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Multiple serous cavity effusion 
screening based on smear images 
using vision transformer
Chunbao Wang 1,2,6, Xiangyu Wang 2,6, Zeyu Gao 3, Caihong Ran 4, Chen Li 2* & Caixia Ding 5*

Serous cavity effusion is a prevalent pathological condition encountered in clinical settings. Fluid 
samples obtained from these effusions are vital for diagnostic and therapeutic purposes. Traditionally, 
cytological examination of smears is a common method for diagnosing serous cavity effusion, 
renowned for its convenience. However, this technique presents limitations that can compromise 
its efficiency and diagnostic accuracy. This study aims to overcome these challenges and introduce 
an improved method for the precise detection of malignant cells in serous cavity effusions. We have 
developed a transformer-based classification framework, specifically employing the vision transformer 
(ViT) model, to fulfill this objective. Our research involved collecting smear images and corresponding 
cytological reports from 161 patients who underwent serous cavity drainage. We meticulously 
annotated 4836 patches from these images, identifying regions with and without malignant cells, 
thus creating a unique dataset for smear image classification. The findings of our study reveal that 
deep learning models, particularly the ViT model, exhibit remarkable accuracy in classifying patches 
as malignant or non-malignant. The ViT model achieved an impressive area under the receiver 
operating characteristic curve (AUROC) of 0.99, surpassing the performance of the convolutional 
neural network (CNN) model, which recorded an AUROC of 0.86. Additionally, we validated our 
models using an external cohort of 127 patients. The ViT model sustained its high-level screening 
performance, achieving an AUROC of 0.98 at the patient level, compared to the CNN model’s AUROC 
of 0.84. The visualization of our ViT models confirmed their capability to precisely identify regions 
containing malignant cells in multiple serous cavity effusion smear images. In summary, our study 
demonstrates the potential of deep learning models, particularly the ViT model, in automating the 
screening process for serous cavity effusions. These models offer significant assistance to cytologists in 
enhancing diagnostic accuracy and efficiency. The ViT model stands out for its advanced self-attention 
mechanism, making it exceptionally suitable for tasks that necessitate detailed analysis of small, 
sparsely distributed targets like cellular clusters in serous cavity effusions.

Serous cavity effusion refers to the pathologic accumulation of body fluids, which is most commonly seen in 
pleural, abdominal, and pericardial  cavities1. An accurate diagnosis is essential for identifying the underlying 
cause, determining the appropriate treatment, and predicting patient outcomes. One indispensable diagnostic 
tool for examining serous cavity effusions is the cytological examination, which is particularly useful for screening 
benign or malignant  cases2. Cytological smears are easy to prepare, convenient, fast, and relatively  inexpensive1,3. 
However, obtaining an accurate diagnosis can be challenging for cytologists. The large field of view of cytological 
smears can make it difficult to identify small targets with sparse distribution, leading to missed  diagnoses3. Addi-
tionally, distinguishing between proliferative mesothelial cells and cancer cells can be challenging, especially for 
junior  cytologists4. It is worth noting that the misdiagnosis rate of serous cavity effusions by cytologists is as high 
as 30%5. Such a high misdiagnosis rate not only poses risks to patient health but also leads to potential delays in 
initiating appropriate  treatments5. Moreover, detailed cytology screening tasks are time-consuming and labor-
intensive for cytologists. Studies have shown that it can take 30–40 min for doctors to screen a single  smear3. 
This is particularly challenging in developing countries where there is a shortage of professional cytologists, 
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making it difficult to complete diagnoses in a timely and accurate manner. Given these challenges, exploring 
the capabilities of artificial intelligence technologies in assisting with the diagnosis of serous cavity effusions is 
necessary. Such technologies, when properly developed and implemented, may offer a promising solution for 
improving the accuracy and efficiency of diagnosis.

In the early stages of artificial intelligence research, machine learning techniques like support vector machines 
(SVMs) and random forests were utilized in medical image analysis, predating the era of deep  learning6. These 
early methodologies typically required careful feature extraction and engineering to be effective. However, they 
often encountered difficulties with complex, high-dimensional data or in identifying subtle but crucial diagnostic 
features in medical  images7—a common challenge in the field of medical diagnostics.

