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Detection of biomagnetic signals 
from induced pluripotent stem 
cell‑derived cardiomyocytes using 
deep learning with simulation data
Takeshi Yamaguchi 1,2*, Yoshiaki Adachi 2, Takashi Tanida 3, Katsutoshi Taguchi 1, 
Yoshinobu Oka 4, Takashi Yoshida 5, Wook‑Cheol Kim 6, Kenji Takahashi 7 & Masaki Tanaka 1

The detection of spontaneous magnetic signals can be used for the non‑invasive electrophysiological 
evaluation of induced pluripotent stem cell‑derived cardiomyocytes (iPS‑CMs). We report that deep 
learning with a dataset that combines magnetic signals estimated using numerical simulation and 
actual noise data is effective in the detection of weak biomagnetic signals. To verify the feasibility of 
this method, we measured artificially generated magnetic signals that mimic cellular magnetic fields 
using a superconducting quantum interference device and attempted peak detection using a long 
short‑term memory network. We correctly detected 80.0% of the peaks and the method achieved 
superior detection performance compared with conventional methods. Next, we attempted peak 
detection for magnetic signals measured from mouse iPS‑CMs. The number of detected peaks was 
consistent with the spontaneous beats counted using microscopic observation and the average peak 
waveform achieved good similarity with the prediction. We also observed the synchronization of peak 
positions between simultaneously measured field potentials and magnetic signals. Furthermore, the 
magnetic measurements of cell samples treated with isoproterenol showed potential for the detection 
of chronotropic effects. These results suggest that the proposed method is effective and has potential 
application in the safety assessment of regenerative medicine and drug screening.

In recent years, induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) have attracted attention as 
cell materials in regenerative  medicine1–3. For example, regenerative therapies are rapidly developing, such as 
the transplantation of cardiac cell sheets created from human iPS cells for patients with myocardial infarction 
or dilated  cardiomyopathy4,5. Additionally, in the field of drug discovery research, screening using iPS-CMs 
is expected to be used as a method for the evaluation of the safety and effectiveness of drug  candidates6,7. For 
such practical applications, rapid and automatable cell safety assessment is mandatory. As a quality evaluation 
for regenerative medical materials, it is necessary to determine the degree of cell differentiation and maturity. 
In drug screening, it is required to detect abnormalities or changes in the beating rhythm of iPS-CMs, such as 
proarrhythmia. The field potential (FP)  measurement8 and membrane potential-sensitive fluorescent  dye7 are 
commonly used as evaluation methods for the electrophysiological properties of iPS-CMs. However, the problems 
that remain are that they are invasive or performed under non-physiological  conditions9.

Synchronized electrical activity in a cell population produces intracellular and extracellular currents, 
which generate weak magnetic  fields10,11. The magnetic fields of a propagating action potential (AP) reflect the 
electrophysiological properties of cells, and their rhythm and variability can be regarded as indicators of cell 
quality and activity. We focus on the merits: magnetic measurement is non-invasive, non-contact, and non-
destructive. Magnetic measurement has the advantage that samples can continue to be cultured and observed 
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after assessment. By contrast, researchers 10,11 have measured magnetic signals from cultured cells in only a few 
studies and measurement remains challenging. A highly sensitive magnetometer is required to detect weak 
magnetic signals from cultured cells. The most sensitive magnetometer in practical use is a superconducting 
quantum interference device (SQUID) magnetometer. In this study, we used the SQUID magnetometer developed 
by our  group12–15.

Using numerical simulation, we preliminarily estimated that magnetic signals from mouse iPS-CMs are 
of the same order of intensity as background noise in the measurement environment. Therefore, it is not easy 
to detect these signals using conventional methods such as visual inspection, frequency analysis, and pattern 
matching. We analyzed the measured data using a fast Fourier transform and autoregressive model, but we found 
no spectra that could be considered magnetic signals originating from the cells. Deep learning has been used 
in electrocardiogram (ECG) analysis for rhythm classification, arrhythmia detection, and filtering out noisy 
 data16–19. Researchers have also reported that deep learning effectively distinguishes between drug-free and 
drugged categories based on  AP20 and predicts arrhythmia from  Ca2+  cycling9. In particular, a long short-term 
memory (LSTM) network is excellent in the classification of time series  data20. Therefore, we hypothesized that 
LSTM networks could effectively detect weak magnetic signals from iPS-CMs and validated this hypothesis. 
In this study, we aimed to evaluate the rhythm of cellular electrical activity and its changes by detecting peak 
regions from the magnetic measured data through an LSTM network classification task. Because there is 
no public database for cellular magnetic signals like PhysioNet for  ECG21, and it is not easy to identify peak 
regions manually, preparing a correctly labeled dataset is an important step. We adopted the approach to train 
LSTM networks using newly generated data by superimposing magnetic signals from iPS-CMs estimated using 
numerical simulation on the actual background noise measured by the SQUID magnetometer.

To verify the feasibility of this method, we artificially generated magnetic signals that mimic cellular 
magnetic fields and measured them. When we attempted peak detection using a trained network, we correctly 
detected 80.0% of the peaks. We also examined the effect of frequency range and noise data on the detection 
results. Additionally, a comparison with the existing peak detection method, the scaled template  technique22, 
demonstrated that deep learning was superior in detection capability. We then measured magnetic signals from 
mouse iPS-CMs on days 19–21 of differentiation. The number of detected peaks was in good agreement with 
the spontaneous beats counted using microscopic observation. The simultaneous measurement data of magnetic 
signals and FPs showed the synchronization of peak positions. Finally, we measured cell samples before and 
after administering a chronotropic drug, isoproterenol, and obtained results that suggested the detectability of 
beating rate changes.

Results
Overview of peak region detection for magnetic signals from iPS‑CMs using deep learning
We aimed to detect peaks for magnetic signals measured from iPS-CMs using deep learning. The flow of peak 
region detection is as follows: The magnetic signals from iPS-CMs estimated using simulation and background 
noise data were combined (added together) to prepare a dataset for network training (Fig. 1a). We defined two 
classes, peak (P) and non-peak (N), and classified each data point into one of the classes. A schematic diagram 
of the network used to classify time series data into two classes is shown in Fig. 1b. The criteria for determining 
peak regions from output labels are shown in Fig. 1c.

