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An original aneuploidy‑related 
gene model for predicting 
lung adenocarcinoma survival 
and guiding therapy
Yalei Zhang 1,2* & Dongmei Li 1,2

Aneuploidy is a hallmark of cancers, but the role of aneuploidy-related genes in lung adenocarcinoma 
(LUAD) and their prognostic value remain elusive. Gene expression and copy number variation (CNV) 
data were enrolled from TCGA and GEO database. Consistency clustering analysis was performed 
for molecular cluster. Tumor microenvironment was assessed by the xCell and ESTIMATE algorithm. 
Limma package was used for selecting differentially expressed genes (DEGs). LASSO and stepwise 
multivariate Cox regression analysis were used to establish an aneuploidy-related riskscore (ARS) 
signature. GDSC database was conducted to predict drug sensitivity. A nomogram was designed 
by rms R package. TCGA-LUAD patients were stratified into 3 clusters based on CNV data. The C1 
cluster displayed the optimal survival advantage and highest inflammatory infiltration. Based on 
integrated intersecting DEGs, we constructed a 6-gene ARS model, which showed effective prediction 
for patient’s survival. Drug sensitivity test predicted possible sensitive drugs in two risk groups. 
Additionally, the nomogram exhibited great predictive clinical treatment benefits. We established a 
6-gene aneuploidy-related signature that could effectively predict the survival and therapy for LUAD 
patients. Additionally, the ARS model and nomogram could offer guidance for the preoperative 
estimation and postoperative therapy of LUAD.
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Lung cancer now ranks the top two major causes of cancer-relevant mortalities in both sexes all over the world1. 
The latest data showed that global new lung cancer deaths in 2020 was close to 1.8 million1. Lung adenocarci-
noma (LUAD), which is the predominate type of lung cancer2,3, has witnessed an increase in incidence in the last 
15 years and become the most infiltrative form of lung cancer4,5. For LUAD patients, the treatment results are 
far from satisfactory due to the delay in diagnosis and limitations of traditional therapies6. Hence, discovering 
novel biomarkers and individualized prognosis are urgently needed to improve early detection and treatment 
of LUAD patients.

Aneuploidy, also known as somatic cell copy number alterations, is widely detected in human tumors and 
has been considered as the cause of tumorigenesis7. Researchs on prostate cancer patients and head and neck 
squamous cell carcinomas pointed out that the increase of tumor aneuploidy contributed to a higher risk of fatal 
diseases8,9. The research on aneuploidy has also expanded to the field of lung cancer. Gao B’s team descripted a 
landscape of chromosome arm aneuploidy in LUAD in detail10. In non-small cell lung cancer (NSCLC) patients 
undergoing radiotherapy, aneuploidy was reported to cooperate with mutational burden for survival evaluation11. 
Spurr LF et al.12 proposed that aneuploidy in cancer could help predict survival after immunotherapy in vari-
ous cancers. These results indicated that aneuploidy may be a useful biomarker for tumor immunotherapy. In 
addition, copy number variation (CNV) is a polymorphism found in the human genome that primarily involves 
DNA segments larger than 1 kb. It has been reported that in cancer cells, chromosomal aneuploidy can lead 
to copy number alterations13. Hu et al.14 identified a total of nine genes to be able to independently predict the 
prognosis of breast cancer patients based on public databases of breast cancer and CNV data. Bian et al.15 com-
prehensively analyzed CNV differential data and differentially expressed gene data from TCGA and screened 
eight CNV driver genes (including AKR1B15, TRIM16L, CBX2, CDCA8, EZH2, FLVCR1, EPS8L3, and GPRIN1) 
to generate a prognostic model that could well predict the prognosis of patients with hepatocellular carcinoma. 
In particular, there are studies on cancer biomarkers based on screening of aneuploidy-related genes that remain 
unclear. In addition, there is a lack of models for indicating the efficacy of immunotherapy or prognosis in LUAD 
based on aneuploidy.

To our knowledge, it is only the first time that risk modeling based on aneuploidy-related genes and screen-
ing of key genes to predict patient prognosis have been performed in LUAD. Firstly, consensus clustering16 was 
applied to classify different patient subgroups using the CNV data from TCGA database. Then, after intersecting 
DEGs between subgroups for WGCNA17 and aneuploidy score related genes, LASSO analysis18 was performed. 
Finally, 6 genes were selected and an aneuploidy-related model was constructed to guide survival prediction and 
therapy selection for LUAD patients.

