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Using U‑Net convolutional neural 
network to model pixel‑based 
electrostatic potential distributions 
in GaN power MIS‑HEMTs
Bang‑Ren Chen 1, Yu‑Sheng Hsiao 2, Wei‑Cheng Lin 1, Wen‑Jay Lee 3*, Nan‑Yow Chen 3* & 
Tian‑Li Wu 1,2,4*

This study demonstrates a novel use of the U-Net convolutional neural network (CNN) for modeling 
pixel-based electrostatic potential distributions in GaN metal–insulator-semiconductor high-electron 
mobility transistors (MIS-HEMTs) with various gate and source field plate designs and drain voltages. 
The pixel-based images of the potential distribution are successfully modeled from the developed 
U-Net CNN with an error of less than 1% error relative to a TCAD simulated reference of a 500-V 
electrostatic potential distribution in the AlGaN/GaN interface. Furthermore, the modeling time of 
potential distributions by U-Net takes about 80 ms. Therefore, the U-Net CNN is a promising approach 
to efficiently model the pixel-based distributions characteristics in GaN power devices.
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Gallium nitride high electron mobility transistors (GaN HEMTs) are attractive due to two-dimensional electron 
gas (2DEG), large breakdown E-field, and the wide bandgap. Recently, thanks for the insulator under the gate 
metal, high performance power metal–insulator-semiconductor high electron mobility transistors (MIS-
HEMTs) have been demonstrated1–3, which is promising for the power switching applications. However, the 
high electrical filed in the access region during an off-state drain bias stress can lead to the earlier breakdown, 
defect generations and trapping effects, limiting the performance and stability of these GaN HEMTs4,5. To address 
these issues, field plates (FPs) have been designed to optimize the electrostatic potential6,7; this is crucial for 
performance and reliability, particularly in GaN HEMTs for high-power applications. Numerical simulation 
techniques, such as technology computer-aided design (TCAD) simulations, have been widely used for modeling 
electrostatic potentials8,9. However, these simulations are time-consuming because of the complexity of the 
heterojunction and underlying physics. Moreover, although analytical models are often used to model device 
electrical characteristics10,11, analytical models cannot be efficiently applied to devices with different materials 
and structures.

Recently, high-performance computing has enabled the use of deep learning techniques to predict the 
electrical properties of devices from the input parameters12–17. However, since fully connected neural networks 
are not designed for image-related tasks, electrostatic potential modeling in previous studies has been limited 
to one-dimensional devices12. On the other hand, the convolutional neural network (CNN) based approach18–27 
is also attractive for pixel-based image prediction and segmentation, which has been widely used in the 
biomedical sciences21,22,24,25 due to local connection and weight-sharing advantages. Still, the applications 
of CNN-based approach are limited in the semiconductor research. Recently, one study reported that the 
pixels of the two-dimensional landscape of low-voltage Si devices could be modeled by a CNN with a U-Net 
architecture26. Note that the advantage of using a U-Net CNN is that, in general, U-Net CNN requires only few 
images to have a relatively good results23–27. The network of U-Net is structured with a contracting path and an 
expansive path, forming its distinctive U-shaped architecture. The contracting path embodies a conventional 
convolutional network, utilizing a series of convolution applications, each paired with a rectified linear unit 
(ReLU) and a subsequent max pooling operation. This phase systematically diminishes spatial information while 
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amplifying feature data. Conversely, the expansive pathway unites feature and spatial information by employing 
up-convolutions and merging them with high-resolution features obtained from the contracting path through 
concatenation. However, this work26 is limited to the dimensional variation with only considering the impact 
of on-state voltage that directly applied at the surface of the semiconductor with simplified symmetric device 
design that is not practical for the real device fabrication, which results from the relative compact and shallow 
network constructed by only 4 layers of contracting path and the expanding path. Furthermore, the impacts 
of the external dimensional variations, e.g., field plate variations on top of the semiconductor, on the potential 
distribution inside the semiconductor are not discussed26, which is more practical for the consideration of the 
semiconductor design.

In this work, we demonstrate U-Net CNN approach to model the pixel-based electrostatic potential image 
in GaN power MIS-HEMTs considering the different gate and source field plates and drain voltages, showing 
that the electrostatic potential can be accurately and effectively modeling by using the U-Net CNN approach. 
Our modified U-Net is consisted of 7 layers of the contracting path and 7 layers of the expanding path. Each 
contracting path is consisted of 2 convolutions with ReLU followed by a maxpooling function. Last two layers 
of the contracting path even followed by a dropout function in order to avoid the overfitting problem. On the 
other hand, each layer of the expanding path is consisted of a upsampling with ReLU, the concatenation with 
the data from the counterpart of the contracting path, and 2 convolutions with ReLU.

Device schematic and typical electrical property
Schematic of a GaN MIS-HEMT is shown in Fig. 1. The electrostatic potentials in this work are generated by 
Sentaurus TCAD for various gate and source field plate designs and different applied drain biases ranged from 
100 to 500 V with a step of 100 V. The gate and source field plates are designed by considering the ratio compared 
to the gate-to-drain distance (LGD) as shown in Eq. (1) & (2). Please note that the ratio of the gate and source 
field plates ranges from 0 to 1. The field plate designs used in this work are shown in Table 1.