Optimization of AP models
As a preliminary step to estimate magnetic signals from mouse iPS-CMs, we created an AP model of ventricular-
type mouse iPS-CMs based on the human iPS-CMs model (Paci  model23). We optimized the six ion channel 
conductances and the maximum current values of the sodium-calcium exchanger and sodium–potassium 
pump, a total of eight parameters, to reproduce the experimental results using the patch-clamp  technique24. We 
performed the optimization using a genetic algorithm (GA)25, which heuristically finds an approximate solution 
by mimicking biological evolution (Supplementary Fig. S1). To evaluate each model in the population, we defined 
a score from five parameters characterizing AP (Fig. 2a) as follows:

We decided that the closer this score was to zero, the better the model reproduced the experimental results. 
We repeated the GAs ten times independently and adopted the model with the best score in this study. 
Considering the significant difference in beating rate between mice and humans, we replaced the current of 
If (funny current), which is involved in the spontaneous beating of  cardiomyocytes26, with that of the mouse 
embryonic cardiomyocyte AP  model27. As a result, the APs computed by the optimized models for each of the 
ten independent GAs converged to nearly the same waveform and the five AP parameters were consistent with 
the experimental values (Fig. 2b, c). The scaling factors of conductances relative to the base model are shown in 
Fig. 2d. The comparison of AP waveforms calculated by the original Paci model, the optimized Paci model (If 
was not replaced), and the adopted model is shown in Fig. 2e.

We also created an AP model of pacemaker-like cells differentiated from mouse iPS cells based on the AP 
model of the sinus node (YNI  model28). We optimized the scaling factors for the five conductances using the 
GAs to reproduce the three AP parameters (MDP, APD90, and Peak) described in previous  studies29. The APs 
computed with the optimized model are shown in Fig. 2f and the scaling factors of the conductances are shown 
in Supplementary Table S1.

(1)Score =
∑

(

APParametermodel−APParameterexperiment

SEexperiment

)2
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Two‑dimensional simulation of the electrical activity of iPS‑CMs
To estimate the magnetic signals generated by cultured iPS-CMs, we performed a two-dimensional (2D) 
electrical activity simulation of the cell population using the two AP models optimized in the previous section. 
We performed the calculations using geometry based on the measured size of the actual cell samples (Fig. 3a). 
As reported in published  studies3,30, we set the cell number ratio between the two cell types to 80:20. We based 
the placement on the observation that pacemaker-like cells are distributed in  clusters31. We modeled a 2D sheet 
of cardiac cells using the following partial differential  equation32:

where V is the membrane potential, Iion is the total membrane current, Cm is the cell capacitance per unit area, ρ 
is the averaged cellular resistivity, and S is the surface-to-volume ratio. Assuming the isotropy of cardiomyocytes, 
we set ρx = ρy and  Sx =  Sy. The time variation of the AP map is shown in Fig. 3b. We observed that excitation 
propagated from the cluster of pacemaker-like cells to the ventricular-type cardiomyocytes.

We calculated the magnetic fields generated from the intracellular flow currents. We set the virtual positional 
relationship between the pickup coils in the three axial directions and a sample to be equivalent to that of the 
actual measurement (Fig. 3c). The calculated waveforms are shown in Fig. 3d. The polarities of the waveforms in 
the x-axis direction and y-axis direction were opposite to each other, and the peak amplitude was 0.153 pT. The 
signal intensity in the z-axis direction was almost zero because the magnetic fields penetrating the coil upward 
and downward in the z-axis direction were approximately the same strength and canceled each other out. We 
estimated the cycle length to be 1050 ms.

(2)∂V
∂t = −

Iion
Cm

+
1

ρxSxCm

∂2V
∂x2

+
1

ρySyCm

∂2V
∂y2

Figure 1.  Overview of peak region detection for magnetic signals from iPS-CMs using deep learning. (a) 
Block diagram of dataset preparation. We prepared data that contained the magnetic signals estimated using 
numerical simulation combined with background noise. We divided them into training, validation, and test 
data in a ratio of 7:1:2 and used them to train a network. (b) Network architecture. The FSST converted the time 
series data to the frequency domain data. After normalization, the data were passed from a sequence input layer 
to an LSTM layer. A fully connected layer with an output size of two equal to the number of classes was followed 
by softmax and classification layers. (c) Determination of peak regions from output label sequences. The label 
specifies whether each data point was of the peak (label ’P’) or non-peak (label ’N’) class. The segments labeled 
class P that were longer than the set threshold were identified as peak regions.
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Preparation of the training dataset
The following procedures were used to add variability to the dataset (Fig. 1a). The peak waveforms estimated 
using simulation were stretched to random time lengths based on a normal distribution. The magnitude of 
variation (coefficient of variation = 0.21) was determined from the measured FP data of iPS-CMs (Supplementary 
Fig. S2). Amplitudes were also randomly varied in the 0.5–2.0 fold range. Background noise data were obtained 
by measuring the magnetic field inside the shielded box with no sample using the SQUID magnetometer. Before 
both data were combined, the simulation data were filtered through high-pass filters (HPF) at 3 Hz, low-pass 
filters (LPF) at 100 Hz, and notch filters at 60 Hz to be consistent with the noise data. An equal number of 

