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Motor learning‑ 
and consolidation‑related resting 
state fast and slow brain dynamics 
across wake and sleep
Liliia Roshchupkina 1,2,3,5*, Vincent Wens 2,3,4, Nicolas Coquelet 2,3,4, Charline Urbain 1,2,3, 
Xavier de Tiege 2,3,4 & Philippe Peigneux 1,2

Motor skills dynamically evolve during practice and after training. Using magnetoencephalography, 
we investigated the neural dynamics underpinning motor learning and its consolidation in relation 
to sleep during resting‑state periods after the end of learning (boost window, within 30 min) and 
at delayed time scales (silent 4 h and next day 24 h windows) with intermediate daytime sleep or 
wakefulness. Resting‑state neural dynamics were investigated at fast (sub‑second) and slower 
(supra‑second) timescales using Hidden Markov modelling (HMM) and functional connectivity (FC), 
respectively, and their relationship to motor performance. HMM results show that fast dynamic 
activities in a Temporal/Sensorimotor state network predict individual motor performance, suggesting 
a trait‑like association between rapidly recurrent neural patterns and motor behaviour. Short, post‑
training task re‑exposure modulated neural network characteristics during the boost but not the silent 
window. Re‑exposure‑related induction effects were observed on the next day, to a lesser extent than 
during the boost window. Daytime naps did not modulate memory consolidation at the behavioural 
and neural levels. These results emphasise the critical role of the transient boost window in motor 
learning and memory consolidation and provide further insights into the relationship between the 
multiscale neural dynamics of brain networks, motor learning, and consolidation.

Motor learning (ML) is an essential, complex process allowing one to acquire, maintain and adapt motor-based 
behavioural responses to ever-changing environmental demands, eventually enabling efficient and adaptive 
functioning. To learn a new motor skill (e.g., knitting or crocheting, writing, dancing …), one must repeatedly 
practice movements to achieve swift and accurate performance. ML not only rapidly develops online during task 
practice but also continues to unfold at a slower but significant rate, leading to additional performance gains 
after the end of the actual learning episode. This process, known as the offline post-training consolidation phase, 
unfolds non-linearly across critical time windows after  training1,2. As compared to the end of the ML episode, 
there is a significant performance gain at retest 5 to 30 min after the end of  practice3,4. However, performance 
enhancement within this so-called performance boost window period is only transient, as it remains at end-of-
learning levels when tested a few hours later (i.e., a silent window), then improves again on the following  day3,4. 
Performance gains achieved at the early, short-lived boost phase were found predictive of offline performance 
improvement 48 h  later4, suggesting the functional relevance of immediate post-training periods for the rapid 
coordination and reorganisation of neural networks supporting ML and its consolidation in the long  term1–4. 
Additionally, post-learning sleep was proposed to contribute to the consolidation of motor memories. Amongst 
others, supporting evidence comes from studies showing enhanced motor performance after a post-learning 
nap  episode5–10 and robust motor performance benefits after overnight  sleep11 (but see, e.g.,12–15 for discrepant 
results). Noticeably, studies on the dynamics of post-learning nap long-term consolidation were found incon-
sistent, with post-nap motor performance gains either found to  vanish16 or  persist5 after a full night of sleep. 
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Available data suggest that sleep-dependent motor memory consolidation effects are contingent upon multiple 
boundary conditions, including the specificities of the practiced motor task, the contributing neural substrates 
and the intervening sleep period components (for a review,  see13), which may explain discrepancies in the out-
come of sleep ML studies.

The neuroanatomical underpinnings of ML and their functional interactions at the brain network level 
are well  documented9,17–19. Functional connectivity measures allow investigating the functional brain network 
architecture both during actual ML practice (i.e., task-based connectivity) and during off-task, non-directed 
resting-state periods before and after the learning episode (i.e., resting-state (RS) connectivity). Previous studies 
demonstrated online and offline changes in ML-related neural dynamics (NDs) on a timescale ranging from sec-
onds to  minutes20–23. Online neural network features during ML (e.g.,  flexibility24, local path length, connectivity 
strength and nodal  efficiency25) reconfigure over practice and can be predictors of future learning  developments24. 
Similarly, functional network connectivity derived from offline RS measurements prior to a motor task was 
shown to predict individual ML  abilities23,26, and post-learning RS features were found to reflect task-induced 
 plasticity20,25. An asset of offline RS neuroimaging is to allow investigating learning-related functional changes 
in the brain architecture uncontaminated, e.g., by actual task-performance bias or task-induced movement 
artefacts. The dynamics of ML have been investigated using resting-state functional connectivity (rsFC) to track 
ML-related connectivity changes across different consolidation windows. For example, the study by Sami et al.20 
monitored such changes during the boost and silent periods, while Deleglise et al.27 extended this investigation 
into the boost and the next day windows. These studies collectively illustrated the evolving dynamic nature of 
resting-state networks (RSNs), indicating different neural reorganization patterns within distinct consolidation 
windows. Moreover, RSNs demonstrate  spatiotemporal27–31 and frequency-specific  dynamics32–34, suggesting 
various brain network coordination across different cognitive demand timescales.

While RSNs connectivity evolves over slow, supra-second timescale  dynamics35–37, Baker and  colleagues38 
showed, using hidden Markov modelling (HMM) of band-limited power envelopes in magnetoencephalography 
(MEG) recordings, that activity patterns within RSNs change much more rapidly than previously thought. Indeed, 
they and later  studies39–44 reported discrete transient (100–200 ms duration) brain states repeatedly reoccurring 
over time in RS-related neural activity, corresponding to activation/deactivation power patterns in well-known 
RS  networks37,45,46. HMM outcomes may provide support to the hypothesis that neurocognitive networks adapt 
to the rapidly changing computational demands of cognitive  processing47 through rapid reorganisation and 
coordination mechanisms operating at the sub-second  timescale38. Furthermore, exploring the synchronisation 
of brain networks within specific frequency bands at supra-seconds scale may offer deeper insights into ML-
related mechanisms. Therefore, taking advantage of the excellent spatiotemporal resolution of MEG, combining 
HMM with RSN connectivity analysis opens prospects to investigate the neural plasticity dynamics underlying 
ML and its consolidation at various temporal scales.

In the present MEG study, we investigated the spontaneous, multiscale NDs underlying ML and its consoli-
dation at critical short-term and delayed RS periods, modulated by the availability of post-training daytime 
sleep and task re-exposure. We specifically analysed the fast (sub-second) activation dynamics of network states 
and the slower (supra-second) modulations that give rise to functional connectivity, investigating their inter-
relationships and associations with motor performance over time. We hypothesised that ML would modulate 
RS NDs at both fast and slow timescales, reflecting neural bases of the learning/consolidation process. Further, 
we posited that a brief re-exposure to the learned motor task (induction effect) would reinstate and reinforce 
activity in ML-related networks, and that delayed effects on RS NDs will be modulated by an intermediate sleep 
period during a daytime nap.

Methods
Participants
Thirty-four young, healthy right-handed participants gave written informed consent to participate in this study 
approved by the Ethics Committee of the CUB-ULB Erasme Hospital (Brussels, Belgium) (Ref: P2016/553; 
CCB: B406201630539). The experiment was conducted following the Declaration of Helsinki and with relevant 
guidelines and regulations for the acquisition of MEG, HD-EEG and MRI data.

Musicians and professional typists were excluded to avoid bias due to high baseline motor skill proficiency. 
Four participants were excluded based on preliminary analyses (3 due to insufficient motor performance; 1 due 
to a corrupted MEG signal). Data for 30 participants (10 females; mean age = 23.1 ± 2.7 years, range 18–29) are 
reported. They received monetary compensation for their participation.