Recently, deep learning architectures have emerged as a transformative force in diagnostic applications, from 
retinal disease  identification8 to the detection of various  cancers9. Notably, in cytological screening, methods 
such as graph convolutional networks (GCNs) have been employed to effectively interpret complex omics data, 
aiding in the identification of  cervical10–12 and urothelial  cancers13,14, as well as evaluating pleural  effusion15. In 
a similar vein, pretrained lightweight deep-learning (PLDL) methods have been adapted for the clinical-level 
screening of Parkinson’s disease (PD) in older adults, utilizing two-fold training on hand-drawn wave/spiral 
patterns to distinguish between healthy and PD subjects with high  accuracy16.

A seminal work on pleural effusion has demonstrated that convolutional neural networks (CNNs) can out-
perform junior cytologists in accuracy when identifying malignant  lesions15. This breakthrough suggests that 
deep learning could serve as a robust adjunct tool for diagnostic support, especially in medical settings where 
access to expert cytologists is limited. Despite its promise, this study still has several limitations. Firstly, due to 
the inherent limitations of convolutional neural networks (CNNs), their receptive fields are restricted in scope, 
impeding their ability to effectively capture expansive features and the interrelations among them, which are 
often crucial for pleural effusion screening. Secondly, the dataset’s origin from a singular medical institution 
introduces a significant caveat at the data level, casting doubt on the model’s ability to maintain its performance 
across diverse clinical datasets. Lastly, this work only concentrates on pleural effusions and overlooks the fact 
that effusions can manifest in various serous cavities, each with its unique diagnostic  challenges1. Furthermore, 
the morphological heterogeneity of malignant cells, attributable to their distinct histological  origins17, further 
complicates the differentiation between proliferative mesothelial cells and neoplastic  entities4. This heterogeneity 
underscores the necessity for developing powerful deep-learning frameworks that can be rigorously validated 
across a spectrum of serous cavity effusions, thereby broadening the horizons for clinical diagnostic accuracy 
and efficiency.

In the realm of deep learning for medical image analysis, CNN architectures are widely used for their profi-
ciency in capturing spatial dependencies and identifying patterns across various imaging modalities. However, 
CNNs have inherent limitations in extracting fine details of small objects and in discerning complex relationships 
between different regions in images, which can reduce their effectiveness in certain diagnostic scenarios. In con-
trast, models based on transformer architectures, known for their success in natural language processing due to 
self-attention mechanisms, are gaining recognition. The introduction of the vision transformer (ViT)18 has been 
a significant development, signaling a shift towards purely transformer-based approaches for image classification. 
By processing sequences of image patches, this approach leverages the inherent strengths of attention mechanisms 
to effectively pinpoint crucial areas within images.The self-attention mechanism of the ViT model allows it to 
focus on specific parts of an input image that are more informative for the classification task. In the context of 
serous cavity effusion, where small cellular clusters are critical for accurate diagnosis, this mechanism enables the 
model to dynamically highlight and analyze these small targets within the broader context of the image. Unlike 
convolutional approaches that may dilute the importance of small, localized features through pooling layers, the 
ViT model can maintain high-resolution attention throughout the model. This results in a more precise analysis 
of critical features, which is particularly beneficial for identifying small clusters of malignant cells. Continuing 
research in areas like object detection and semantic segmentation has further demonstrated the transformer’s 
versatility. It efficiently captures a wide range of features, from global to local, thereby enhancing its applicability 
and effectiveness in more complex  tasks19–21.

In the specific context of serous cavity effusion diagnosis via smear image analysis, the task of pinpointing 
sparse targets and discerning nuanced cellular features within an expansive visual field constitutes a formidable 
challenge. Traditional CNN frameworks may falter in their ability to detect the subtle nuances of these fluid col-
lections, whereas a transformer-based model is posited to excel in discerning fine-grained  patterns22. Thus, an 
exploration into the deployment of transformer-based models for serous cavity effusion diagnosis is posited to 
potentially enhance the precision and efficiency of clinical diagnostics. Our investigation delves into the efficacy 
of transformer-based models for the identification of malignant cells within conventional smears of various 
serous-cavity fluids, encompassing pleural, ascites, and pericardial effusions. A comparative analysis reveals that 
a ViT model markedly surpasses a conventional CNN model (ResNet-50)23 in screening performance for serous 
cavity effusions, attaining a caliber commensurate with clinical application. To substantiate the effectiveness of the 
proposed methodology, a dual-pronged experimental framework was employed, utilizing a novel Smear Image 
Classification (SIC) dataset alongside an External Patient Cohort (EPC-SIC). The SIC dataset, comprising anno-
tations from 161 patients, was meticulously curated at the First Affiliated Hospital of Xi’an Jiaotong University. 
Concurrently, the EPC-SIC dataset was assembled from 127 cases at the Shaanxi Provincial Cancer Hospital.