Figure 2.  Optimization of AP models. (a) Five parameters characterizing AP: maximum diastolic potential 
(MDP), maximum upstroke velocity (Vmax), AP duration of 90% repolarization (APD90), APD90/50, and 
beat frequency (BF). (b) APs calculated from the optimized models for ten independent GAs are overlaid. The 
solid black line indicates the best model and the solid gray line indicates the other nine. All APs are shown to 
be aligned with the rise timing as 0 ms. (c) Comparison of the AP parameters. Experimental values of mouse 
iPS-CMs, values calculated using the proposed model, and values calculated using the original Paci model. 
(d) Optimized conductances are shown as scaling factors for the base model. We plotted the scaling factors 
of the optimized models for the ten independent GAs. The numbers in this panel are the conductances of the 
best model. Na: fast sodium current, CaL: L-type calcium current, to: transient outward current, Kr: rapid 
delayed rectifier current, K1: inward rectifier current, f: hyperpolarization-activated cyclic-nucleotide-gated 
funny current, NaCa: sodium-calcium exchanger, and NaK: sodium–potassium pump. (e) Overlay plot of AP 
waveforms calculated using the original Paci model (blue dashed line), optimized Paci model after replacing 
If with that of the mouse embryonic cardiomyocyte model (black solid line), and optimized Paci model (red 
dotted line). (f) Pacemaker-like cell AP model optimized to reproduce the experimental results. The APs 
calculated from the optimized models for the ten independent GAs are overlaid. The solid black line indicates 
the best model and the solid gray line indicates the other nine. All APs are shown to be aligned with MDP as 
0 ms.
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combined and noise-only data were prepared, and Gaussian noise with a standard deviation of 0.01 pT was 
added for data augmentation. The label data paired with the waveform data specified whether each data point 
was a peak (label ‘P’) or non-peak (label ‘N’) class. The dataset was split into 70% training, 10% validation, and 
20% test datasets.

Architecture of the network used for classification
The network architecture (Fig. 1b) started with a sequence input layer. Instead of raw waveforms, the frequency 
spectrum of each data point was calculated using a Fourier synchro-squeezed transform (FSST)33 and used as 
input for training. An LSTM layer was placed next to the input layer. The LSTM layer can learn the long-term 
dependencies of the input  data16. The number of hidden units adjusts the information stored between each 
time step. Too many hidden units can cause  overfitting34 and also have a significant impact on the computation 
time. The number of hidden units was determined to be 400 to balance the computation time and classification 
accuracy (Supplementary Fig. S3). Following the LSTM layer, a fully connected layer was implemented. It took 
the features extracted by the LSTM layer, multiplied them by the weight matrix, and added the bias vector. The 
softmax function was then used as the activation function in a softmax layer, yielding output values between 0 
and 1: the predicted probability of classes. Finally, the cross-entropy loss was computed in a classification layer 
based on the output from the softmax layer. The adaptive moment estimation  algorithm35, which minimizes the 
loss function, was used to optimize each weight matrix and bias vector. From the output labels, the segments 
labeled class P that were longer than the set threshold were identified as peak regions (Fig. 1c). This selection 
eliminated false positives and avoided one peak region being erroneously overcounted because of fragmentation.

Measurement of the background noise
Before the main experiment, the background noise inside the mu-metal magnetically shielded box (MSB) was 
measured using the SQUID magnetometer. The standard deviation of the magnetic flux density for 60 s was 
defined as the noise level. As a result, the noise level was 0.218 pT in the x-axis direction and 0.146 pT in the 
y-axis direction. Because the estimated amplitude of the magnetic signal from iPS-CMs was 0.153 pT, as shown 
in the previous section, the y component of the magnetic field was targeted for peak region detection in the 
experiments with cell samples.

Figure 3.  2D simulation of the electrical activities of iPS-CMs. (a) Cell distribution used in the numerical 
simulation. The space was discretized with Δx = Δy = 60 μm, and 84 × 84 units were used in the calculation. 
Pacemaker-like cells were placed in the lower left corner as a cluster of 1440 units, corresponding to 20% of all 
units. (b) Snapshots of the AP map. The time shown in each snapshot shows the relative time when the peak of 
the magnetic signal is defined as 0 ms. (c) Assumed dimensions of the magnetometer and its virtual position 
relative to a sample. The photo on the right shows the actual vector-type SQUID magnetometer. (d) Calculated 
waveforms of the three perpendicular components of the magnetic field (60 s after the initial conditions). The 
blue dashed line, black solid line, and red dotted line represent the magnetic field’s x, y, and z components, 
respectively.
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Validation of the proposed method using artificially generated magnetic signals
We experimented with artificially generated magnetic signals to verify the feasibility of the proposed method. 
We generated magnetic signals that mimic magnetic fields from mouse iPS-CMs using a function generator that 
could output an arbitrary waveform voltage. Because we recorded the peak occurrence time simultaneously, we 
could use artificially generated magnetic signals as the ground truth to evaluate the peak detection capability of 
deep learning. We generated a magnetic field in the shielded box by passing an electric current through a wire 
under the sensor. To carry a linear current over a sufficiently long distance, we placed the wire along the y-axis 
and recorded the x component of the magnetic field (Fig. 4a). The generated magnetic field was approximated as

where I is the amplitude of the current and r is the distance from the wire to the measurement positions. We 
estimated the observed magnetic field by integrating Eq. (3) over the area of the pickup coil. We applied a current 
that generated a magnetic field that repeated at 1 Hz the peak waveform cut out from the simulation data. 
Representative measurement data from the SQUID magnetometer are shown in Fig. 4b. From top to bottom, the 
results show the measured data when no current was applied (background data), an estimated magnetic signal 
was generated, and a magnetic signal five times stronger than the estimate was generated. Note that the higher 
noise level than that during the cell sample experiment was caused by the x-direction measurement and the 
wire’s presence. Therefore, we adjusted the intensity of the artificial signal so that the signal-to-noise ratio was 
the same as that in the cell sample experiment. We took three 120 s measurements for each intensity. Hereafter, 
we use the intensity multiplier to the estimated magnetic signal as a notation for the data. We used 5.0 × data, in 
which peaks could be discerned with the naked eye, as a positive control.

After network training, we computed the area under the receiver operating characteristic curve (AUROC)36 
for the test data to evaluate classification performance (Fig. 4c). The AUROC was 0.975, which indicated high 
classification performance. Next, we used the trained network to classify the experimental data. The AUROC 
calculated with ground-truth data was 0.920, which was lower than that for the test data, but we still considered 
this network to have good classification performance (Fig. 4d).