Procedure
To avoid hormonal influence on motor learning abilities, all female participants were tested during the second 
week of their menstrual  cycle48. Caffeine-containing drinks, food, soda, and any other stimulants were prohibited 
for 12 h before testing.

The experimental setting and task are illustrated in Fig. 1. Participants arrived at the laboratory at 8 am to be 
prepared for MEG recordings. The first (baseline) 5-min resting-state (RS 1) recording session took place in the 
MEG-shielded room, seated with eyes open and focused on a fixation cross on the screen. Then, they filled in 
visual analogue scales (VAS) for  fatigue49 and sleepiness to control for potential drowsiness and fatigue effects. 
Immediately after, they were trained on a 5-element Finger Tapping Task  (FTT4 adapted  from50). In the FTT 
(Fig. 1), each finger corresponds to one digit (from 1 = index to 4 = little finger), and participants are instructed 
to continuously reproduce with their non-dominant hand a fixed 5-element sequence of finger movements 
(4–1–3–2–4; permanently displayed on the computer screen) as fast and accurately as possible for 30 s (i.e., 1 
block). They were familiarised with the task during 2 FTT demo blocks before performing the experimental 
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learning session (LS) that comprised twenty 30-s FTT blocks (separated by 20-s breaks). Twenty minutes after 
the end of FTT practice (boost window session), they filled in again VAS for fatigue and sleepiness then were 
administered a first 5-min RS session (RS 2), followed by performance testing on 2 FTT blocks and then, again, 
a RS session (RS 3). The rationale for having RS recordings before and after behavioural testing was to investigate 
spontaneous RS activity after a consolidation period and then after the reactivation of the motor network due 
to the short FTT practice at testing, i.e., induced by immediately preceding motor practice. Participants could 
then enjoy free time and lunch. Afterwards, participants were told that they were randomly assigned either to 
a Wake (n = 16, five females) or Nap (n = 18, six females) condition. Participants from the Wake group stayed 
awake for the next 1.5 h, while the Nap group could benefit from a 90-min nap. Four hours after the end of the 
learning session (silent window session), all participants underwent a second testing block identical to the first 
one, with RS before (RS 4) and immediately after (RS 5) a short behavioural testing (2 FTT blocks). Participants 
were then kept in the laboratory and allowed to rest, communicate with the researchers, or watch movies until 
the evening. Around 9 pm, they were prepared for overnight High-density EEG (HD-EEG) sleep recordings. 
Bedtime was set to 11 pm ± 30 min, and participants did sleep for about 7 h. After waking up on the next day, 
they were prepared for the MEG recordings and administered a final session (next day window) with RS before 
(RS 6) and after (RS 7) a short behavioural testing (2 FTT blocks). Finally, participants underwent a structural 
MRI scan for the sake of MEG source reconstruction (see MEG methods).

Behavioural measures of motor performance and learning
For each FTT block, motor performance was estimated by computing the Global Performance Index (GPI), 
which considers both speed and  accuracy51. During the learning session, the Best Motor Performance (BMP) was 
computed by averaging the two blocks with the highest GPI scores for each subject (see details [Supplementary 
Table 1]). We also computed a Learning Index (LI) as the percentage change in performance from baseline to 
BMP. Offline changes in performance were computed from the end of the LS to the first (i.e., boost window), 
second (silent window), and third (next day window) test sessions (i.e., as a change from BMP to best GPI score 
in the corresponding post-learning test). Given the presence of unexpected between-group differences in raw 
GPI values in the pre-experimental learning session (one group performed lower on average, but with a similar 
evolution in performance across blocks; see [Supplementary Information Sect. 2 and Supplementary Fig. 1], 
statistical analyses were computed on normalised data (Z-scores) to control for the impact of between-groups 
baseline differences in offline changes.

Neuroimaging data acquisition
MEG data acquisition was performed using a 306-channel whole-scalp MEG system (Triux, MEGIN, Helsinki, 
Finland) at a 1 kHz sampling rate inside a lightweight magnetically shielded room (Maxshield, MEGIN, Helsinki, 
Finland) at the CUB Hôpital Erasme (Brussels, Belgium). Four coils continuously tracked the subjects’ head posi-
tion inside the MEG helmet. Coils’ position and about 300 head points were determined following anatomical 
fiducials with an electromagnetic tracker (Fastrak, Polhemus, Colchester, Vermont, USA). An online analogue 
band-pass filter was applied for all recordings in the 0.1–330 Hz range.

Nocturnal sleep and naps were recorded at a 1 kHz sampling rate using a MEG-compatible 256-channel scalp 
EEG system with silver chloride-plated carbon-fibre electrode pellets (MicroCel Geodesic Sensor Net with Net 

Figure 1.  Study design. (A) One block of the Finger tapping task (FTT): participants perform 20 blocks (30 s/
block) separated by 20-s rest intervals on the finger tapping task (FTT) using the four fingers of the left hand 
(repeated sequence: little/4/, index /1/, ring /3/, middle /2/, little /4/ fingers). (B) Full experimental design. After 
a first resting state (RS) recording and a learning session (20 FTT blocks), there were 3 testing windows in the 
MEG scanner (T1: Boost, T2: Silent, T3: Next day), with each time a RS immediately before and after a short (2 
FTT blocks) behavioural testing.
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Amp GES 400, Electrical Geodesics Inc., Magstim EGI, Eugene, Oregon, USA). The reference electrode was 
positioned at Cz, and all impedances were kept below 50 kΩ.

High-resolution 3D T1-weighted cerebral magnetic resonance images (MRIs) were acquired after the last 
MEG recording on a 1.5 T MRI scanner (Intera, Philips, The Netherlands).

MEG data pre‑processing
The offline temporal signal space separation  method52 was applied to the continuous MEG data to minimise 
external magnetic interference and head movement corrections (Maxfilter v2.1, MEGIN, Finland). Next, data 
were filtered (offline band-pass filter: 0.1–45 Hz), and an independent component analysis (FastICA algorithm 
with dimension reduction to 30 components, hyperbolic tangent nonlinearity function)53 was applied for visual 
inspection. Independent components corresponding to cardiac, ocular, and system artifacts were rejected by 
regressing their time course from the full-rank data. To proceed with source reconstruction, the MEG forward 
models were estimated based on the participants’ 3D T1-weighted cerebral MRI, anatomically segmented using 
FreeSurfer software (version 6.0; Martinos Center for Biomedical Imaging, Massachusetts, USA). The MEG and 
MRI coordinate systems were co-registered via three anatomical fiducials points (nasion and auriculars) for 
primary head position estimation and the head-surface points for manual refinement (MRIlab, MEGIN Data 
Analysis Package 3.4.4, MEGIN, Helsinki, Finland). A volumetric and regular 5-mm source grid was constructed 
in the Montreal Neurological Institute (MNI) template MRI and non-linearly deformed onto each participant’s 
MRI using the Statistical Parametric Mapping Software (SPM12, Wellcome Centre for Neuroimaging, London, 
UK). Finally, the three-dimensional MEG forward model associated with this source space was estimated using 
a one-layer Boundary Element Method executed in the MNE-C suite (Martinos Center for Biomedical Imaging, 
Massachusetts, USA).

Cleaned pre-processed MEG data were then filtered in one wide frequency band (4–30 Hz). Source activity 
was reconstructed using  MNE54, which we used here instead of the Beamformer as MNE allows the investigation 
of RS network connectivity and state dynamics related to the DMN and particularly involving posterior midline 
cortices (i.e., the precuneus and the posterior cingulate cortex, which are known to be involved in attention, 
memory and motor-related  processes55–58). The noise covariance matrix was estimated from 5-min empty room 
MEG recordings spatially filtered using the signal space separation  method52 and temporally filtered between 
0.1 and 45 Hz. The MNE regularisation parameter was fixed using the consistency condition derived  in59. Three-
dimensional dipole time courses were projected on their direction of maximum variance, and their Hilbert 
envelope signal was extracted using the Hilbert transform. These source signals were used both for HMM state 
inference and for functional connectivity analyses.