The primary objective of this paper is to develop a highly accurate and efficient transformer-based classifica-
tion framework for the automated screening of malignant cells in serous-cavity fluid smear images. The main con-
tributions of this paper are as follows: (1) the curation of a novel, multi-center annotated dataset, with extensive 
experimentation conducted across multiple serous cavities. (2) Adaptation and optimization of the ViT model to 
address the specific challenges posed by cytological smear images. (3) Demonstrating through empirical evidence 
that transformer-based models can outperform traditional CNNs in this field, with important implications for 
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clinical practice. In conclusion, this study highlights the transformative impact of transformer-based models 
in medical image analysis, particularly in enhancing the accuracy and efficiency of detecting malignant cells in 
serous cavity effusions. Our results support the adoption of deep learning approaches, especially transformer-
based models, as a valuable tool to aid cytologists in diagnosis, ultimately improving patient care outcomes.

The rest of the paper is organized as follows. “Results”, presents the outcomes of our experiments, including 
a comparative analysis of the ViT and CNN models at both patch-level and patient-level classifications. It also 
discusses the model’s performance on an external validation cohort.  “Discussion”, interprets the results in the 
context of current medical practices, explores the implications of our findings, and the potential of transformer-
based models in clinical settings, and addresses the limitations and future directions of our research. “Methods”, 
describes the data collection and annotation process, the development of the transformer-based classification 
framework, and the specific methodologies employed for the analysis of cytological smear images.

Results
Patch level classification performance on SIC dataset
In the conclusion of our investigation, we systematically developed and compared several classification para-
digms, including the vision transformer (ViT), ResNet-50, Vgg-16, and Fundus-DeepNet, for the purpose of 
screening serous cavity effusion cases within patient cohorts. Our methodology entailed a rigorous evaluation 
through five-fold cross-validation on the annotated segments of the Smear Image Classification (SIC) dataset. 
The results, encapsulated in Table 1, substantiate the superior accuracy and robustness of the transformer-based 
approach over the conventional CNN models.

Notably, the ViT model achieved an impressive accuracy of 96.8%, significantly outstripping the performance 
of the CNN models, with ResNet-50 at 87.3%, Fundus-DeepNet at 88.7%, and Vgg-16 trailing at 83.9%. The 
lower standard deviation of 2.2% for the ViT model, in contrast to ResNet-50’s 3.2%, Fundus-DeepNet’s 2.4%, 
and Vgg-16’s 1.7%, further corroborates the transformer’s consistent performance across varied data subsets. 
This consistency highlights the model’s robustness, an essential characteristic for clinical applications where 
stability across different patient cases is paramount.

The ROC curves for patch-level classification, shown in Fig. 1a, reveal the vision transformer (ViT) model’s 
high discriminative ability when identifying malignant cells in serous cavity effusion smears. With an AUROC 
score of 0.99 on the internal dataset, the ViT model demonstrates an exceptional level of accuracy at this granu-
lar level. This is significant for the cytological examination of smears, which traditionally faces challenges in 
efficiency and diagnostic precision.