Material and methods
Ethics statement
Data in our study were downloaded from online databases without any in vitro or in vivo tests.

Study source
The latest expression data and clinical follow-up information of 387 LUAD samples were downloaded from the 
TCGA database (https://​cance​rgeno​me.​nih.​gov, access date: June 9, 2023) as the testing cohort. The GSE31210 
dataset with clinical survival information was retrieved from the Gene Expression Omnibus (GEO, https://​www.​
ncbi.​nlm.​nih.​gov/​geo/, access date: June 9, 2023) website as the validation cohort. Genomic aneuploidy score for 
TCGA-LUAD samples (Table S1) was derived from an article19. Additionally, two immunotherapeutic datasets 
with anti- programmed cell death 1 (PD-1) checkpoint inhibition therapy GSE7822020 and GSE13522221,22 were 
selected from the GEO database. It is worth mentioning, this study aimed to predict prognosis, immunotherapy 
response in LUAD samples, thus didn’t need healthy individuals.

Cluster analysis
Based on the copy number variation data from the TCGA database, GISTIC 2.0 software (version 6.15.28, https://​
cloud.​genep​attern.​org, refgene file = Human_Hg19.mat, focal length cutoff = 0.50, gene gistic = yes, confidence 
level = 0.9. Other parameters were set as default)23 was used to analyze amplification and deletion regions using 
TCGA-LUAD data. Then, consistency clustering analysis was conducted. The ConsensusClusterPlus R package 
(parameters: maxK = 5, reps = 100, pItem = 0.8, pFeature = 1, clusterAlg = “kmdist”, distance = “pearson”)16 was 
implemented. The optimal number of clusters was determined by cumulative distribution function (CDF) and 
CDF Delta area curve.

Evaluation of immune cell infiltration in different clusters
The xCell tool offers 64 cell types, including immune cells, stromal cells, stem cells, and other cells. Therefore, the 
xCell algorithm was used to calculate the scores for 64 cell types in the xCell R package (xCellAnalysis function 
run with the ‘rnaseq = TRUE’ option)24. For supplement, the sum of immune and stromal scores was computed 
through ESTIMATE R package25.

Identification of differentially expressed genes in clusters
Differential gene analysis was conducted applying the R package “limma”26 for distinguishing the DEGs between 
different clusters. Filtering criteria was set at log2 fold change |log2FC|> log2 (1.2) and false discovery rate 
(FDR) < 0.05 using BenjaminiHochberg correction27. Volcano and Venn plots were employed to display the 
results.

https://cancergenome.nih.gov
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cloud.genepattern.org
https://cloud.genepattern.org
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Co‑expression network construction
WGCNA can gather genes and recruit modules through analogous gene expression patterns and investigate the 
correlation between modules and particular characteristics (clinic pathologic feature of patients, etc.)28. Hence, 
we applied the R package “WGCNA”17 to generate a scale-free co-expression network using the obtained DEGs.

Establishment of a prognostic risk model for LUAD patients
Based on aneuploidy-related key module genes, Univariate cox regression analysis was conducted to screen 
genes relevant to LUAD prognosis. Subsequently, glmnet in the R software package (parameters: alpha = 1 and 
nlambda = 100)29 was used for LASSO Cox regression analysis, followed by stepwise multivariate Cox regression 
analysis. The aneuploidy-related gene scores (ARS) was calculated based on the following formula (1):

The βi here means the coefficient value of selected gene, and Exp i means the expression level of selected gene.
The surv_cutpoint function in survminer package30 was adopted to distinguish the optimal point to separate 

LUAD patients into high and low ARS groups.

Construction of a nomogram and validation
The independent indicators such as ARS and clinical features were used to design a nomogram applying “rms” 
R package (parameters ‘lp = F, maxscale = 100, fun.at = c(1,0.8,0.6,0.4,0.2,0)’ for ‘nomogram’)31 in TCGA-LUAD 
cohort. Calibration curves were plotted to evaluate the consistency of the model between the ideal and actual 
status. The clinical practicality of the nomogram was also evaluated adopting decision curve.