Based on a histogram of the segment lengths labeled class P (Fig. 4f), we determined segments longer than 
150 ms as peak regions. An example of superimposing the peak regions detected from the 1.0 × data and the actual 
peak positions is shown in Fig. 4e. Figure 4g shows the comparison of detection for different signal intensities. 
The number of detected peaks increased in proportion to the signal intensity, and we detected significantly more 
peaks in the 1.0 × data (p < 0.001; 50.7 ± 3.5 peaks/min) than in the background data (5.3 ± 2.1 peaks/min). A 
breakdown of the results from the three 1.0 × data during 120 s is shown in Fig. 4h. We detected 80.0% (= 288/360) 
of the peaks correctly. Additionally, we detected only 16.7% of the peaks in the 0.5 × data and detected all the 
peaks in the 5.0 × data (Supplementary Table S2).

Effect of the frequency range and noise data on peak detection, and comparison with the 
scaled template technique
In the analysis described in the previous section, we used the 3.5–12 Hz frequency range of the spectrum 
calculated by the FSST as the data input into the network. To confirm the effect of the frequency range on peak 
detection, we additionally trained LSTM networks in five patterns and compared the detection results: 3.5–20 Hz, 
3.5–40 Hz, 12–20 Hz, 20–40 Hz, and raw data without the FSST (Fig. 5a). Using the network trained in the 
20–40 Hz range and the network trained on raw data, we detected no peaks from the data of any signal intensity. 
Therefore, these results are not shown in the plot. False positives from the background data significantly increased 
when the usage range was 3.5–20 Hz and 3.5–40 Hz (p = 0.019; 17.8 ± 2.2 peaks/min and p < 0.001; 26.7 ± 3.3 
peaks/min) compared with 3.5–12 Hz. From the 1.0 × data, the number of detected peaks was significantly lower 
in the 12–20 Hz frequency range than the others (p < 0.001; 4.3 ± 0.9 peaks/min). For the 5.0 × data, we detected 
almost all peaks, but only 60.0% of the peaks when the usage range was 12–20 Hz. The details of the results are 
shown in Supplementary Table S2. We considered these results affected by the large background noise component 
around 12–20 Hz (Supplementary Fig. S4). We were satisfied with the low false positives from the background 
and decided to continue using the 3.5–12 Hz frequency range to train the network.

We also assessed the detection accuracy when we trained the network using only simulation data without 
superimposing background noise data. The detected peaks unexpectedly increased for data other than 5.0 ×, 
and approximately half were false positives (Fig. 5b and Supplementary Table S2).

Additionally, to compare deep learning with another peak detection method, we tested the scaled template 
 technique22, which is a pattern matching-based method that is effective in the detection of small synaptic events, 
on the same measured data. As a result, we could not detect most peaks except for the 5.0 × data (Fig. 5c).

Detection of magnetic signals from iPS‑CMs
Experiments with artificially generated magnetic signals suggested the feasibility of the proposed method. 
Therefore, next, we attempted to detect magnetic signals from actual cells. We generated embryoid bodies (EB) 
from mouse iPS cells and induced them to differentiate into cardiomyocytes using adherent  culture37. On days 
19–21 of differentiation, we selected cell samples in which only one single synchronized beating cluster spread 
over a large area (> 3 mm square) was observed for magnetic measurement. An example of bright-field images of 
iPS-CMs cultured on a grid-printed glass bottom dish is shown in Fig. 6a. Immunostaining of the beating cluster 
revealed the expression of cardiac marker troponin T (Fig. 6b). We also observed the presence of connexin 43 
in the intercellular region (Fig. 6c), which confirmed the formation of electrical connections via gap junctions. 
We used cells cultured in 100 mm plastic dishes or multi-electrode arrays (MEA)38 for magnetic measurement. 

(3)B =
µ0I
2πr
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Figure 4.  Validation of the proposed method using artificially generated magnetic signals. (a) Schematic 
diagram of the positional relationship between the wire generating a magnetic signal and the SQUID 
magnetometer. The photo on the right shows the inside of the MSB. (b) Representative measurement data 
are shown. From top to bottom, this is the measured data when no current was applied (background data), 
an estimated magnetic signal was generated, and a magnetic signal five times stronger than the estimate was 
generated. (c) ROC curve for the test data. The AUROC was 0.975. (d) ROC curve for the classification results 
against the experimental data. The AUROC was 0.920. (e) Peak regions detected from the 1.0 × data and the 
actual peak positions are superimposed. The solid gray line indicates raw magnetic waveforms. (f) Histogram of 
segment lengths labeled as P class. Results from three 1.0 × data were aggregated. The solid black line indicates 
density estimation. (g) Number of peaks detected from data with different signal intensities. Data are shown 
as mean ± SE (n = 3 for each intensity). *** p < 0.001. (h) Breakdown of the detection results from three 1.0 × 
data during 120 s. The number of correct matches to the true peaks, undetected peaks, and mis-detections, 
respectively.
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Figure 5.  Effect of the frequency range and noise data on peak detection and result from the scaled template 
technique. (a) Comparison of the number of peaks detected by networks trained with the FSST frequency 
ranges of 3.5–12 Hz, 3.5–20 Hz, 3.5–40 Hz, and 12–20 Hz, respectively. The horizontal axis is the intensity 
of the artificially generated magnetic signals. (b) Number of peaks detected by the network trained using 
only simulation data without superimposing background noise data. (c) Number of peaks detected by the 
scaled template technique. All data are shown as mean ± SEM (n = 3 for each intensity). *p < 0.05; **p < 0.01; 
***p < 0.001.