Patient level classification performance on SIC and EPC-SIC dataset
Our patient-level evaluation metrics extended beyond accuracy to include precision, recall, F1-score, and the 
area under the receiver operating characteristic curve (AUROC), providing a holistic assessment of model 
performance. These metrics were carefully selected to provide a multifaceted assessment of the model’s perfor-
mance, capturing its ability to accurately classify serous cavity effusion cases while minimizing false positives and 
false negatives, which is crucial for potential clinical applications. As delineated in the patient-level analysis of 
Table 2, the vision transformer (ViT) model demonstrated superior performance, eclipsing the ResNet-50 model 
by nearly 9% in accuracy with a remarkable 98.1% attainment. For context, the Vgg-16 and Fundus-DeepNet 
models posted accuracies of 83.9% and 86.0%, respectively. Notably, all models achieved a recall of 100%, indi-
cating the successful identification of all positive cases within the SIC cohorts. The precision of the ViT model, 
at 96.8%, was particularly commendable, signaling a substantially reduced rate of false positives relative to the 
ResNet-50, Vgg-16, and Fundus-DeepNet models. Moreover, the ViT model’s F1-score-a harmonized metric of 
precision and recall-was outstanding, and its AUROC score reached the pinnacle of 1.00, signifying exceptional 
discriminative capacity for distinguishing between positive and negative cases at any classification threshold. 
These findings underscore the ViT model’s robustness and its superior diagnostic reliability over traditional 
convolutional neural networks (CNNs) for the pivotal task of SCE classification. This is further corroborated 
by the model’s perfect AUROC scores of 1.00 on the internal dataset and 0.98 on the external EPC-SIC cohort, 
as depicted in Fig. 1b,c, underscoring its resilience and generalizability. Such exemplary AUROC values at the 
patient-level suggest the model’s potential to markedly diminish both false negatives and false positives, which 
is paramount in clinical settings to avoid missed malignancies and to minimize unwarranted patient anxiety 
and unnecessary procedures. The capacity of the ViT model to precisely pre-screen cytology slides could thus 
significantly streamline the diagnostic process for pathologists.

The generalizability of the ViT model was rigorously validated on an external cohort (EPC-SIC), where it 
sustained high accuracy and surpassed the ResNet-50 model by approximately 3%. While the VGG-16 and 
Fundus-DeepNet models performed admirably on the external cohort, they trailed the ViT model by margins 

Table 1.  Patch-level classification performance (%) of the ViT and CNN models on the SIC dataset.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std Dev

ViT 93.9 98.6 98.8 96.3 98.0 96.8 2.2

ResNet-50 82.2 88.5 89.1 90.4 86.3 87.3 3.2

Vgg-1615 81.0 85.0 86.0 84.5 83.0 83.9 1.7

Fundus-DeepNet8 85.0 90.0 91.0 89.5 88.0 88.7 2.4
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of 8.1% and 6.4%, respectively. The ViT model’s unwavering high recall rate accentuates its robust generalization 
capability for SCE screening.

Additionally, the models’ performance on diverse SCE types, as outlined in Table 2, showcased the ViT’s 
consistent dominance with minimal variance in accuracy. In stark contrast, the ResNet-50, Vgg-16, and Fundus-
DeepNet models exhibited notable fluctuations in performance. These patterns affirm the robustness of the 
transformer-based ViT model in adapting to a variety of effusion presentations, and they suggest that the ViT 
model is a more dependable option for clinical applications where precision and the ability to generalize are of 
the essence.

Visualization of smear cases examination results
The examination results of serous cavity effusion smears are visualized using heat maps. These heat maps employ 
a sliding window technique to scan the image, providing a detailed visual representation of the areas identified 
by the model. When a particular image block is detected as positive by the model, it is highlighted with a deeper 
color intensity, indicating a higher likelihood of malignancy. As depicted in Fig. 2, provide a clear visual repre-
sentation of the model’s diagnostic accuracy in identifying malignant cells within serous cavity effusion smears. 
In the case illustrated in Fig. 2a, the model adeptly highlights sparsely distributed malignant cell clusters, as 
indicated by the red boxes. These clusters are accurately differentiated from the benign proliferative mesothelial 
cells, marked by green boxes, showcasing the model’s ability to discern subtle differences in cell morphology.

In a more challenging scenario shown in Fig. 2b, where malignant cells are densely clustered, the model main-
tains its precision. It successfully identifies and emphasizes the malignant regions (red boxes), while accurately 
excluding the nearby proliferative mesothelial cells (green boxes) from the high-risk areas. This level of detail 

Table 2.  Patient level classification performance (%) of ViT and CNN models on SIC and EPC-SIC dataset.