LUAD cell line and drug sensitivity prediction
Drug sensitivity data concerning LUAD cell lines were downloaded from Genomics of Drug Sensitivity in Can-
cer (GDSC) database32. The antitumor drug area under concentration–time curve (AUC) was employed as the 
drug response index, Spearman correlation analysis was conducted to compute the relevance between AUC and 
ARS. |Rs|> 0.35 and FDR < 0.05 were defined as noticeably relevant. At the same time, we also analyzed the drug 
sensitivity in all the risk groups. The AUC values of LUAD cell lines were collected from The Cancer Cell Line 
Encyclopedia (CCLE) database33 and correlation and difference analysis were performed.

Statistical analysis
All statistical analyses were performed using R software (version 4.0.3). The prognostic differences were displayed 
through Kaplan–Meier curves along with log-rank test. Receiver operator characteristic (ROC) curves were 
drawn using “timeROC” package (cause = 1, weighting = “marginal”, times = c(1,3,5) and iid = TRUE)34. Moreo-
ver, Sangerbox35 (http://​sange​rbox.​com/​home.​html) was used for data processing in this research. Statistical 
significance was defined at p value < 0.05.

Results
Identification of molecular subtypes based on CNV data
The CDF and CDF Delta area curves showed that a stable clustering result was obtained when cluster number k is 
selected as 3 (Fig. 1A,B). The clustering TCGA-LUAD samples in a clustering heatmap displayed clear boundaries 
among three molecular subtypes (Fig. 1C). Meanwhile, the survival analysis demonstrated that the C1 subtype 
exhibited a longer survival time compared to the C2 and C3 subtypes (Fig. 1D). The amplification and deletion 
regions in the three clusters were shown in heatmaps (Fig. 1E,F). We found that the C1 subgroup with the best 
prognosis exhibited the least gene amplification and deletion. Finally, analysis on the distribution of different 
clinical characteristics in three subtypes demonstrated that C1 subtypes was characterized by more female, age 
over 60 years, and more patients in T1 early stage (Fig. 2).

C1 subtypes with better prognosis exhibited higher level of immune infiltration
Subsequently, we analyzed the immune infiltration status among the three subtypes. Xcell algorithm revealed 
that the higher scores of Dendritic cells (DC), activated dendritic cells (aDC), conventional dendritic cells 
(cDC), immature dendritic cells (iDC), plasmacytoid dendritic cells (pDC), B cells, CD8 + T cell, CD8 + Central 
Memory T cell, endothelial cells, epithelial cells, fibroblasts, macrophages, macrophages M1, macrophages M2, 
immunescore and microenvironmentscore were enriched in C1 subtypes (Fig. 3A). ESTIMATE analysis further 
supported above finding, as C1 subtypes had the highest Stromal Score, Immune Score and ESTIMATE Score 
among 3 clusters (Fig. 3B).

Screening of differentially expressed genes
As displayed in Fig. 4A–C. The most 6287 DEGs (3048 up-regulated and 3239 down-regulated) were identified 
in C1 and C3 clusters. 2297 DEGs (1267 up-regulated and 1030 down-regulated) were identified in the C1 and 
C2 clusters. 1686 DEGs (968 up-regulated and 718 down-regulated) were identified in the C2 and C3 clusters. By 
integrating three groups of DEGs, we obtained a total of 696 common DEGs (Fig. 4D). Functional enrichment 
analysis to further understand the differences in gene and functional levels between clusters. Overall, immune-
related pathways were activated in the C1 subtype, and cell cycle-related pathways were activated in C2 and C3 
(Supplementary Fig. 1A–C).

(1)ARS =

∑
βi × Exp i

http://sangerbox.com/home.html
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Identification of key modules genes based on co‑expression network
We based our data on 387 expression profiles in the TCGA-LUAD database and proposed differentially expressed 
genes from them. When the correlation coefficient is greater than 0.9, the optimal soft threshold is set to 7 to 
screen for co-expressed modules. To ensure that the network is scale-free, we set β to 12 and convert the expres-
sion matrix to a topology matrix. Following the criteria for hybrid dynamic shear trees, the number of genes 
per gene network module was set to a minimum of 30. (Fig. 5A,B). We compute the eigengenes of each module 
in turn and synthesize the closer modules into new ones. Finally, a total of nine modules were identified for 
subsequent analysis (Fig. 5C). The turquoise module was highly related to aneuploidy score (Fig. 5D). Thereby, 
a total of 1785 distinctly correlated module genes in this module were selected for further analysis.