Figure 6.  Preparation of mouse iPS-CM samples. (a) Mouse iPS-CMs adherently cultured on a grid-printed 
glass bottom dish. Cells are spread within the yellow dashed circle, scale bar = 3 mm. (b) Mouse iPS-CMs on 
day 19 of differentiation were immunostained with anti-cTnT (red), scale bar = 40 µm. (c) Stained with anti-
connexin 43 (red), scale bar = 20 µm. In both (b) and (c), nuclei were stained with DAPI (blue). In (c), actin 
was stained with phalloidin (green). (d) Positional relationship between the SQUID magnetometer and the cell 
sample on the 100 mm plastic dish.
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Considering the influence of the material of the culture dish on magnetic fields, we analyzed the number of 
detected peaks separately for each type of dish. The positional relationship between the sensor and the sample 
during measurement is shown in Fig. 6d. We considered the starting point of the excitation propagation estimated 
using microscopic observation to be the position of the cluster of pacemaker cells. We placed the sample in a 
manner consistent with the conditions of the numerical simulation.

Using the network trained for cell experiments, we calculated the AUROC to be 0.961 for the test data 
(Fig. 7a). The network classified each data point, and we determined the peak regions based on its output. Like 
experiments for artificial signals, we set the minimum length for determining peak regions to 150 ms. The 
waveforms of the magnetic field and the FP measured simultaneously on MEA are shown side by side in Fig. 7b. 
The peak regions detected from the magnetic field are visualized as colored bands. We observed synchronization 
in the peak positions of both signals. Figure 7c shows the comparison of the number of detected peaks from 

Figure 7.  Detection of magnetic signals from iPS-CMs. (a) ROC curve for the test data. The AUROC was 
0.961. (b) Waveforms of the magnetic field and the FP. We measured them simultaneously on MEA. The peak 
regions identified from the magnetic field by the network are indicated in purple. (c) Number of peaks detected 
from mouse iPS-CMs. We detected a significantly higher number from iPS-CMs on plastic dishes (n = 9) than 
the control group (n = 10) or MEFs (n = 3). Similarly, iPS-CMs on MEA (n = 8) showed a significant difference 
compared with the control group (n = 8). We obtained the data for the MEA samples used in this comparison 
when only magnetic measurements were performed. (d) The left panel shows the waveform averaged over all 
regions identified as peaks from one cell sample. The right panel shows the waveform estimated using numerical 
simulation. We applied LPF at 12 Hz to both waveforms. (e) Number of peaks detected by the network trained 
by the dataset with a fixed cycle length and amplitude. (f) Comparison of the number of peaks detected from 
data measured before and after we treated iPS-CMs (n = 3) with isoproterenol (final concentration: 10 μM). 
A boxplot is displayed on the right. We made this comparison using the paired t-test. All data are shown as 
mean ± SEM. *p < 0.05; **p < 0.01.
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mouse iPS-CMs with that from the control group. The control was a cell-free sample containing medium only 
in a plastic dish or MEA. We also compared iPS-CMs on plastic dishes with mouse fetal fibroblast (MEF) 
samples, which are not excitable cells. The numbers of detected peaks from iPS-CMs were significantly higher 
(p = 0.004; 27.1 ± 4.6 peaks/min for plastic dishes and p = 0.003; 30.2 ± 5.3 peaks/min for MEA) than those from 
the control group (8.7 ± 2.7 peaks/min for plastic dishes and 8.7 ± 2.8 peaks/min for MEA) and MEFs (5.2 ± 2.0 
peaks/min). The left panel of Fig. 7d shows the waveform averaged over all regions identified as peaks from one 
iPS-CMs sample on a plastic dish. The right panel shows the peak waveforms estimated by the simulation, and 
we observed their similarity.

Figure 7e shows the detection results when we trained the network using magnetic signals with a fixed cycle 
length and amplitude (i.e., no variability). The number of peaks declined from that detected by the default 
network. After subtracting the number of peaks detected from the control group, we compared the result to beats 
per minute (BPM) counted by microscopic observation before magnetic measurement (Table 1). The number 
of peaks detected by the default network was in good agreement with the BPM. By contrast, when we trained 
the network using data without variability, the number of detected peaks was significantly lower than the BPM 
(p = 0.036 for plastic dishes and p = 0.015 for MEA). These findings suggest that the detected magnetic signals 
reflect the actual electrical activity of the cell population and that the addition of experiment-based variability 
to the training data contributes to the classification ability of the network.

Finally, we performed magnetic measurement before and 30  min after the administration of 10  μM 
isoproterenol to iPS-CMs samples on plastic dishes to verify whether we could detect the chronotropic effect of 
the  drug39. As a result, there was a peak increase trend from 19.8 ± 7.5 peaks/min to 38.5 ± 1.0 peaks/min before 
and after administration (Fig. 7f).

Discussion
In this study, we demonstrated the effectiveness of deep learning in the detection of weak magnetic signals from 
iPS-CMs. We solved the problem of the difficulty of obtaining labeled training data using simulated data as an 
alternative. We identified peak regions of biomagnetic signals using classification with LSTM networks and 
evaluated the rhythm and changes in cellular electrical activity. Compared with adult cardiomyocytes, iPS-CMs 
are less mature and their conduction velocity is much  slower40. Therefore, the generated magnetic signal was 
also weaker than anticipated and, as we showed in our simulations, two or three orders of magnitude smaller 
than the results previously reported from the magnetic measurements of other  cells10,11. Its intensity was close 
to the background noise, and it was not easy to identify the peak using techniques such as visual inspection or 
noise filtering. For example, in the waveform of the measured data after denoising with LPF, the region of the 
peaks was still unclear (Supplementary Fig. S5). One of the advantages of deep learning is that it requires no 
prior knowledge or manual preprocessing of the target, and the features used for classification are extracted 
 automatically9. It is considered to be suitable for the analysis of magnetic signals from iPS-CMs, for which the 
information of waveforms is still insufficient.