Model Type

SIC EPC-SIC

Acc P Re F1 Acc P Re F1

ViT

Pleural 98.0 96.5 100.0 98.2 95.7 93.3 100.0 96.6

Ascites 98.1 97.1 100.0 98.5 100.0 100.0 100.0 100.0

Pericardial 100.0 100.0 100.0 100.0 – – – –

Total 98.1 96.8 100.0 98.4 97.6 96.2 100.0 98.0

ResNet-50

Pleural 88.1 82.1 100.0 90.2 92.9 89.4 100.0 94.4

Ascites 94.4 91.7 100.0 95.7 96.5 94.3 100.0 97.1

Pericardial 83.3 80.0 100.0 88.9 – – – –

Total 89.4 84.4 100.0 91.5 94.5 91.5 100.0 95.5

Vgg-1615

Pleural 82.0 76.0 100.0 86.3 88.0 84.2 100.0 91.3

Ascites 87.5 84.2 100.0 91.3 91.0 88.9 100.0 94.2

Pericardial 78.0 74.0 100.0 85.0 – – – –

Total 83.9 78.3 100.0 87.9 89.5 86.3 100.0 92.8

Fundus-DeepNet8

Pleural 85.0 79.0 100.0 88.2 90.0 86.7 100.0 93.0

Ascites 90.0 87.0 100.0 93.2 93.0 90.7 100.0 95.2

Pericardial 80.0 76.5 100.0 86.7 – – – –

Total 86.0 80.9 100.0 89.7 91.7 88.4 100.0 94.0

Figure 1.  AUROC of each structure in the SIC and EPC-SIC dataset.
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in the heat maps demonstrates the model’s nuanced understanding of the cytological features associated with 
malignancy, reinforcing its value in assisting pathologists with accurate and reliable diagnoses.

Discussion
Effusions are a common type of non-gynecological sample collected in clinical practice for both therapeutic 
and diagnostic  purposes24. Cytologists are tasked with screening the effusion fluid for malignant cells. Unfortu-
nately, the detailed screening of cytology is time-consuming and labor-intensive. Missed diagnoses can lead to 
treatment delays and even medical disputes. To address this issue, it is worth exploring new auxiliary diagnostic 
measures, including the application of artificial intelligence technology, to reduce the workload of doctors and 
improve diagnostic efficiency.

Recent studies have shown that deep learning models can improve diagnostic accuracy in body fluid cytology 
detection, particularly for pleural or ascites  effusions15,25. However, the applicability of these models across dif-
ferent sites is unclear. Moreover, the performance of deep learning in multi-serous cavity effusions has not been 
explored. We chose to include multi-serous cavity effusions in our study due to several factors. First, these types 
of effusions present common challenges for cytologists, particularly for junior cytologists, such as the interfer-
ence of proliferative mesothelial cells on  diagnosis26. Second, there are significant histological and morphological 
differences in malignant lesions from different serous cavity  effusions17. Therefore, it is necessary to train a more 
universal model that can accurately screen for malignant cells in multiple serous effusions.

This study proposed and assessed a deep-learning-based classification framework for multiple serous cavity 
effusion screening on two independent patient cohorts. We compared transformer-based (ViT) and CNN-
based (ResNet-50) architectures as the classification models of the proposed framework for the patch-level 
prediction, followed by an aggregation strategy to generate the patient-level predictions. The proposed classifica-
tion framework with the ViT model achieved superior performance on patch-level and patient-level evaluation 
of the SIC dataset, with AUROC scores of 0.99 and 1.00, respectively, indicating a high degree of accuracy in 
identifying malignant effusions. Moreover, it maintained a relatively high performance on the external patient 

Figure 2.  The detection results of two smear cases, denoted as (a) and (b). For both cases, the original image, 
heat map, and representative regions are displayed from left to right. The heat maps highlight higher-risk regions 
for the presence of malignant cells. (a) A case with sparsely distributed detection targets, where the highlighted 
regions were confirmed as positive cell clusters (as indicated by the red boxes), the cell clusters outside the 
highlighted regions were identified by cytologists as proliferative mesothelial cell clusters (as shown by the green 
boxes). (b) A case with more concentrated detection targets, and we selected highlighted regions outside of 
the concentrated region to confirm the presence of positive cell clusters (as shown by the red boxes). However, 
we also observed a large number of clustered cells outside of the highlighted region, which was confirmed by 
cytologists to be proliferative mesothelial cells (as shown by the green boxes).
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cohort (EPC-SIC), with an AUROC score of 0.98. Especially, the patient-level recall values of the proposed clas-
sification framework on both SIC and EPC-SIC are both 100%, suggesting its potential for use in clinical settings.

Traditional body fluid cytology smears often have a large area, with sparse or unevenly distributed detec-
tion targets. This presents a challenge for cytologists, who must scan the entire slide without missing any fields. 
Transformer-based models have been shown to capture global features more  efficiently22, making them more 
practical for analyzing large-scale images with sparse targets.