Hidden Markov model (HMM) dynamic analysis
The HMM analysis follows the pipeline described  in38,60 and is implemented in GLEAN (https:// github. com/ 
OHBA- analy sis/ GLEAN). The number of transient states was set to 8 for consistency with previous MEG power 
envelope HMM  studies38,42,60–62. The 8-state HMM was inferred from the wide-band filtered (4–30 Hz) source 
envelope signals. Envelope data were downsampled at 10 Hz with a moving-window average with 75% overlap 
(100 ms wide windows, sliding every 25 ms; resulting in effective downsampling at 40 Hz), demeaned, normalised 
by the global variance, and temporally concatenated across participants to design a group-level HMM analysis 
and across the 7 RS sessions to identify network states common to both the pre- and post-learning sessions (for 
further discussion on this strategy, see, e.g.,42). The concatenated envelopes were then pre-whitened and reduced 
to 40 principal components. Finally, the HMM  algorithm63,64 was repeatedly run on this dataset 10 times (to 
account for different initial parameters and retain the model with the lowest free energy) to infer states classify-
ing different power envelope covariance patterns. The Viterbi algorithm was used to decode the binary signals 
of temporally exclusive state activation/inactivation. Based on these signals, four state temporal parameters were 
estimated: MLT (mean time spent in a given state on a single visit), FO (entire fraction of time of the active state), 
MIL (mean duration of time intervals of inactive state), and NO (total number of state visits). These indices were 
estimated separately for each state, subject, and RS session by de-concatenating the state activation time series. 
State power maps were obtained as a result of the partial correlation between HMM state activation/inactiva-
tion time series and the concatenated source envelope signals, which assess state-specific power changes upon 
each state activation.

Statistical contrasts and correlation analyses with HMM state temporal parameters
The comparison among HMM states’ temporal parameters was conducted using repeated measures ANOVA with 
session (boost, silent, and next day windows; see Fig. 1) and induction (pre vs post-FTT tests) as within-subject 
factors and group (Wake and Nap) as between-subject factor. Significance was set to p < 0.05 Bonferroni corrected 
for multiple comparisons by a factor of 21 (7 independent HMM states given that state activation of one state may 
be predicted from the activation of the 7 other states × 3 independent temporal parameters given that, e.g., NO 
is strongly dependent on MLT, MIL and FO). Next, we used Spearman’s rank correlation analyses to investigate 
the relationship between each HMM state’s temporal parameter and behavioural indices. Non-parametric tests 
were favoured due to higher robustness against outliers, which sometimes arise among HMM state temporal 
parameters when, e.g., one or a few subjects scarcely visit one state. The calculations were performed using JASP 
version 0.16.2, JASP Team (2022).

Resting‑state functional connectivity
Source envelope connectivity analysis was performed across a functional connectome that included 126 regions 
of interest (116 nodes correspond to the Automated Anatomical Labelling (AAL)  atlas65 (including cerebellum), 

https://github.com/OHBA-analysis/GLEAN
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plus 10 nodes based on the relevant motor learning literature) (see [Supplementary Table 8]; MNI coordinates 
from the literature were derived/adjusted using SPM Anatomy  toolbox66, Version 2.2b). The resulting 126 × 126 
rsFC connectome matrices were computed using the slow amplitude envelope  correlation67 between each node 
signal and the others, corrected beforehand for spatial leakage using the geometric correction scheme, which 
prevents false spurious connectivity from dominating over physiological  couplings59. Additionally, we computed 
a 126 × 1 vector of power estimate (i.e., source signals’ variance) at each node to control for possible power-
induced effects in rsFC changes.

Statistical analysis with network based statistics
To characterise the functional brain networks engaged in motor learning and consolidation, we performed a 
statistical within-group comparison of inter-regional connectivity differences using nonparametric  NBS68,69 on 
the wideband data (4–30 Hz, same range as the HMM frequency band). We started with mass univariate t-tests 
looking for learning [pre- vs. post-leaning (RS 1 vs. RS 2)] and induction (pre- vs. post-test RS; e.g., RS 2 vs. RS 
3) effects on rsFC connectome matrices, separately within each group. NBS controls the Family-Wise Error Rate 
(FWER) by identifying ‘network components’ (i.e., adjoining sets of inter-regional connections associated with 
t values above a pre-defined threshold; here, t > 3.5) whose size is significantly larger than expected by chance. 
FWER-corrected p-values for these network components were generated using n = 5000 random permutations. 
Furthermore, we conducted a comprehensive correlation analysis to investigate the relationship between con-
nectivity measures and behavioural indices such as Best Motor Performance (BMP) and Learning Index (LI), 
along with HMM temporal parameters. NBS was again used, but now with FWER-corrected p-values for network 
components generated using Pearson’s correlation and random reshufflings of subjects within behavioural or 
HMM parameters. For the sake of completeness, we additionally performed separate statistical within-group 
comparisons of inter-regional connectivity differences using NBS on band-limited rsFC computed within 5 dis-
tinct frequency bands: delta (δ 1–4 Hz), theta (θ band: 4–8 Hz), alpha (α band: 8–13 Hz), beta (β band: 13–30 Hz) 
and gamma (γ band: 30–45 Hz), see Supplementary material.

State network connectivity strength
To further interpret and connect possible results on HMM and rsFC parameters, we investigated connectivity 
within ‘state networks’ associated with HMM states showing statistically significant effects. The state network of 
an HMM state was defined as the subset of nodes of our connectome where the corresponding HMM state power 
map exceeded a threshold of 60% of its maximum absolute value. State networks for HMM States 3, 7, and 8 (see 
results section) had 13, 18, and 16 nodes, respectively, and led to rsFC matrices of size 13 × 13, 18 × 18, and 16 × 16, 
respectively. To quantify the overall connectivity strength of each state network, we first calculated the average of 
all power envelope correlation values for each node within that specific network, yielding a single value for each 
node. Then, we obtained the mean of these values across all nodes within each network. This resulted in a single 
value representing the mean connectivity strength for each subject in each resting-state session, which was used 
in a subsequent correlational analysis with behavioural measures using JASP version 0.16.2, JASP Team (2022).

HD‑EEG data sleep scoring
Polysomnographic data were downsampled at 250 Hz and converted into European Data Format (EDF). Sleep 
scoring was performed using PRANA (Polygraphic Recording Analyzer, version 16.01.2007, PhiTools, Stras-
bourg, France) on a standard montage (10/20 system) with scalp electrodes F3, C3, and O1 referenced to the 
right mastoid, and F4, C4, and O2 referenced to the contralateral (left) mastoid. Facial electrodes derived elec-
tromyographic (EMG) and electrooculographic (EOG) activity. All naps and night recordings were scored using 
20-s epochs with bandpass 0.3–30 Hz for the scalp electrodes, 0.15–15 Hz for EOG channels, and 10–100 Hz 
for EMG channels.

We retained the night scores of 28 participants for analysis as one dataset was lost due to a backup system 
error, and another one had a corrupted signal. Sleep scoring was manually performed by an experienced sleep 
researcher according to the standard sleep scoring  guidelines70. Additionally, a sleep medicine specialist reviewed 
a random selection of these scorings for quality assurance.