A total of 80 images representing the electrostatic potential distribution were generated through TCAD 
simulations that ran for over 640 h. Figure 2 presents an example of the pixel-based images of electrostatic 
potential distribution generated from TCAD simulation with consideration of the gate FP ratio, source FP ratio, 
and drain voltage of 0.8, 0.8,and 500 V, respectively.

Methodology
Figure 3a presents the workflow for predicting the pixel-based electrostatic potential of the GaN MIS-HEMTs 
using a U-Net CNN model and schematics of the input layers. The images of device structures are divided into 
6 layers to form the matrix representing the material information and applied voltage: (1) GaN, (2) AlGaN, (3) 
AlN, (4) source/gate/drain metal, (5) nitride, and (6) the applied bias (Fig. 3b). For layers 1–5 in the one-hot 

(1)Gate field plate ratio =
LFPGate
LGD

(2)Source field plate ratio =
LFPSource.extra
LSource.extra

Figure 1.   Schematic of the GaN MIS-HEMTs with the gate and drain field plate designs.

Table 1.   The field plate designs used in this work.

Gate field plate ratio 0.1 0.3 0.5 0.8

Source field plate ratio 0.1 0.3 0.5 0.8
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matrix, if the pixel location is the targeted materials, it will be recorded as “1” or “0” for not the targeted materials. 
Forthe 6th layer, the voltage was linearly normalized to a range of 0–1.

The U-Net CNN consists of two segments: the down-sampling side and the up-sampling side as shown in 
Fig. 4. The down-sampling side contains eight rows of convolution and maxpooling. The up-sampling side 
contains eight rows of up-sampling, convolution, and concatenation. The model is trained and evaluated by the 
mean-squared error (MSE) loss function, which measures the error between the output electrostatic potentials 
from the developed U-Net CNN and the reference electrostatic potential from the TCAD simulations. The goal of 
the training process is to minimize the loss function by adjusting its parameters, resulting in the better modeling. 
The optimizer for the iterations is Adam algorithm with an initial learning rate of 5 × 10−6. After the model is 
constructed, the images of the electrostatic potential distribution can be visualized for further verification.

The TCAD generated datasets are randomly divided into two groups: (1) the images for the training (72 
images) and (2) the image for the verifications (8 images). The images for the verification purpose are not shown 
to the model during the training. Hence, they are suitable to verify the performance of the trained model.

Results and discussions
Figure 5 shows the decreases of the mean square error (MSE) during the training process, suggesting that 
developed U-Net CNN is efficient to minimize the error between the output electrostatic potentials from the 
developed U-Net model and the reference electrostatic potential from the TCAD simulations. Note that the 
TCAD computational environment is equipped with an 8 core Intel Xeon CPU, 47GiB of RAM, while the 
machine learning environment is equipped with a GPU of an Nvidia Tesla V100. Also, the training time of the 
U-Net CNN model is about 21.8 h.

Figure 6 shows the side-by-side comparison of the simulation results from the TCAD and the modeling results 
(output) from the trained U-Net model in the dataset of the image for verifications. Furthermore, a less than 1% 
error of the electrostatic potential distribution in AlGaN/GaN interface can be obtained, indicating the excellent 
consistent results (Fig. 7). Furthermore, the modeling time of potential distributions by U-Net takes about 80 ms.

Conclusion
In this work, the modeling of the electrostatic potential distributions is successfully demonstrated for the first 
time by considering the pixel-base images using the U-Net CNN with the different gate and source field plate 
designs and applied drain voltages in GaN power MIS-HEMTs. The different gate and source field plate designs 
and drain voltages are generated by TCAD simulation as references in this study, and the corresponding pixel-
based electrostatic potential distribution images are modeled by the U-Net CNN. Less than 1% error of a 500 V 
electrostatic potential modeling in the AlGaN/GaN interface between the developed U-Net model and the 
reference electrostatic potential from the TCAD simulations can be achieved (error equation = (Usimulation—
UU-Net)/Usimulation), indicating a successful modeling using developed U-Net CNN approach. Note that the 
modeling by the U-Net CNN requires only 80 ms, which is a huge speed improvement compared to the TCAD 
simulations. In sum, the U-Net CNN approach is promising for the accurate and efficient methodology in 
modeling the distribution-based characteristics, e.g., electrostatic potential, electric filed, current density, etc., 
in GaN power devices.

Figure 2.   An example of the pixel-based images of electrostatic potential distribution generated from TCAD 
simulation.
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Figure 3.   (a) An example of the electrostatic potential modeled by U-Net CNN and (b) the schematics of the 6 
input layers.
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Figure 4.   The simplified schematic of a U-Net model.

Figure 5.   MSE records during the training process.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8151  | https://doi.org/10.1038/s41598-024-58112-9

www.nature.com/scientificreports/

Data availability
Data inquiries can be directed to the corresponding author.

Received: 9 September 2023; Accepted: 25 March 2024

Figure 6.   Comparison of electrostatic potential distributions from (a) the TCAD simulation and (b) the 
developed U-Net model.

Figure 7.   Comparison of electrostatic potential in AlGaN/GaN interface from the TCAD simulation and the 
developed U-Net model.
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