The case study of two smear samples is shown in Fig. 2. The classification heat maps can highlight positive 
regions, making it easier for cytologists to focus on sparsely distributed positive cells. Additionally, overlapping 
or excessively deep staining of cells in some cytology smears can obscure cell structures, making it challeng-
ing for even experienced cytologists to make accurate judgments based solely on visual cues. In contrast, the 
transformer-based model has the advantage of automatically capturing more fine-grained features in the smear 
 images22. Consequently, the proposed framework has the ability to distinguish between negative and positive 
cell clusters.

Our framework successfully identified all positive cases on both SIC and EPC-SIC datasets. However, there 
were still a small number of false-positive cases (10 in total). Our error analysis revealed that these cases can be 
categorized into two types: cases with artifacts and cases that are difficult to differentiate. Figure 3 shows a selec-
tion of representative cases, including two cases that exhibit both artifacts and difficult-to-differentiate regions.

Seven of the false-positive cases were attributed to various types of artifacts, including contamination caused 
by improper processing and very thick smears, as illustrated in Fig. 3b,c. Therefore, it is crucial to ensure proper 
specimen processing and appropriate quality  control27. Similar to automated quality assessments on digital his-
topathology  slides28, additional quality control measures are necessary for digital smear pictures. The remaining 
five false-positive cases showed degenerative mesothelial cells, which can lead to false positive results due to 
degenerative changes such as nuclear  hyperchromasia5. This is also a pitfall for cytologists, as shown in Fig. 3a.

Interestingly, two senior cytologists confirmed two positive cases from our detected results, as shown in 
Fig. 3d,e. This indicates that our proposed framework has great potential to assist cytologists in identifying posi-
tive cells, which is particularly valuable for medical units with a shortage of experienced cytologists.

Briefly, our study stands out for several reasons: firstly, we evaluated the superior performance of transformer-
based models with high performance with an AUROC of 0.99, outperforming traditional CNN-based models 
by a large margin. Secondly, we tested the proposed classification framework on an external patient cohort, 
demonstrating its generalization ability and establishing a powerful baseline for future research. Thirdly, our 
study included three major types of effusions: pleural, ascites, and pericardial, which could increase the clinical 
application scenarios of the model. Lastly, we demonstrated the clinical-grade classification performance of the 
proposed framework with a recall of 100%. The right use of heat maps to highlight suspicious positive areas helps 
cytologists quickly focus on suspicious positive targets. Our model has the potential to screen the accumula-
tion of fluid in the body cavity, similar to how cervical cytology TCT samples are  screened10–12. This would help 
cytologists save time by reducing the need for manual review and screening of images.

The theoretical implications of our research are twofold. First, we have demonstrated that transformer-based 
models, specifically ViT, can effectively handle the complexity of cytology images, which are characterized by 
large areas and sparse distribution of relevant features. This finding expands the understanding of how self-
attention mechanisms can be harnessed in medical image analysis. Second, our work highlights the importance 
of developing universal models capable of generalizing across various types of serous effusions, which is a step 
forward in the field of computational pathology.

From a practical standpoint, our study offers a significant contribution to the field of cytology by providing 
a robust and accurate tool for the screening of serous cavity effusions. The high recall rates achieved by our 
model ensure that all positive cases are identified, which is critical for patient care. Furthermore, the use of 
classification heat maps as an assistive tool for cytologists can potentially reduce the workload and improve the 
diagnostic workflow.

One limitation of our study is the relatively small patient cohort. Future work should include expanding the 
sample size to further validate our findings. Another limitation is the low amount of pericardial cavity effusions 
in our data sets. Pericardial effusion accounts for only 11% of all body cavity effusions in the literature. To solve 

Figure 3.  These images show examples of predicted positive patches detected in false-positive cases. Cases that 
are difficult to differentiate (a) and Cases with artifacts (b), (c) can cause false-positive predictions. Two cases 
with atypical cells arranged in clusters, or single cells as shown in (d) and (e) were reinterpreted and confirmed 
as positive cells by senior cytologists, suggesting that the cases were missed at the initial diagnosis.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7395  | https://doi.org/10.1038/s41598-024-58151-2

www.nature.com/scientificreports/

this problem, it is necessary to collect data from more institutions. Additionally, more detailed studies of pleural 
and ascitic fluid may be conducted to help pathologists determine the type of malignant cells and the histological 
source of metastatic malignant tumors. This will enable the algorithm to provide a more effective auxiliary tool 
for cytological detection and diagnosis of body cavity effusion.