We obtained the best results in experiments with artificially generated signals when the frequency range 
was limited to 3.5–12 Hz. This result is presumably caused by environmental factors, such as noise centered 
on 12–20 Hz caused by elevators and air conditioning in the  building41, rather than signal characteristics. 
False positives significantly increased when we performed classification using the network trained only using 
simulation data without superimposing background noise. This result suggests that learning not only the signal 
but also the characteristics of noise is essential for the classification task. Therefore, by increasing the variety of 
noise data, it may be possible to reduce the number of false positives, which are currently not negligible. From 
these factors, it may be necessary to update noise data and tune the frequency range each time the measurement 
environment or equipment changes. Since differences in noise between laboratories (for example, the frequencies 
of the commercial power supply that generates hum noise are different, 60 Hz or 50 Hz, depending on the 
country) cannot be ignored, we would like to confirm the robustness and reproducibility of the proposed method 
in multiple locations. By contrast, once we completed network training, the proposed method was superior in 
throughput because the time required for the classification task on the measured data was much shorter than 
for training. In addition, an optically pumped magnetometer, which has sensitivity approaching SQUID and 
does not require cooling, thus reducing running costs, has attracted much attention  recently42. Combining this 
novel miniaturizable sensor with deep-learning data analysis may increase the feasibility of high-throughput, 
large-scale drug screening. Another cutting-edge technology is bioprinting, which can automate the plating 
process of iPSC-CMs without compromising drug  sensitivity7. Replacing manual culture with a bioprinter could 
help speed up and automate the proposed method. We also demonstrated the feasibility of weak biomagnetic 

Table 1.  Comparison of the number of peaks detected using deep learning and BPM counted using 
microscopic observation. Plastic dish: n = 6 and MEA: n = 5. All data are shown as mean ± SEM. The detected 
peaks from the control group were considered false positives and their mean number was pre-subtracted.

Dish type Training data Detected peaks/min (subtracting control) BPM

Plastic dish
Default 19.5 ± 6.8

20.6 ± 2.3
No variability 12.2 ± 3.3

MEA
Default 18.1 ± 3.2

24.6 ± 3.7
No variability 8.4 ± 1.2
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signal detection in a general laboratory environment without special and expensive magnetic shielding, such as 
building-level shielding.

Measuring cells that form an electrically coupled functional syncytium with a single beating region is essential 
for one-to-one correspondence between the magnetic signal and the electrical activity of  cells43, but it is not 
easy to select such cells strictly. In a future task, we will verify the influence of multiple beating regions on the 
observed signals using both experiments and numerical simulation.

We estimated the amplitude of the magnetic field based on the assumption of isotropic current flow in the 
cells. However, actual cells have considerable anisotropy and distribution bias, and the magnetic field is expected 
to be asymmetric. In this study, we used only the y-axis direction magnetic field, which has relatively low noise, 
for analysis, but it will be needed to verify the directional dependence in a less noisy environment.

Because the spontaneous beating rate of mouse iPS-CMs does not differ significantly from the heart rate 
of adult  humans24, we used mouse iPS-CMs44 in this study as a preliminary experiment. Despite this, it is 
preferable to use human iPS-CMs45 when considering applications such as drug safety tests and the evaluation 
of regenerative medical materials. However, the conduction velocity of human iPS-CMs may be slower than that 
of  mice40, and their magnetic signals are predicted to be weaker. Therefore, magnetic measurement for scaled-up 
samples, such as myocardial sheets cultured at high  density46, will be necessary. Furthermore, the Mercola 
Laboratory has recently developed maturation media that suit the metabolic needs of human iPS-CMs47. The 
media improve the physiological functions of human iPS-CMs compared to existing media and increase the 
fidelity of modeling cardiac disorders. In particular, the expression of the channel that conducts the  K+ current 
 IK1, which was weak in conventional iPS-CM, is enhanced, so the magnetic signals from samples cultured in this 
medium are expected to be close to those of adult human cardiomyocytes. Beat rate and AP shape differences 
have been observed at various stages of cardiomyocyte  maturation24. If magnetic measurements can detect 
these changes, they could be applied to non-invasive monitoring of cell maturation in regenerative medicine. In 
addition, it has been reported that responses to drug administration are not the same among cell lines established 
by different  methods29. Although a single cell line was used in the present study, comparing the degree of variation 
in magnetic signals between the different types of samples will be interesting.

It is also desirable to perform the measurement at 37 °C, the same as the biological environment, instead of at 
room temperature. The problem is that standard temperature maintenance equipment generates electrical noise, 
which makes it difficult to achieve compatibility with magnetic measurements. Therefore, we are considering 
introducing devices that do not affect the magnetic field, such as an isothermal pad based on a thermodynamic 
principle.

The peak number of the magnetic signal estimated using numerical simulation was 57.1 peaks/min, but the 
beating rate of the actual cells was less than half of that (Table 1). The reason for this discrepancy may be that 
the AP model of pacemaker-like cells was optimized based on a classical and simplified model compared with 
ventricular-type cardiomyocytes, and therefore could not adequately reproduce the rhythm of electrical activity. 
By contrast, the fact that the estimation of the peak waveform was correct was supported by good agreement 
with the waveform obtained by averaging the detection regions. We speculate that this difference may be because 
the contribution of the current between ventricular-type cardiomyocytes to the magnetic waveform is more 
remarkable than the current between pacemaker-like cells. In any case, when changing the measurement target 
to human iPS-CMs, optimization of a new AP model and reconstruction of the biomagnetic simulation will be 
mandatory.

Providing variability in the training data improved detection performance. To ensure diversity closer to real-
world data, we plan to introduce cell-level  variation48. The number of detected peaks after the administration of 
isoproterenol showed a trend toward an increase from the pre-dose level. By contrast, not only the period but 
also the waveform may have changed after drug  administration39. Improving the training data using in silico 
experiments to estimate the magnetic waveform during drug administration may enable more accurate detection. 
A previous  study20 that reported a deep learning network trained with simulated action potential data to classify 
cells into drug-free and drug-treated categories is highly suggestive. Moreover, we classified the measurement 
data into two classes, but it is possible to subdivide the classification into more categories, like the P wave, QRS, 
and T wave in ECG. This extension would be beneficial in creating indicators of abnormal electrical activity, 
such as QT prolongation in ECG and FP duration prolongation in  FP49.