Results
Sleepiness and fatigue measures
A session (before LS, boost, silent and next day sessions) by group (Nap vs. Wake) repeated measures ANOVA 
was conducted separately on VAS for sleepiness and fatigue. There was a main session effect both for sleepiness 
(F(2.21, 61.82) = 4.25, p = 0.02) and fatigue (F(3, 84) = 4.48, p = 0.006), respectively. Interaction effects (session 
x group) were non-significant (sleepiness F(2.21, 61.82) = 2.37, p = 0.10; fatigue F(3, 84) = 0.91, p = 0.44). The 
results showed a group effect of fatigue F(1, 28) = 4.42, p = 0.04 but not for sleepiness F(1, 28) = 3.87, p = 0.06. 
The post-hoc analysis revealed that the level of fatigue was significantly higher in the Wake group before testing 
in the silent window (t(28) = 2.27, p = 0.03).

Sleep measures
Sleep scoring information for the nap and overnight sleep can be found in Supplementary Information material 
(Tables 2 and 3, respectively). All participants slept for an average duration of 7.2 ± 0.7 h during the night. To 
investigate potential group differences in the duration of sleep stages during the night, we computed independ-
ent t-tests for sleep stages (Wake, NREM 1, NREM 2, SWS, REM) and total sleep time (TST) measures. The 
results did not reveal any significant difference in nocturnal sleep between the Nap and Wake condition groups 
(all p-values ≥ 0.10).
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Motor learning performance
During the learning session, normalised FTT performance (Z-score GPI index) rapidly improved and reached 
asymptotic levels at the end of practice (blocks 1–20), then increased in the boost window (blocks 21–22) to 
go back at the end of learning level in the silent window (blocks 23–24) and again increased on the next day 
window (blocks 25–26; Fig. 2A).

A repeated measures ANOVA computed on normalised GPI scores during the learning session with within-
subject factor Blocks (1 to 20) and Group (Nap vs. Wake) factors disclosed a main Blocks effect (F(19,532) = 17.63, 
p < 0.001; Fig. 2A) with gradually improving performance over practice. Group (F(1, 28) = 0.46, p = 0.50) and 
Group × Session interaction (F(19,552) = 1.12, p = 0.32) effects were non-significant, indicating a similar evolu-
tion of behavioural performance between groups after data normalisation.

A subsequent repeated measures ANOVA analysis performed on normalised GPI scores with Session 
(BMP × Test 1 × Test 2 × Test 3) and Group (Nap vs. Wake) factors disclosed a main Session effect (F(3,84) = 4.77, 
p = 0.004; Fig. 2B). Post-hoc analyses highlighted a temporal evolution in performance gains in the boost (BMP 
vs. T1, p = 0.012) and next day (BMP vs. T3, p = 0.012) windows, but not in the silent (BMP vs. T2, p = 0.37) 
window. Group (F(1, 28) = 0.36, p = 0.55) and Group × Session interaction (F(3,84) = 0.67, p = 0.58) effects were 
non-significant.

Additionally, a correlational analysis conducted to examine the relationship between macrostructural sleep 
elements (duration of different sleep stages during the nap and night sleep) and behavioural indices (BMP 
and LI) found no significant relationships (daytime naps all p-values ≥ 0.16 for BMP, ≥ 0.41 for LI [Supplemen-
tary Table 4]; night time sleep all p-values ≥ 0.42 for BMP and ≥ 0.24 for LI in the Wake group, ≥ 0.32 for BMP 
and ≥ 0.25 for LI in the Nap group [Supplementary Table 5]).

Fast activation/deactivation dynamics of brain networks (HMM analysis)
MEG power activation and deactivation of network states
As a reminder, 8 HMM states representing fast resting-state brain network dynamics were inferred from the 
power envelope of wideband (4–30 Hz) source-reconstructed MEG RS recordings, temporally concatenated 
over the 7 RS sessions across all participants. The obtained HMM state power maps disclosed distinctive brain 
topographies related to resting-state networks (RSNs) (Fig. 3). State 1 (Frontal/Sensorimotor) featured a net-
work configuration with simultaneously increased power over the prefrontal cortex and decreased power in the 
bilateral sensorimotor cortices upon state activation. State 2 (Posterior DMN) showed a decreased power in 
posterior nodes of the default mode network (DMN), including the left and right angular gyri and the posterior 
midline cortices. Temporal/Sensorimotor State 3 exhibited anti-correlation between power increase in the left 
temporal cortex and power decrease in the right somatosensory area. Sensorimotor/Visual State 4 featured 
similar networks as State 8 (Cuneus/Sensorimotor) but with the opposite activation/deactivation patterns, i.e., 
increased power bilaterally in the sensorimotor areas and decreased power in the visual cortices. State 5 (Calcar-
ine/Postcentral) exhibited power increase and decline in the calcarine and postcentral gyri, respectively. State 6 
(Supramarginal) revealed a network where power bilaterally peaked within the supramarginal gyri. The positive 
component of the power map for State 7 (Frontal/Cuneus) spanned over the prefrontal cortex, while the negative 
one was located over the right cuneus.

HMM temporal characteristics
Separate repeated measures ANOVA with session (T1 vs. T2 vs. T3) and induction (pre- vs. post-behavioural 
testing) as within-subject factors and group (Nap vs. Wake) as between-subjects factor were computed on the 
four HMM state temporal parameters (i.e., MLT, mean life time; FO, fractional occupancy; MIL, mean interval 
length; NO, number of occurrences). The significance level was set at p < 0.05, Bonferroni corrected by a factor 
of 21 (i.e., 7 independent HMM states and 3 independent HMM temporal parameters).

Figure 2.  Global Performance Index (GPI) evolution. (A) Mean normalised GPI scores across 26 blocks of 
Finger Tapping Task (FTT); blocks 1–20 correspond to the Learning session; blocks 21–22 to the boost (T1); 
blocks 23–24 to the silent (T2) and blocks 25–26 to the next day (T3) windows. (B) Normalised GPI score 
evolution from Best Motor Performance (BMP) at the end of the Learning session to each testing session. 
Circles: Wake condition; Squares: Nap condition. Error bars represent standard errors.
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Results disclosed significant session and induction effects in State 4 (Fig. 4). Main session effects were dis-
closed for FO (F(2,56) = 7.63, p = 0.001), MLT (F(2,56) = 7.60, p = 0.001) and NO (F(2,56) = 8.25, p < 0.001) 
parameters. There was a trend for MIL (F(2,56) = 2.80, p = 0.07 n.s.). We found a main induction effect in FO 
(F(1,28) = 5.08, p = 0.032), MIL (F(1,28) = 4.76, p = 0.038) and NO (F(1,28) = 4.52, p = 0.042). The results did not 
pass the statistical threshold for MLT (F(1,28) = 2.17, p = 0.153). Additionally, we observed a significant interac-
tion effect between session and induction for FO (F(2,56) = 5.46, p = 0.007), MLT (F(2,56) = 4.42, p = 0.02), MIL 
(F(2,56) = 3.61, p = 0.034) and NO (F(2,56) = 4.48, p = 0.016). Group and session by group effects for State 4 were 
non-significant for all HMM temporal parameters (all p-values ≥ 0.28; [Supplementary Table 6]), suggesting a 
lack of effect of the intermediate nap on fast NDs. Session effects were also observed for HMM states 3, 5 and 6 

Figure 3.  Spatial topographies of HMM transient states computed over the 7 rest sessions (RS 1–7). Red/blue 
scales indicate positive/negative correlation values between the envelope and the state activation/inactivation 
time course (i.e., increased/decreased power during one state visit). For visualisation purposes, the maps are 
thresholded to 60% of the maximum absolute of the partial correlation values.