The establishment of an ARS model based on aneuploidy‑related module genes and validation
As 1785 module genes were distinctly correlated with aneuploidy score, we first performed Univariate cox regres-
sion analysis and identified 116 genes closely connected to LUAD prognosis (p < 0.01, Supplementary Fig. 2A). 
12 out of the 166 genes were preserved by LASSO-cox regression model with lambda at 0.0135 (Supplementary 
Fig. 2B,C). Further, through stepwise multivariate regression analysis, 6 genes were retained for establishing an 
ARS model. The detailed information of these genes was listed in Table 1. The expression levels of these 6 genes 
combining clinical features were displayed in Fig. 6A. In addition, we analyzed by multivariate cox regression 
to be used to further evaluate these 6 key genes (Fig. 6B). Each patient’s ARS was calculated based on the fol-
lowing formula (2):

Correlation analysis between 6 key genes and genes affects aneuploidy showed a significant association (sup-
plementary Fig. 3), indicating those genes closely correlated aneuploidy. Given optimal cutoff value, 151 patients 
were stratified into high ARS group, and 236 patients were separated into low ARS group. Patients with high 
ARS had worse survival status (even dead) and shorter survival time (Fig. 6C,D), indicating that samples with 
high ARS had poorer prognosis. Time-dependent ROC analysis validated the predictability of the ARS signature 

(2)
ARS = −0.183× Exp IRX5− 0.184× Exp EDA2R

+ 0.522× ExpMAPK1IP1L + 0.23× Exp SEC61G

+ 0.124× Exp FAM83A+ 0.094× Exp GPR37

Figure 1.   Identification of molecular subtypes based on CNV data. (A) CDF curve from k = 2–5. (B) CDF 
Delta area curve when k = 2–5. (C) A clustering heatmap when k = 3 in TCGA-LUAD cohort. (D) Kaplan–Meier 
survival analysis. (E) Amplification regions in three clusters. (F) Deletion regions in three clusters.
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in LUAD as all values of area under the curve were higher than 0.6 (Fig. 6E). The model was also validated in 
GSE41613 dataset (Fig. 6F–H). In addition, as shown in Supplementary Fig. 4, there was a significant difference 
in the distribution of the three subtypes in the high and low ARS groups. We found that the proportion of C3 
was the largest in the high ARS group, which was associated with its poorer prognosis.

Construction and assessment of the nomogram
Univariate and Multivariate cox analysis showed only ARS and stage had prominent relevance to prognosis 
(Table 2). Therefore, a nomogram was designed ARS and stage. Figure 7A exhibited a liner chart to calculate 
survival rates of a patient. The total score was obtained through adding all the individual scores. The calibration 
curve showed favorable consistency between the predicted and ideal values of 1, 3, 5 years survival time (Fig. 7B). 
From the decision curve, both the nomogram and ARS had the optimal clinical net benefits (Fig. 7C). Briefly, 
the nomogram for LUAD had remarkable discrimination and calibration capacity.

Immunotherapy and drug sensitivity analysis applying ARS model
Immune checkpoint inhibitors play a crucial role in cancer immunotherapy and has been widely adopted to 
treat multiple types of cancers36. PD-1 and its ligand (PD-L1) are preferential therapeutic targets for immune 
checkpoint inhibitors37,38. We selected two immunotherapy datasets involving anti-PD-1 treatment to evaluate 
the potential of ARS model for immunotherapy. Based on our previously confirmed ARS formula and classifying 

Figure 4.   Differentially expressed genes analysis among 3 clusters. (A–C) Volcano plot depicting DEGs among 
3 clusters. (D) Venn diagram showing the intersection of DEGs among 3 clusters.
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Figure 5.   Co-expression network construction and identification of key modules. (A,B) Screening of soft 
thresholds and the relationship between soft thresholds and connectivity. (C) Building a hierarchical clustering 
tree. (D) Correlation analysis of 9 modules with clinical information and aneuploidy score (the correlation 
coefficient and p value were filled in each intersecting grid). The grey modules are collections of genes that 
cannot be aggregated to other modules.
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method, patients treated by immunotherapy were successfully divided into high and low ARS groups. As seen in 
GSE135222 cohort, low ARS groups had prolonged survival time. Time-ROC analysis demonstrated the predic-
tive capacity of the model. Higher proportions of progressive disease (PD)/stable disease (SD) were observed in 
high ARS group (Fig. 8A). Similar phenomenon was also detected in GSE78220 cohort with more PD patients 
in high ARS group (Fig. 8B). As for drug sensitivity prediction, high ARS patients were sensitive to MG-132, 
while low ARS patients were more sensitive to Erlotinib and Remodelin among 6 closely relevant medications 
selected from GDSC database (Fig. 8C,D). In another CCLE database, high ARS patients were sensitive to 
Erlotinib and ZD-6474, while low ARS patients were more sensitive to Sorafenib among 4 closely correlated 
medications (Fig. 8E,F).