FP measurement is an excellent method for detecting the electrical activity of cardiomyocytes because the 
electrodes are in contact with the cell and provide a stable signal with little  noise38. In a previous  study50, FPs were 
numerically calculated using AP models of iPS-CMs, and the effect of drugs on electrical activity was compared 
with experimental data. FP measurement is currently the mainstream approach for drug screening applications, 
but the difficulty of recovering cells after measurement is a drawback as a detection device in regenerative 
medicine for human transplantation. Membrane potential-sensitive fluorescent dye has similar problems because 
it is invasive. Magnetic measurement, which is non-invasive and not restricted to specific culture devices, has 
advantages in this respect. However, this method is still inferior to other methods regarding peak detection 
accuracy and reliability of averaged waveforms. One approach to improving these problems is to adjust the 
width of the Kaiser window used in FSST, which converts magnetic signals into frequency domain data. There 
is a trade-off relationship where making the window wider increases the resolution in the frequency domain, 
and making it narrower increases the resolution in the time domain. The results of learning the network with 
different widths and detecting peaks from the artificial signal data are shown in Supplementary Fig. S6. When 
a width of 1024 was used, false positives from the background significantly increased compared to the others. 
When a width of 256 was adopted, there was no significant difference from using the default width of 512, but a 
slight improvement was observed in the number of peaks detected from 1.0 × data. Therefore, this method could 
be refined by increasing the time domain resolution.
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Magnetic signals from cells reflect the anisotropy of electrical propagation and the state of the cell 
 distribution11,51,52, and signal transmission is not attenuated by living  tissue53,54. Thus, in the future, the method 
demonstrated in this study may provide electrophysiological information previously undetectable from 
membrane potentials and FPs.

Methods
Genetic algorithm
We used the GA to optimize the conductance of each current so that the AP model reproduced the experimental 
values in previous  studies24,29. We executed the GA optimization using a program implemented in C# with 
reference to the method of Bot et al.55, and its type was a real-coded GA. We evaluated the degree of adaptation 
of each model in the population using the score calculated using Eq. (1). We calculated the AP for each model 
60 s after the initial state. We performed numerical integration to compute APs using the forward Euler method 
with a time step of 0.01 ms. The initial values of ion concentration inside and outside the cell, and temperature 
were equivalent to the conditions of the experiments. We fixed the intracellular potassium and sarcoplasmic 
reticulum calcium concentrations to accelerate convergence. We estimated the cell volume from the cell surface 
area  data24,56. We used the same value as that in the Paci model for the ratio of the sarcoplasmic reticulum volume 
to the cytoplasmic  volume23. We used a model population with random values assigned to each conductance as 
the starting generation. The upper and lower scaling limits were 0.0–10.0 for GNa, GCaL, and Gf in the ventricular-
type model and 0.0–5.0 for all others. We describe the details of the GA optimization of AP models in the 
Supplementary Methods.

2D simulation
To estimate magnetic signals from iPS-CMs, we simulated the 2D electrical activity of the cell population. 
We set the intracellular ion concentrations using adult mouse cardiac AP model  values57. We determined the 
extracellular ion concentrations from the composition of the culture medium and set the temperature to room 
temperature (RT: 24 °C). The temperature coefficients  (Q10) used in the AP models referred to values from the 
published  literature58. We computed the solution to the partial differential Eq. (2) using the Crank–Nicolson 
method, with the spatial step set to Δx = Δy = 60 μm and the time step set to Δt = 0.01 ms. We determined 
the averaged cellular resistivity to reproduce the conduction velocity measured in neonatal rat cardiac cell 
 sheets40 (Supplementary Methods and Supplementary Fig. S7). The list of parameters used in the simulation 
is summarized in Supplementary Table S3. We calculated the magnetic field using Biot–Savart’s law from the 
currents flowing in the cells at each time point. We estimated the observed waveforms using integration in 
the area of each pickup coil. We assumed that the cancellation component of the magnetic field caused by the 
extracellular return current was negligibly small because the volume of the medium was sufficiently large relative 
to the spreading of cultured cells. We also checked how much the observed waveforms were affected when the 
cell position was shifted from directly under the sensor. As a result, we confirmed that a displacement of ± 2 mm 
in the x-axis or y-axis directions had almost no effect on the measurements (Supplementary Fig. S8).

Training dataset
The procedure for dataset preparation is as follows: A peak region (250 ms) was cut from the magnetic signals 
estimated using simulation and subjected to random stretching and scaling. Non-peak regions between peak 
regions were linearly interpolated to make data of 120 s each. For the background noise, four data of the x 
component of the magnetic field with no current applied (for artificial signal experiments) or eight data of the y 
component with no cell sample placed (for cell experiments) were used in equal proportions within each dataset. 
Random time shifts were performed in the superposition of these magnetic signals and noise data. Even when 
the cycle length and amplitude were fixed, this shift brought diversity to the dataset. Finally, datasets (n = 160 
for artificial signal experiments or 640 for cell experiments) were generated, including three data types in a 1:1:2 
ratio: positive peak direction, negative peak direction, and background noise only. Representative waveforms 
are shown in Supplementary Fig. S9.

Configuration of the network training parameters
The window used in the spectral calculation with the  FSST33 was the Kaiser window, with a size of 512 points. 
The sidelobe attenuation was 13.6 dB. The real and imaginary parts of the spectral were input as separate features. 
The input values were pre-standardized by subtracting the mean and dividing by the standard deviation. Training 
was iterated for up to 60 epochs (one epoch means one round of data). The network was validated using the 
validation data for each epoch. If the validation loss exceeded the previous minimum value more than ten times, 
it was decided that there was no further improvement and training was stopped. The initial learning rate was 
set to 0.001 and the learning rate was dropped by a factor of 0.1 every 20 epochs. The training data were divided 
into segments of 10 s lengths and the mini-batch size (a subset of the training data used in one step to evaluate 
the gradient of the loss function and update the weights) was set to 16.