Figure 4.  HMM, temporal parameters for Sensorimotor/Visual State 4. White violin plots represent 
non-induced RS sessions, and grey violin plots—induced RS. Medians: solid lines; quartiles: dotted lines. 
(***p < 0.001 and **p < 0.002, corrected by factor 21).
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but did not survive corrections for multiple comparisons [Supplementary Figs. 2–4 and Supplementary Table 6]. 
Analyses conducted on all other HMM states were non-significant (all p-values ≥ 0.07).

Post-hoc analyses conducted on induction effects within each session in State 4 (paired-sampled Wilcoxon 
signed-rank tests) showed that re-introduction to the task within the boost window led to significant NDs 
changes in FO (W = 78, p < 0.001), MIL (W = 415, p < 0.001), NO (W = 68, p < 0.001) (corrected by factor 21) and 
MLT (W = 115, p = 0.015, uncorrected). Nevertheless, the induction effect did not reach significance during the 
silent and the next day window (p > 0.129). Overall, these findings suggest that a short evaluation motor task 
significantly impacted the fast NDs, particularly during the boost window, and that this effect did not persist 
during the silent and next day windows for this specific HMM state.

Similar analyses conducted on other HMM states revealed a significant induction effect during the silent 
window solely for State 5 MIL (W = 415, p < 0.001, corrected). Additionally, trends for an induction effect were 
observed predominantly during the boost and subsequent day windows (p > 0.004 uncorrected, [Supplementary 
Table 7]).

Associations between HMM state characteristics and behavioural performance/learning
To assess the relationships between fast network NDs and performance, we conducted a correlational analysis 
between the 8 HMM states’ temporal parameters and behavioural indices. The inclusion of all HMM states, 
regardless of their temporal change significance across sessions, aimed at capturing the full scope of network 
dynamics. This strategy allowed us to uncover both overt and nuanced associations, and to explore stable, trait-
like network features potentially correlating with performance metrics.

First, we examined correlations with BMP (i.e., the highest motor performance level achieved by an individual 
during the learning session). Results disclosed significant correlations with HMM States 3 (Temporal/Sensori-
motor) and 7 (Frontal/Cuneus) parameters (see Table 1). Most HMM temporal parameters in State 3 positively 
correlated with BMP, primarily in baseline RS 1 and pre- and post-learning RS in the boost (RS 2–3) windows, 
suggesting a trait-like relationship with performance. State 7 exhibited negative correlations with baseline RS 1 
and pre- and post-learning RS 4–5 in the silent window.

Table 1.  Correlations between Best motor performance (BMP) and HMM temporal parameters at pre- and 
post-learning resting-state sessions for State 3 (Temporal/Sensorimotor) and 7 (Frontal/Cuneus). Spearman’s 
rho, correlation coefficients with corresponding 95% confidence intervals (CI) and p-values (**p ≤ 0.002 
corrected by factor 21 (7 HMM states × 3 HMM temporal parameters); *p ≤ 0.017, corrected for 3 HMM 
temporal parameters).

HMM temporal 
parameter Rest session

RS 1 RS 2 RS 3 RS 4 RS 5 RS 6 RS7

BL Boost Silent Next day

State 3

 FO

Spearman’s rho 0.49 0.44 0.39 0.42 0.33 0.42 0.38

95% CI [0.72–0.16] [0.69, 0.1] [0.66, 0.03] [0.68, 0.07] [0.62, − 0.04] [0.68, 0.07] [0.65, 0.02]

p-value 0.006* 0.015* 0.034 0.021 0.076 0.022 0.04

 MLT

Spearman’s rho 0.47 0.47 0.47 0.39 0.39 0.37 0.32

95% CI [0.71, 0.13] [0.71, 0.14] [0.71, 0.14] [0.66, 0.03] [0.66, 0.04] [0.64, 0.01] [0.61, − 0.05]

p-value 0.009* 0.008* 0.008* 0.034 0.032 0.047 0.088

 MIL

Spearman’s rho − 0.44 − 0.14 − 0.37 − 0.35 − 0.35 0.31 0.38

95% CI [− 0.09, − 0.69] [0.23, − 0.48] [− 0.01, − 0.65] [0.02, − 0.63] [0.01, − 0.63] [0.06, − 0.6] [− 0.02, 
− 0.65]

p-value 0.015* 0.449 0.043 0.061 0.055 0.102 0.039

 NO

Spearman’s rho 0.47 0.41 0.37 0.37 0.31 0.44 0.4

95% CI [0.71, 0.13] [0.67, 0.06] [0.64, 0.01] [0.64, 0.01] [0.61, − 0.05] [0.69, 0.10] [0.67, 0.05]

p-value 0.01* 0.023 0.047 0.045 0.093 0.014* 0.028

State 7

 FO

Spearman’s rho − 0.31 − 0.32 − 0.34 − 0.36 − 0.47 − 0.32 0.28

95% CI [0.06, − 0.60] [0.05, − 0.61] [0.02, − 0.62] [0.00, − 0.64] [− 0.14, − 0.71] [0.05, − 0.61] [0.09, − 0.58]

p-value 0.095 0.09 0.066 0.051 0.008* 0.086 0.13

 MLT

Spearman’s rho − 0.45 − 0.42 − 0.29 − 0.21 − 0.39 − 0.27 0.14

95% CI [− 0.1, − 0.7] [− 0.07, − 0.68] [0.08, − 0.6] [0.17, − 0.53] [− 0.04, − 0.64] [0.1, − 0.58] [0.23, − 0.48]

p-value 0.013* 0.021 0.115 0.271 0.033 0.148 0.446

 MIL

Spearman’s rho 0.30 0.40 0.3 0.41 0.55 0.27 0.31

95% CI [0.6, − 0.07] [0.67, 0.05] [0.6, − 0.07] [0.67, 0.06] [0.76, 0.24] [0.57, − 0.11] [0.6, − 0.06]

p-value 0.105 0.028 0.108 0.025 0.002** 0.157 0.094

 NO

Spearman’s rho − 0.30 − 0.37 − 0.37 − 0.36 − 0.47 − 0.31 − 0.28

95% CI [0.07, − 0.60] [− 0.02, − 0.65] [− 0.01, − 0.64] [0.00, − 0.64] [− 0.13, − 0.71] [0.06, − 0.60] [0.09, − 0.58]

p-value 0.109 0.041 0.046 0.052 0.009* 0.101 0.133
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We then examined the relationships between HMM temporal parameters and the LI, reflecting the intra-
individual performance evolution within the learning session. State 8 (Cuneus/Somatosensory) was the only 
HMM state where temporal parameters consistently exhibited negative correlations with LI (see Table 2).

Resting‑state functional connectivity analyses
As a reminder, analyses were computed within the 4–30 Hz frequency band to make it comparable with HMM 
results. Three participants were excluded from the analysis due to excessive MEG power values identified during 
the MEG data quality check, resulting in a final sample of 27 participants. Network-based statistics (NBS)68,69 
results did not reveal a significant difference between pre- and post-learning RS sessions (RS 2 vs. RS 1). However, 
re-introduction to the task (induction effect) resulted in the emergence of a vast neural network in the boost 
window (RS 3 vs. RS 2) comprising 39 edges and 28 nodes (p = 0.038; Fig. 5). The left temporal middle gyrus 
was the most heavily weighted node in the network [Supplementary Table 9]. Additionally, other network hubs 
were identified in the left hemisphere, including the superior temporal gyrus and insula, as well as in the right 
hemisphere, specifically in the posterior medial frontal cortex and supplementary motor area. Induction effects 
were non-significant in the silent (RS 5 vs. RS 4) and next day (RS 7 vs. RS 6) windows (all p-values ≥ 0.17).