Discussion
The number of patients with LUAD is increasing significantly, and LUAD has been proven as the most prevalent 
subtype in lung cancers39. Along with in-depth investigations on cancer, aneuploidy involves point mutations, 
and whole-chromosome gains and losses as signs of cancer often occurs in an array of cancers40,41. Therefore, 
exploring aneuploidy relevant genes to evaluate the prognosis of patients with LUAD is meaningful. In this study, 
we firstly stratified TCGA-LUAD patients into 3 clusters based on CNV data with significant differences in the 
patterns of amplification and deletion in genomic regions. Given proper subgroup subtyping, we integrated inter-
secting DEGs and performed WGCNA and correlation analysis concerning aneuploidy to acquire significant hub 
module genes. Lasso analysis was then performed to build a 6-gene ARS model and a nomogram. Collectively, 
the ARS model contributed to the survival prediction for LUAD patients.

Reduced immune infiltration in high aneuploidy samples was observed within numerous cancer types19. 
Intensive work found that aneuploidy was irrelevant to the expression of immune signaling markers, positively 
correlated with genes of immune evasion, and could reduce response to immunotherapy12,42,43. Consistent with 
previous research, in the initial TCGA-LUAD grouping, C1 subgroup with a low degree of chromosomal CNV 
displayed favorable prognosis and high levels of immune infiltration. Patients in immunotherapy datasets were 
also divided into high and low ARS group based on the ARS model. Similarly, low ARS group patients displayed 
a distinct survival advantage and more active response to immunotherapy. Our work further supported the 
view that cancer aneuploidy could help predict patients’ survival after immunotherapy in future cancer therapy. 
More importantly, aneuploidy-related genes in specific cancer were expected to become drug research targets 
for cancer therapy.

A robust ARS model including 6 genes (IRX5, EDA2R, MAPK1IP1L, SEC61G, FAM83A and GPR37) was 
constructed. Cancer-related studies have enlightened the significance of these genes in tumorigenesis and patho-
genesis. The Iroquois homeobox gene 5 (IRX5) facilitated metastasis of colorectal cancer cells via suppressing 
the RHOA-ROCK1-LIMK1 axis44. Another colorectal cancer study discovered that IRX5 improved genomic 
instability in colorectal cancer cells as overexpressed IRX5 decreased tumor cell proliferation and promoted 
G1/S cell cycle arrest and senescent activity45. In our research, up-regulated IRX5 level was detected in high ARS 
group with poor prognosis, indicating an anticancer effect of IRX5. The possible mechanism should be analyzed 
in the future. EDA2R was a direct target of wild-type TP53. The enhanced expression of EDA2R in specimens 
may explain an unfavorable prognosis in ovarian cancer with wild-type TP5346. A reverse relationship between 
immune-related gene riskscore and EDA2R were also uncovered in other LUAD study47. Urine proteome profil-
ing showed that high proportions of MAPK1IP1L could distinguish lung cancer patients from control and other 
cancers47. Sec61 Translocon Gamma Subunit (SEC61G) often played an oncogenic role through enhancing tumor 
cell proliferation48, metastasis49,50 and was negatively correlated with immune cell infiltration51. Therefore, the 
role of SEC61G was also studied in LUAD. Consistent with our finding, a high level of SEC61G was noticeably 
related to a poor prognosis in LUAD patients52. Family with sequence similarity 83 member A (FAM83A) was 
widely recognized as a oncogene, as it was frequently overexpressed in various tumors such as breast cancer53, 
ovarian cancer54 and cervical cancer cells55 or specimens with a poor prognosis. FAM83A was also reported to 
facilitate lung cancer development via wnt and hippo signaling pathways56. Wang H and colleagues discovered 
that regenerating islet-derived family, member 4, stimulated peritoneal metastasis in gastric cancer through G 
protein-coupled receptor 37 (GPR37)57. Xie et al. identified GPR37 as a predictive biomarker for LUAD by obtain-
ing LUAD differentially expressed genes from TCGA. They showed that GPR37 was able to bind to CDK6, which 
in turn induced cell cycle arrest to promote tumor progression in LUAD58. These results suggest the importance 
of studying the potential relationship between aneuploidy-related gene and the prognosis of LUAD patients.