Our future research work will focus on the following aspects. First, we will expand our research on cross-
modal data. In addition to conventional smears, we will further incorporate liquid-based cytology and cell blocks 
data. Specifically, we will focus on immunohistochemical staining and combined analysis to enhance the ability 
of hematoxylin and eosin (H &E)-stained slides in identifying malignant cell origins. Secondly, we will conduct 
research at the cellular level to predict genetic alterations or targeted therapies for malignant tumor cells. This 
research will be particularly valuable for selecting treatment plans for late-stage cancer patients. It will provide 
more cost-effective diagnostic methods and guidance for clinical  medication17,26,29.

In conclusion, our study underscores the potential of transformer-based models to enhance diagnostic accu-
racy in serous cavity effusion screening and offers a promising direction for future research in the field.

Methods
Data collection
We collected a total of 161 cases from patients who underwent drainage of the serous cavity between 2021 and 
2022 at the First Affiliated Hospital of Xi’an Jiaotong University. In our study, we conducted a search in the 
pathology department’s information system, retrieving cases based on both anatomical location and diagnostic 
keywords. This dataset includes multiple types of serous cavity effusions, such as pleural fluid, ascites, and pericar-
dial fluid. The detailed data statistics are shown in Table 3. In accordance with the defined  criteria30, we classified 
malignant cells and atypical cells as positive samples. Cases with no detection of malignant cells were considered 
negative. Among the collected cases, 69 were negative and diagnosed with benign serositis. Smears were stained 
with H &E and digitized using IBL500 scanners (LBP Medicine Science & Technology Co., Ltd., Guangzhou, 
China) at 40× magnification (0.345 µm/pixel). To confirm the final pathological diagnosis of each case, all posi-
tive cases in this study cohort were reviewed by two senior cytologists. Additionally, we collected an external 
patient cohort of 127 cases from Shaanxi Provincial Cancer Hospital. Our study was conducted in accordance 
with the ethical principles outlined in the Helsinki Declaration for medical  research31 and received approval 
from the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong University (XJTU1AF2022LSK-308). 
Informed consent was waived after approval from the Ethics Committee of the First Affiliated Hospital of Xi’an 
Jiaotong University.The data collected from patients were de-identified to ensure the protection of their privacy 
and do not contain any personal health information or identifiable labels.

Data annotation
The smear slides of the SIC dataset were annotated by two pathologists from the Department of Pathology at 
Xi’an Jiaotong University and Shaanxi Provincial Cancer Hospital. Both pathologists had over 15 years of expe-
rience in surgical pathological diagnosis. To annotate the slides, we used bounding boxes to outline regions of 
interest (ROIs) for both positive and negative targets. The OpenHi Digital Pathological Annotation  Platform32 
was used for this purpose. Any uncertain or controversial positive cells were reviewed by a senior cytologist to 
ensure accurate annotation. In order to improve the accuracy of the annotations, we have established the follow-
ing principles for annotating positive and negative cases: (1) positive annotation: positive annotations should 
include malignant cells, which are indicative of cancerous growth. Positive regions may also contain negative cells, 
such as mesothelial cells and inflammatory cells. These cells should be included within the positive annotation 
as they can coexist with malignant cells. (2) Negative annotation: negative annotations should strictly exclude 
any presence of positive cells or components indicating malignancy. The negative regions should only contain 
normal, non-malignant cells, and any potential benign abnormalities if present.

Transformer-based classification framework
Transformers have emerged as a powerful tool for image analysis, leveraging self-attention mechanisms to focus 
on salient features and learn their contextual significance within an image. This is particularly advantageous in 

Table 3.  The detailed statistics of SIC and EPC-SIC datasets.

Type

SIC EPC-SIC

Pleural Ascites Pericardial Total Pleural Ascites Total

Patient

 Positive 55 33 4 92 42 33 75

 Negative 46 21 2 69 28 24 52

 Total 101 54 6 161 70 57 127

Patch

 Positive 1281 354 171 1806 – – –

 Negative 2243 540 247 3030 – – –

 Total 3625 793 418 4836 – – –
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medical imaging, where subtle features are critical for accurate diagnosis. The vision transformer (ViT-B/16) 
architecture treats an image as a sequence of patches, each of which is fed into a transformer network to extract 
features. The final output of the network is a classification probability distribution over a set of predefined 
classes. Our implementation of the ViT model has demonstrated exceptional performance on fine-grained 
image  classification33. This is due, in part, to the transformers’ ability to model long-range dependencies in the 
 data34, which is critical for capturing subtle features. By leveraging the ViT model’s ability to extract features from 
patches and model long-range dependencies, we can effectively analyze high-resolution pathological images and 
accurately classify them based on predefined classes.