To further investigate changes in rsFC, we conducted a complementary analysis using MEG data filtered in 
5 frequency bands. Results disclosed rsFC changes between post- (RS 2) and pre- (RS 1) learning in the theta 
band (p = 0.004) and replicated induction effects in the boost window (RS 3 vs. RS 2) in the delta, alpha, beta 
and gamma bands (all p-values ≤ 0.03), and in the next day window (RS 7 vs. RS 6) within the alpha and gamma 
frequency bands (all p-values ≤ 0.05) [Supplementary Figs. 5–11]. No induction effects were evidenced in the 
silent window (RS 5 vs. RS 4), all p-values ≥ 0.22.

Correlational analysis between connectivity and behavioural indices
Correlational analyses between each RS session and BMP index only highlighted a positive correlation between 
BMP and RS 3 connectivity (boost window, induced; 29 edges, 24 nodes, p = 0.038; Fig. 6). The most weighted 
node in the correlated network was the right superior frontal gyrus. Additional network hubs were identified 
in the bilateral middle frontal gyrus and superior frontal gyrus (orbital part) and in the right superior frontal, 
superior temporal, and angular gyri [Supplementary Table 10].

As for the other RS sessions, there was a trend towards significance for RS 2 (boost period, non-induced; 
p = 0.08). All other RS sessions were non-significant (all p-values ≥ 0.09).

Correlational analysis between rsFC and the Learning index revealed significant positive correlations solely 
for RS 5 (induced RS, silent period) (40 edges, 36 nodes, p = 0.043; Fig. 7). The most heavily weighted nodes in the 
network were located in the right hemisphere, specifically in the thalamus and superior temporal gyrus [Supple-
mentary Table 11]. Other network hubs were identified bilaterally in the insula as well as in the left hemisphere in 
the caudate nucleus and cerebellum crus I, and in the right hemisphere in the hippocampus and fusiform gyrus.

No significant correlations were disclosed with other RS sessions (all p-values ≥ 0.15).

State network connectivity and behavioural measures
To examine the associations between HMM power maps, rsFC, and motor performance, we extracted state 
networks (see Methods) based on the power maps derived by HMM for the 3 states (3, 7 and 8) exhibiting 

Table 2.  Correlations between Learning Index (LI) and HMM temporal parameters at pre- and post-learning 
resting-state sessions for State 8 (Cuneus/Somatosensory). Note: Spearman’s rho, correlation coefficients 
with corresponding 95% confidence intervals (CI) and p-values (**p ≤ 0.002; corrected by factor 21 (7 HMM 
states × 3 HMM temporal parameters); *p ≤ 0.017, corrected for 3 HMM temporal parameters).

HMM temporal 
parameter Rest session

RS 1 RS 2 RS 3 RS 4 RS 5 RS 6 RS7

BL Boost Silent Next day

State 8

 FO

Spearman’s rho − 0.35 − 0.57 − 0.56 − 0.48 − 0.55 − 0.31 − 0.49

95% CI [0.01, − 0.63] [− 0.26, − 0.77] [− 0.25, − 0.77] [− 0.15, − 0.72] [− 0.24, − 0.76] [0.06, − 0.6] [− 0.16, 
− 0.72]

p-value 0.058 0.001** 0.002** 0.008* 0.002** 0.101 0.007*

 MLT

Spearman’s rho − 0.33 − 0.43 − 0.4 − 0.46 − 0.56 − 0.28 − 0.52

95% CI [0.04, − 0.61] [− 0.08, − 0.68] [− 0.05, − 0.67] [− 0.12, − 0.71] [− 0.25, − 0.77] [0.09, − 0.58] [− 0.19, 
− 0.74]

p-value 0.079 0.018 0.028 0.011* 0.002** 0.134 0.004*

 MIL

Spearman’s rho 0.34 0.47 0.48 0.38 0.43 0.14 0.27

95% CI [0.63, − 0.02] [0.71, 0.13] [0.72, 0.14] [0.65, 0.02] [0.68, 0.08] [0.47, − 0.24] [0.57, − 0.1]

p-value 0.064 0.009* 0.008* 0.039 0.02 0.477 0.15

 NO

Spearman’s rho − 0.29 − 0.52 − 0.47 − 0.43 − 0.43 − 0.27 − 0.4

95% CI [0.08, − 0.59] [− 0.20, − 0.74] [− 0.13, − 0.71] [− 0.08, − 0.68] [− 0.09, − 0.69] [0.10, − 0.58] [− 0.05, 
− 0.67]

p-value 0.119 0.003* 0.01* 0.019 0.017* 0.146 0.028
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Figure 5.  Increased connectivity (NBS analysis) as a result of re-introduction to the task (induction effect) 
during the boost period. Nodes are scaled according to their weight (the sum of all edges connected to the 
node). Significant edges are represented as interconnecting lines between 126 connectome seed regions. TMG 
Temporal middle gyrus, STG Superior temporal gyrus, pMFC posterior Medial frontal cortex, INS Insula, SMA 
Supplementary motor area, L left, R right.

Figure 6.  Neural network positively correlated with the Best Motor Performance (BMP) Index during RS 
3 (induced, boost window). Nodes are scaled according to their weight (the sum of all edges connected to 
the node). Significant edges are represented as interconnecting lines between 126 connectome seed regions. 
ORBmid Middle frontal gyrus, orbital part; ORBsupmed Superior frontal gyrus, medial orbital; SFG Superior 
frontal gurus; ANG Angular gyrus; STG Superior temporal gyrus; L left; R Right.
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significant correlations with performance. Our objective was to investigate if networks identified in fast NDs 
(HMM) correspond to those in slow NDs (rsFC), thereby offering a more holistic understanding of neural 
behaviour relationships.

Mean connectivity strength (i.e., the degree of functional connectivity of the whole network, see Methods) 
for those three HMM state networks was correlated with BMP and LI. Results disclosed positive correlations 
between BMP and State 7 (Frontal/Cuneus) network (see [Supplementary Table 12] for the list of nodes) mean 
connectivity strength across most of RS sessions (Table 3). Correlation coefficients did not significantly differ 
between the 7 RS sessions (all p-values ≥ 0.47), suggesting trait-like relationships between HMM parameters 
and individual motor abilities.

The correlations between BMP and mean connectivity strength in the two other state networks did not reach 
significance (all p-values ≥ 0.18). All correlations with LI were non-significant (all p-values ≥ 0.0.9).

Relationship between fast and slow neural network dynamics
One of the critical questions we sought to tackle in this study was the relationship between fast (network-level, 
transient power activation/deactivation) and slow (network connectivity) NDs. To address this question, we 
performed a correlational analysis between HMM temporal parameters and state networks’ rsFC using the NBS 
toolbox, focused on the 3 HMM states (States 3, 7, and 8) previously associated with behaviour. Results disclosed 

Figure 7.  Neural network positively correlated with Learning index during RS 5 (induced, silent window). 
Nodes are scaled according to their weight (the sum of all edges connected to the node). Significant edges are 
represented as interconnecting lines between 126 connectome seed regions. MFG Middle frontal gyrus, CAU  
Caudate nucleus, INS Insula, THA Thalamus, AMYG Amygdala, TPOsup Temporal pole, superior temporal 
gyrus, TPOmid Temporal pole, middle temporal gyrus, HIP Hippocampus, FFG Fusiform gyrus, Crus I Crus, 
Cerebellum, VER Vermis, Cerebellum, L left, R Right.

Table 3.  Correlations between best motor performance (BMP) and state network (corresponding to HMM 
State 7 (Frontal/Cuneus)). Spearman’s rho and p-values; *p ≤ 0.017, corrected by factor 3 (three state networks 
tested); #p ≤ 0.05, not corrected).