Furthermore, we found that patients in the LUAD high-risk group were more sensitive to MG-132. MG-132 
as a proteasome inhibitor has been shown to be useful in the treatment of lung cancer patients59. Han et al.60 

Table 1.   Genes included for establishment of ARS model.

Gene name Coefficient Full name Category

IRX5 − 0.183 Iroquois homeobox gene 5 Protein coding

EDA2R 0.184 Ectodysplasin A2 receptor Protein coding

MAPK1IP1L 0.522 SEC61 translocon subunit‑gamma Protein coding

SEC61G 0.23 Sec61 Translocon Gamma Subunit Protein coding

FAM83A 0.124 Family with sequence similarity 83 member A Protein coding

GPR37 0.094 G protein-coupled receptor 37 Protein coding
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showed that.MG132 was able to inhibit the growth of Calu-6 lung cancer cells by promoting apoptosis and 
facilitating glutathione depletio. Remodelin is a small molecule inhibitor of N-acetyltransferase 10, which is 
thought to be able to reverse conditions of cancer development, including epithelial-mesenchymal transition, 
drug resistance and hypoxia61. In addition, Erlotinib in combination with signaling inhibitors (e.g., MK-2206) 
is also considered a potential advantage in the treatment of lung cancer62. In our study, patients in the low risk 
group of LUAD were more sensitive to Erlotinib and Remodelin. These results illustrate that a prognostic model 
based on aneuploidy-related genes can provide a good prediction of therapeutic agents for LUAD patients. 
Cancer prognostic models based on CNV-related genes have become a research hotspot for knowing tumor 
prognosis. Hu et al. developed a model to predict the prognosis of breast cancer patients based on CNV-related 
genes. The area of the ROC curve for this model was 0.7, 0.63, and 0.58 in the TCGA test set, while the AUC 
values were 0.66,0.68, and 0.71 in the TCGA all data sets14. In this study, we constructed a risk model based on 
aneuploidy-associated genes with AUC values of 0.7, 0.81, and 0.77 in the GEO cohort, respectively. This sug-
gests that the predictive power of our constructed model is not inferior to that of previous studies. In order to 
facilitate further clinical application, we developed and calibrated a nomogram. The calibration curve showed 
that the nomogram was well calibrated. However, there were also some limitations to the clinical application 

Table 2.   Univariate and multivariate cox analysis for validation the independence of ARS.

Variables

Univariate Multivariate

HR (95%CI) P Significance HR (95%CI) P Significance

ARS 2.7 (2–3.6) 8.8e−12 *** 2.9 (2.1–3.9) 3.9e−12 ***

Age 1.4 (0.93–2.1) 0.11

Gender 1 (0.72–1.5) 0.85

T.stage 1.4 (0.96–2.1) 0.079

N.stage 2.1 (1.4–3.1) 0.00015 *** 0.78 (0.42–1.4) 0.42

Clinical stage 2.5 (1.7–3.6) 8.1e−07 *** 3.1 (1.7–5.5) 0.00017 ***

Figure 7.   Nomogram analysis. (A) Design a nomogram. (B) The calibration curve. (C) The decision curve.
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of the model. Firstly, the signature of 6-gene was only developed using a TCGA cohort and validated in a GEO 
database. The nomogram was designed using only TCGA queue. In the future, we will use more LUAD cohorts 
to further calibrate nomogram for its clinical benefits.

Conclusion
To sum up, our study illustrated that aneuploidy was closely connected to LUAD. Moreover, an ARS model gener-
ated based on 6 aneuploidy relevant genes could help predict LUAD patient’s survival, immunotherapy response 
and treatment selections to sensitive drugs. The present findings may offer a significant basis for future studies.

Data availability
The dataset used in this study is available in GSE31210 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE31​210), GSE78220 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE78​220), GSE135222 (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE13​5222), GSE41613 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​GSE41​613), GSE78220 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE78​220).
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