8,66, we utilized an inte-
grated dataset comprising two distinct datasets. This approach was employed to eliminate batch effects from 
individual studies and to build a generalized predictive model using multi-centric data. Furthermore, this study 
represents a novel application of a predictive machine learning approach in PBMC samples for HCC, focusing 
on creating reliable models and accurately predicting this cancer from healthy controls and CHB that shares 
similar signaling pathways and biological processes with HCC. However, the performance of the introduced 
panels should be further investigated in a larger cohort to ensure their applicability in a clinical setting.

In conclusion, DEGs were identified from PBMC microarray data of HCC and CHB patients in the present 
study. Upregulated DEGs for each condition were then fed to feature selection method and a combination of 
features was determined to develop an input for machine learning. The best model of each 3-,4-, and 5-biomarker 
panels were confirmed by qRT-PCR, and the 3-marker panel of TNF-α, RNASE2, and MAP3K7 found to have the 
best performance on experimental data, suggesting that it has the potential to be used as a non-invasive diagnostic 
panel with high accuracy for detecting HCC compared to healthy controls and CHB patients.

Material and methods
Data collection and sample preparation
The GEO database (https:// www. ncbi. nlm. nih. gov/ geo/) was searched and two gene expression profile datasets 
(GSE49515 and GSE58208) that met our criteria were downloaded. Both of these datasets were based on the 
GLP570 platform (Affymetrix Human Genome U133 Plus 2.0 Array); therefore, probe annotation files were uti-
lized for further analysis. One of the dataset profiles (GSE49515) consisted of 10 PBMC samples of HCC patients 
and 10 normal controls and the other one (GSE58208) contained the data of 10 HCC, 5 healthy controls, and 12 
CHB samples as positive controls. These two datasets were then integrated and utilized as the discovery cohort.

Additionally, blood samples were obtained in EDTA tube from 39 patients with HCC and 15 CHB, who 
were diagnosed at Taleghani Hospital, Shahid Beheshti University of Medical Sciences (SBMU), and 24 healthy 
controls, between 2021 and 2023. The demographic characteristics of patients were also collected. These fea-
tures included age, gender, family history of liver disease, overweight, drinking, smoking state, total bilirubin, 
serum albumin, aspartate transaminase, alanine transaminase, alkaline phosphatase, platelet count, and alpha 
fetoprotein. The blood samples of healthy controls were also collected from individuals without any evidence 
of liver diseases or HCC. Written informed consent was obtained from each participant and/or their legal 
guardian(s) and this research was approved by the ethical review board of Shahid Beheshti University of Medi-
cal Sciences, Tehran, Iran (IR.SBMU.RIGLD.REC.1402.0200). All methods were carried out in accordance with 
relevant guidelines and regulations. PBMC isolation was permed using Ficoll density gradient sedimentation 
(Lymphodex, Inno-Train, Germany).

RNA isolation and quantitative reverse‑transcription PCR
RNA isolation was performed on PBMCs using the TRIzol (Qiagen, USA) reagent based on the manufacturer’s 
instruction. Then, cDNA was synthesized using cDNA synthesis kit (Parstous, Iran) in the presence of random 
hexamers. The synthesized cDNAs were stored at − 20 °C for further experiments. Expression levels of the genes 
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were quantified by qRT-PCR. Briefly, quantitative real-time PCR (qRT-PCR) reactions were performed on a Rotor 
Gene Q System (QIAGEN) using SYBR Green master mix (AmpliQon, Denmark). The ΔCt was calculated for 
the obtained data. GAPDH (Glyceraldehyde- 3-phosphate dehydrogenase) was used as an internal control gene. 
The detailed information about the primers is presented in Supplementary Table 6.

Identification of DEGs
First, we utilized the combat function from the sva package in R to integrate datasets, improve the number of 
samples, and remove the batch effect. Then we performed differential analysis to statistically compare HCC, CHB, 
and normal samples. The genes with absolute  log2(fold change) ≥ 1 and adjusted p value < 0.05 in all comparisons 
including HCC vs. healthy, CHB vs. healthy, and HCC vs. CHB were considered as statistically differentially 
expressed. Limma package was used to determine DEGs in R. The correlation heatmap was plotted to illustrate 
the relationship between groups using pearson correlation and the expression heatmap was used to explore the 
relationship of DEGs.

Enrichment and functional analysis
We utilized Enrichr online tool (https:// maaya nlab. cloud/ Enric hr/) to detect GO categories, including biologi-
cal process (BP), molecular function (MF), and cellular components (CC) as well as signaling pathway analysis. 
Results with p < 0.05 were considered significant. The results of top GOs and pathways were visualized using R.

Biological network construction
DEGs were uploaded into the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) (https:// string- 
db. org/), which is an online tool designed for predicting protein–protein interactions (PPI), to find out the 
functional interactions between the proteins encoded by identified DEGs and construct a PPI network. For this 
purpose, all DEGs of HCC compared to healthy controls were uploaded to the STRING database. Various types 
of evidence, including text mining, experiments, databases, neighborhood, gene fusion, co-occurrence, and 
co-expression, were selected as sources of interaction. The minimum required interaction score was set at 0.4, 
meaning that only interactions above this threshold were included in the predicted network. The network was 
visualized using Cytoscape (version 3.9.1). The CentiScape plugin was employed to examine various parameters 
of the nodes, which included betweenness, closeness, degree, eccentricity, radiality, and stress. Furthermore, 
enrichment analysis was conducted to investigate BPs, MFs, and CCs associated with the network.

Feature selection and machine learning
First, an online tool was used to obtain a Venn diagram of DEGs for each condition and healthy controls. Then, to 
identify the most important and effective genes among DEGs, unique upregulated DEGs selected from the Venn 
diagram were fed to the multinomial LASSO algorithm in R. Top 3 features in each condition (HCC, CHB, and 
healthy controls) were used to create a 3- to 7-marker panels of gene combinations. Multinomial logistic regres-
sion was used as a machine learning algorithm to perform classification and determine the diagnostic value of 
each model using glm in R. Since the sample size was small, logistic regression would be an appropriate choice 
for the classification. Five-fold cross-validation was used to evaluate each model and evaluation parameters such 
as sensitivity, specificity and accuracy was reported for each condition. pROC package was also utilized to plot 
the receiver operating characteristic (ROC) curves and estimate the area under the ROC curve (AUC).

To validate the potential predictive ability of the panels, a machine learning approach was employed using 
a real-life cohort consisting of 39 HCC, 15 CHB patients and 24 healthy individuals. For this step, binomial 
logistic regression was used. In addition to being suitable for a small number of samples, as mentioned previ-
ously, this algorithm is appropriate for building models for disease state (diseased/healthy) classification and 
decision-making problems and has been widely employed in health sciences studies. Therefore, this algorithm 
was used to build models based on the expression results obtained from qRT-PCR. Five-fold cross-validation 
was employed to improve the reliability of the model and to prevent overfitting.

Statistical analysis
We performed statistical analysis using GraphPad Prism version 9. The comparison of selected genes between 
conditions in the discovery cohort was analyzed using one-way ANOVA, while t-test was employed in the vali-
dation cohort. p-value < 0.05 was considered a statistically significant difference.

Data availability
The data generated during the current study is available from the corresponding author on reasonable request.
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