Rest session Spearman’s rho p-value

RS 1 0.33 0.10 n.s

RS 2 0.52 0.005*

RS 3 0.42 0.028#

RS 4 0.36 0.06 n.s

RS 5 0.40 0.04#

RS 6 0.37 0.06 n.s

RS 7 0.56 0.002*
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negative correlations between connectivity in HMM State 7 (Frontal/Cuneus) with all HMM temporal parameters 
across the 7 rsFC sessions (Table 4). The number of significant nodes and edges within this state network was 
highest during the baseline (RS 1) in FO, MLT and NO and decreased to a minimum the next day (RS 7). The 
correlational outcomes for State 8 (Cuneus/Sensorimotor) did not report any consistent patterns and were below 
the adjusted statistical threshold, see [Supplementary Table 13]). Likewise, the analysis for State 3 (Temporal/
Sensorimotor) did not reveal any statistically significant correlations.

Discussion
The present study aimed to investigate the neural mechanisms underlying ML during critical learning and 
consolidation windows, including sleep episodes. We investigated the NDs variations at rest and after the re-
introduction to the task (induction effect) within the boost, silent and the next day windows to highlight ML-
specific neural networks. We applied both Hidden Markov modelling and resting-state functional connectivity 
approaches to investigate the NDs changes on fast (sub-seconds) and slow (minutes) timescales, respectively.

Motor learning performance
Behavioural results showed that the learning curve followed a similar pattern to that described in previous 
 research4, with distinct variations in performance during the boost, silent and the next day windows in the two 
experimental groups. Given the presence of initial and unexpected between-group differences in performance, 
GPI data were normalised. Based on normalised values, similar levels of motor performance improvement in the 
learning session were observed in both groups. Although it has been shown that motor learning can modulate 
neural markers of consolidation during the NREM sleep stage (e.g.,71–74), it did not result in daytime sleep-related 
gains in performance in our finger tapping task, which might be due to several boundary conditions. One tenta-
tive explanation for the lack of effect is that not all participants in the Nap group reached REM sleep, and those 
who did only had brief episodes of REM (a few minutes). Indeed, some studies suggested REM sleep plays a 
role in integrating new motor skills into existing motor programs (e.g.,75), eventually leading to more efficient 
and effective motor performance. Furthermore, according to the sequential hypothesis, optimal consolidation 
requires the memory trace to be processed first in non-REM and then in REM sleep, which serve complementary 
functions in memory  consolidation75–79. Therefore, a lack of sufficient REM sleep and/or SWS/REM interplay in 
our sample might explain the absence of performance improvement in the Nap as compared to the Wake group. 
Nevertheless, performance gains were noted in Wake and Nap groups following nocturnal sleep, which might 
either reflect time- or sleep-dependent consolidation. Additionally, nocturnal sleep parameters were similar 
between the two conditions, suggesting that the post-learning nap did not impact the overnight sleep architecture.

Associations between MEG network states and behavioural measures
The HMM power maps obtained from the seven resting-state sessions in each participant demonstrated remark-
able similarity, like in our previous study in which only the two first RS sessions were used to investigate motor 
learning-related  changes62. This further indicates the robustness and stability of the HMM states. Robust associa-
tions between motor performance levels achieved at learning (i.e., BMP) and the temporal stability of HMM State 
3 (Temporal/Somatosensory) demonstrated a stable, trait-like relationship between the spontaneous organisa-
tion of fast recurrent brain networks involved in motor learning and motor ability. Specifically, the observed 
power decrease in sensorimotor regions might reflect efficient motor execution, planning, and automation of 
the motor  sequence80–82. On the other hand, the power increase in temporal regions may represent the engage-
ment of cognitive strategies, potentially linked to internal timing or rhythmic mechanisms. Given that the FTT 
is a sequential and rapid execution task, it might inherently foster rhythmic abilities. This interpretation aligns 
with neuroimaging research indicating that rhythm perception relies on the interaction between auditory and 

Table 4.  Correlations between HMM temporal parameters (TP) and state network (corresponding to HMM 
State 7): p-values (*p ≤ 0.006, corrected by factor 9; 3 HMM states × 3 HMM TP).

TP FO MLT NO MIL

RS

 RS 1 p < 0.001*
(40 edges, 17 nodes)

p< 0.001*
(24 edges, 13 nodes)

p < 0.001*
(43 edges, 16 nodes) p = 0.07 (n.s.)

 RS 2 p= 0.004*
(4 edges, 5 nodes)

p < 0.001*
(15 edges, 12 nodes)

p < 0.001*
(34 edges, 16 nodes)

p = 0.002*
(13 edges, 11 nodes)

 RS 3 p < 0.001*
(29 edges, 15 nodes)

p= 0.004*
(5 edges, 5 nodes)

p< 0.001*
(34 edges, 16 nodes) p = 1.00 (n.s)

 RS 4 p < 0.001*
(6 edges, 7 nodes) p = 1.00 (n.s) p< 0.001*

(13 edges, 11 nodes)
p = 0.014
(4 edges, 5 nodes)

 RS 5 p = 0.015
(1 edge, 2 nodes) p = 1.00 (n.s) p= 0.002*

(13 edges, 11 nodes) p = 1.00 (n.s)

 RS 6 p< 0.001*
(13 edges, 10 nodes) p = 1.00 (n.s) p< 0.001*

(24 edges, 16 nodes) p = 1.00 (n.s)

 RS 7 p = 0.023
(1 edge, 2 nodes) p = 1.00 (n.s) p = 0.026

(1 edge, 2 nodes) p = 1.00 (n.s)
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motor  systems83,84. The robust correlation of HMM state 3 with performance levels prior to learning suggests 
that this state could serve as a neurophysiological marker for predicting individual differences in motor abilities.

On the other hand, HMM state 7 (Frontal/Cuneus) exhibited an opposite relationship with motor perfor-
mance, although less consistently than State 3. We posit here that this association is tied to the frontal lobe’s 
function in executive processes, including attentional control and working  memory85,86. Moreover, the frontal 
lobe forms a critical network component involved in sequence  learning87. As the motor sequence becomes more 
automatised, frontal areas may become less involved, eventually leading to a decreased engagement in this state. 
Our results revealed negative correlations solely within the silent window 4 h after the end of learning. This might 
suggest that, during this specific time window, the stabilisation of neural networks occurs, reflecting further 
automation of performance paralleled by the disengagement of the frontal lobe.

Interestingly, participants who exhibited better learning abilities during the Learning session engaged less 
in State 8 (Cuneus/Sensorimotor). This suggests that those who most effectively mastered the motor sequence 
may require less engagement in this state to process motor-related information. Better learners might use more 
efficient neural strategies, and as they become more proficient at the task, the brain optimises its activity by 
engaging this state  less88.

Altogether, the correlational findings from the three HMM states suggest that the identified patterns of NDs 
were not influenced by the particular time of day, or the number of sessions used to extract them. Instead, these 
patterns depict a consistent neural dynamic structure, allowing for optimal system settings for motor learning. 
However, it is noteworthy that significant correlations were accompanied by wide confidence intervals, under-
scoring a large degree of interindividual variability. Such variations are potentially rooted in differences in neural 
 architecture89,90, learning  strategies91,  motivation92, and other unmeasured variables that could influence the 
relationship between neural dynamics and motor performance. Yet, the persistence of significant correlations 
amidst this variability not only confirms the robustness of the findings but also suggests a fundamental, trait-
like connection between specific neural patterns and motor abilities, even amid diverse contributing factors.

One logical question arises as to why HMM State 4 (Sensorimotor/Visual), which showed significant NDs 
change over time, did not significantly correlate with performance measures. The fact that changes in the tem-
poral parameters of State 4 were observed during the silent window and the next day could suggest that this state 
might be engaged in a later stage of motor memory consolidation, such as stabilisation or long-term storage, 
rather than the initial learning phase that was measured during the learning session. Further studies are needed 
to address this issue of temporal windows for different states of consolidation.