The overview of the proposed framework is shown in Fig. 4. It consists of three parts, which are (a) the pre-
processing, (b) the training phase, and (c) the inference phase.

First of all, due to processing high-resolution pathological images, i.e., Whole Slide Images (WSIs), in their 
entirety is infeasible due to their substantial size and the limited memory capacity of contemporary computer 
hardware. We employ a sliding window  strategy35 to process WSIs at the highest level, producing patch-level 
images of fixed size. The WSI was pre-processed by extracting patches of size m× n pixels from the regions of 
interest (ROIs) identified by pathologists. A total of 4836 patches (Table 4) were generated for training. These 
patches were then resized to a fixed size of 700× 700 pixels, with reflective padding used when necessary to 
conform to the required input size of the ViT-B/16 model, which has approximately 86 million parameters. In 
comparison, the ResNet-50 model, which we also evaluated, consists of approximately 25 million parameters. 
Moreover, to ensure uniformity across the dataset, each patch was normalized to have a zero mean and unit vari-
ance. To increase the diversity of the training data, we randomly applied two data augmentation techniques from 
a list that included random rotation, horizontal or vertical flip, contrast adjustment, color intensity alteration, 

Figure 4.  Overview of the proposed transformer-based classification framework.

Table 4.  The patch partitioning of five-fold cross-validation in the SIC dataset.

Fold Negative Positive Total

1 449 519 968

2 751 216 967

3 584 383 967

4 627 340 967

5 619 348 967

Total 3030 1806 4836
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and horizontal shear. This augmentation process allowed us to introduce variability in the dataset, enabling the 
model to learn more robust features that could be better generalized to unseen data.

Secondly, to achieve patch-level binary classification, we leverage a pre-trained model on the ImageNet 
dataset and fine-tune it on the SIC dataset. Each patch is classified using the ViT model, and the final result is 
obtained through aggregation. The architecture of the ViT model is depicted in Fig. 4b, which consists of patch 
embedding, transformer encoder layers, and a classification head. The patch embedding layer splits the input 
image into a grid of patches, which are then flattened and projected into a lower-dimensional embedding space. 
These embeddings are then fed into a stack of transformer encoder layers, each of which consists of multi-head 
self-attention and feedforward neural network layers. The self-attention mechanism allows the model to attend to 
different parts of the input sequence, while the feedforward layers introduce nonlinearity and enable the model 
to learn complex relationships between the  patches33. The final output of the transformer encoder layers is a 
sequence of feature vectors representing the input image, which are then passed through a classification head 
to obtain a probability distribution over the predefined classes. The classification head consists of a linear layer 
followed by a softmax activation function.

Then, we employed a five-fold cross-validation strategy on the extracted patches. The distribution of the 
patch-level SIC dataset is shown in Table 4. The model was trained by the cross-entropy loss function and Adam 
optimizer. We trained the model for 50 epochs with cosine annealing learning  rate36. The validation set was 
utilized to assess the model performance.

Lastly, for the slide-level prediction, we employed binarization and morphological operations to separate 
the foreground and background of the image, enabling the exclusion of regions without cells during processing 
while disregarding the white background. For whole slide images, we employed a sliding window approach to 
extract patches from each WSI, with a step size of 700 pixels. The selected patches are then fed back into the ViT 
model, which generates a final score for each patch. A threshold is then applied to these scores, and patches with 
scores above this threshold are classified as negative, while patches with scores below the threshold are classi-
fied as positive. To aggregate prediction results across all patch levels, we calculated the number of positive and 
negative regions in the whole slide image to derive the percentage of each category. If all the patches in a WSI 
are classified as negative, the WSI is considered negative, while if any patch is classified as positive, the WSI is 
considered positive. Notably, to enhance the method’s stability, we employed a grid search method to identify 
the optimal threshold for distinguishing positive regions from negative regions in the validation set of each fold.

Data availability
All the datasets used in this work are publicly available, whereas datasets that are generated or analysed during 
labeling, detection and classification are available from the corresponding author on reasonable request.
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