Leaning‑related resting‑state functional connectivity
To assess the relationships between the neural networks underlying motor learning and better understand the 
functional brain mechanisms revealed by the HMM results, we estimated rsFC matrices for a 126-node con-
nectome in the 4–30 Hz frequency band, similar to the HMM analysis. To some extent, surprisingly, we did not 
find significant differences between pre- (RS 1) and post- (RS 2) learning RS sessions. It cannot be excluded 
that rsFC changes induced by the motor learning task were too subtle to be evidenced in this wideband analysis 
due to a lower signal-to-noise ratio (SNR) compared to analyses conducted on more focused, narrow frequency 
bands. Additionally, rsFC changes could be frequency specific. To investigate this possibility, we conducted a 
supplementary analysis using five classical narrow frequency bands from delta to gamma. Our results revealed 
a significant rsFC change from pre- to post-learning RS sessions (RS 2–RS 1) solely in the theta frequency 
band. Theta oscillations have been implicated in encoding and retrieval processes, and their local or long-range 
synchronisation has been associated with successful memory  formation93–95. The fact that rsFC in the theta 
band was seen only in the boost window suggests neural adaptations associated with the acquisition and early 
consolidation of new motor skills, further highlighting the critical role of this immediate post-learning period 
in memory consolidation processes. Additionally, the vast network that emerged at the early consolidation stage 
included areas involved in motor control (precentral gyrus, cerebellum, vermis and dentate  nucleus96,97), sensory 
integration (supramarginal  gurus98) and motor memory processing  (hippocampus9). The exact mechanisms 
underlying theta-band rsFC changes and their relationship to motor skill acquisition and consolidation require 
further investigation.

Our wideband analysis results clearly show that re-introduction to the motor task during the boost window 
results in widespread changes in neural network connectivity, with the left temporal middle gyrus (TMG) being 
the weightiest node. Previous research showed grey matter increase in TMG after motor  practice99,100, suggesting 
active plastic changes. Other hub elements of this network are also known to be involved in motor performance 
and learning by enabling planning, execution and control of motor actions (supplementary motor  area101) as well 
as monitoring performance problems and ensuring adaptation (posterior medial frontal  cortex102). Moreover, 
significant task-induced rsFC changes were observed in the additional 5-band analysis. Interestingly, induction 
effects were not evidenced during the silent window but were present again on the next day in alpha and gamma 
frequency bands. Consistent task-related induction of rsFC changes in the boost window might suggest a critical 
role of this short-lived, transient time window for the early steps of consolidation when newly acquired motor 
memories are particularly susceptible to reactivation by the task. This reinforces the hypothesis that a boost 
window within 30 min after the end of learning represents a time of high neural activity and plasticity. On the 
other hand, the lack of induced connectivity changes during the silent window suggests that memory traces may 
have been stabilised and would thus be less labile. On the next day, induction effects were significant but reduced 
as compared to the boost window, suggesting that memory traces have been solidified (i.e., consolidated). With 
elapsed time and sleep, memory traces undergo substantial modifications leading to network reorganisation and 
information transfer to pre-existing  networks78,103.
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Correlational analysis between NBS and behavioural measures
BMP achieved during learning positively correlated with increased rsFC during the boost window, particularly 
after task re-activation (RS 3). Connectivity changes might be driven by neural plasticity associated with the re-
introduction to the task within a plastic window, which may lead to the formation of new connections and the 
strengthening of existing ones. It is worth mentioning that there was also a trend for correlation in RS 2 prior to 
induction, suggesting that connectivity changes in the boost window are related to the early steps in the consoli-
dation of motor memory, irrespectively of induction. Correlations were non-significant during the silent and next 
day windows, suggesting that the boost window provides specific neural activity and  plasticity4,104 conditions that 
promote patterns of connectivity changes associated with motor memory reorganisation and  consolidation20.

Fast and slow neural dynamics
In this study, we also aimed to investigate the relationships between fast transient NDs disclosed by HMM analy-
ses and slower neural activity as reflected by functional connectivity (FC). Although HMM analyses highlighted 
transient networks with spatial topographies close to part of the RS networks, the link between these two meas-
ures still needs to be clarified, which might partly stem from core methodological differences. Indeed, whereas 
HMM is based on power envelope covariance, FC relies on correlation metrics. Notwithstanding, Seedat and 
 colleagues105 showed that rsFC correlates with burst coincidence, suggesting that transient, short-lived power 
bursts underlie the functional connectivity of RS networks. However, we found negative correlations between the 
HMM State 7 network’s temporal parameters and rsFC before ML, suggesting an inverse relationship between 
bursts and connectivity in this state. It also indicates that the associations between HMM temporal parameters 
and rsFC are not simply due to the influence of motor practice since both measures already correlated at base-
line (RS 1) before learning, but rather reflect trait-level characteristics of neural processing. When considering 
relationships between these neural measures and behaviour, the picture becomes more complex. Better motor 
performance was both related to reduced associations with HMM temporal parameters and increased con-
nectivity. It suggests that motor skills may be supported by more stable, consistent patterns of neural activity 
than by transient, variable  NDs62. This hypothesis is supported by the fact that HMM State 3 and 8 networks 
exhibited robust correlations with either BMP or Learning Index in terms of HMM temporal parameters but 
not of connectivity measures. Additionally, temporal parameters were not associated with connectivity in these 
two state networks.

Limitations and future directions
This study’s limitations include the absence of a control task to distinguish between motor learning, consolida-
tion, and execution components. We circumvented this by using early FTT learning session blocks (blocks 2 and 
3) as proxies for baseline motor ability, assuming minimal procedural integration at this stage. This approach is 
supported by the strong correlation observed between baseline performance and BMP, suggesting that BMP is 
mainly influenced by initial motor skills. Further validation was provided by correlating BL with HMM states’ 
parameters, yielding similar patterns.

Another limitation is the lack of a nocturnal sleep-deprivation group, hindering our ability to differentiate 
between sleep- and time-dependent consolidation effects on the next day. Our analysis also did not address 
sleep-dependent changes or correlations between nocturnal sleep features and behavioural indices.

For the HMM analysis, we chose eight states, balancing the need for comprehensive data representation 
against redundancy. This choice was based on the seminal paper of Baker et al.38 and our lab’s  experience42,62,106,107, 
aiming to avoid missing critical neural activities or fragmenting them into redundant  states105.

Despite these limitations, our study paves the way for future research in several areas. One promising direc-
tion is to differentiate between higher and lower performers and more effective learners. Future studies could 
categorize participants based on performance and learning metrics to identify neural markers in these domains.

Conclusion
To sum up, the present study offers insights into the NDs underlying motor learning and the role of sleep in 
memory consolidation. Fast NDs revealed by HMM states appear to primarily reflect a trait-like neural processing 
predictive of individual motor abilities. On the other hand, slower NDs identified by rsFC highlight the critical 
role of the transient boost window for motor learning, with re-introduction to the task eliciting neural dynamic 
changes most prominently in this period. Induction has no effect in the silent window, suggesting a stabilised, 
less malleable neural trace. The next day, induction effects were observable again but reduced compared to the 
boost window, possibly reflecting sleep- or time-dependent re-organisation of ML-related neural networks. Dif-
ferential associations between performance and HMM and connectivity parameters suggest that motor skills are 
supported by more stable, consistent patterns of neural activity than by transient, variable NDs. Overall, it high-
lights the importance of integrating multiple methods to understand NDs in motor learning comprehensively.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.
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