Evaluation of network classification performance and determination of peak regions
We calculated the  AUROC36 to evaluate network classification performance. The AUROC is the area under the 
curve plotted with the false positive rate on the horizontal axis and the true positive rate on the vertical axis. The 
AUROC is 1.0 when separation performance is best and 0.5 when classification is performed randomly. In this 
study, we defined each data point as positive if it was peak (P) or negative if it was non-peak (N).

From the output label data, we plotted a histogram of the lengths of segments labeled as class P (Fig. 4f). 
Using this histogram as a reference, we estimated the appropriate distribution of peak region lengths, set a 
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lower limit, and identified segments longer than this threshold as peak regions (Fig. 1c). We used the average 
count number for the analysis of samples measured multiple times. We obtained the average waveform by 
superimposing magnetic signals of 175 ms before and after the center position of each peak region and averaging 
their amplitudes. Then, we repeated the adaptive correlation  filter59 ten times to correct for positional fluctuations.

Magnetic measurement instruments
A vector-type SQUID  magnetometer12,15 was applied to measure magnetic fields. The vector-type SQUID 
magnetometer had an axial-type first-order gradiometric pickup coil with a diameter of 15.5 mm and two planar-
type first-order gradiometric squared pickup coils of 9 × 15.5  mm2 and 11 × 15.5  mm2. The baseline length of each 
gradiometric pickup coil was 50 mm. The three gradiometric pickup coils were oriented perpendicular to each 
other and assembled on a cylindrical bobbin. Three Ketchen-type low-temperature SQUIDs were individually 
coupled to each pickup coil and simultaneously detected the three independent components of the magnetic 
field:  Bx,  By, and  Bz. The SQUID readouts were connected to double-integrator type flux-locked loop (FLL) 
circuits for output linearization and dynamic range improvement. The total noise level, including environmental 
noise, was 10–20 fT/√Hz at 10 Hz. The SQUID magnetometer was installed in a glass-fiber reinforced plastic 
(GFRP) cryostat with an MSB. The MSB comprised two 1 mm thick mu-metal layers with double front doors. 
The shielding factor of the MSB was more than 40 dB at 10 Hz. The GFRP cryostat consisted of a cylindrical main 
body that stored 6-L liquid helium and a narrow GFRP tube that dropped from the bottom of the main body. 
The main body was installed in the ceiling of the MSB and only the GFRP tube penetrated the MSB through a 
hole in its top. The SQUID magnetometer was installed at the bottom end of the GFRP tube and placed at the 
center of the MSB.

The cell sample was placed on a height-adjustable stage made of non-magnetic materials and adjusted to 
3 mm from the bottom edge of the pickup coil. Measurements were taken at room temperature, and the FLL 
readout signals were digitally recorded at the sampling rate of 1 kHz with HPF at 3 Hz, LPF at 100 Hz, and notch 
filters at 60 Hz.

Adjustment of artificially generated magnetic signals
We kept the resistance fixed and varied the output voltage of the function generator to adjust the current that 
generated magnetic signals. With no filtering, we increased the voltage until the peak of the magnetic signal 
could be identified by visual inspection and recorded the peak amplitude at that point. Based on that value, we 
adjusted the voltage to generate the desired magnetic signals. We enhanced the artificial signal (2.74 ×) so that 
the signal-to-noise ratio was equivalent to that in the cell sample experiment. To confirm the validity of this 
procedure, we compared the amplitude spectrum densities of the background noise between the artificial signal 
experiment and the cell sample experiment (Supplementary Fig. S4). Although differences in amplitude existed, 
the spectral distribution had the same trend within the range of 3.5–40 Hz used to train the LSTM networks.

Scaled template technique
We implemented the scaled template technique following previous  research22. We slid the template (the event 
waveform of interest to detect) along the time series data and scaled it to fit the data at each position. Then, we 
divided the template scaling factor by the standard error of the time series data, which was the detection criterion, 
and we considered the event waveform of interest to be detected when this criterion exceeded a threshold value. 
The template was a peak waveform of 250 ms in length cut from the magnetic signal estimated using numerical 
simulation, which we also used as the training data in deep learning. To compare the two methods without bias, 
we set the threshold so that the number of detected peaks from background noise was equal to that of deep 
learning.

Preparation of differentiated cardiomyocytes
The mouse iPS cell line iPS-MEF-Ng-20D-17 (Expressing GFP by Nanog promoter)44, established by the Center 
for iPS Cell Research and Application, Kyoto University, was provided by the RIKEN BRC through the National 
BioResource Project of the Ministry of Education, Culture, Sports, Science, and Technology, Japan. For the 
culture method, we referred to previous  studies44,60,61. To maintain the undifferentiated state of iPS cells, MEFs 
(EmbryoMax® Primary Mouse Embryonic Fibroblasts, PMEF-NL, Neo Resistant, Strain FVB; purchased from 
Sigma-Aldrich, St Louis, MO, USA), in which cell proliferation was arrested by mitomycin C (Nacalai Tesque, 
Kyoto, Japan) treatment, were cocultured as feeder cells. The maintenance medium was composed of Dulbecco’s 
modified Eagle’s medium (Sigma-Aldrich) with 15% fetal bovine serum (Equitech-Bio Inc., Kerrville, TX, USA), 
50 U/ml penicillin, 50 µg/ml streptomycin (Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich), nonessential 
amino acids (100 ×) (Sigma-Aldrich), 0.1 mM 2-mercaptoethanol (FUJIFILM Wako Chemicals, Osaka, Japan), 
and 0.1% human leukemia inhibitory factor (FUJIFILM Wako Chemicals). The medium was refreshed daily and 
iPS cells were passaged every two days. Colonies were detached with 0.25% trypsin/1 mM EDTA (FUJIFILM 
Wako Chemicals), dispersed in cell suspension, counted, and 1.0 ×  106 cells were seeded into MEFs on 60 mm 
plates.

Based on previous  studies37,62, cardiomyocyte differentiation was induced by forming EB. The differentiation 
medium was Iscove’s modified Dulbecco’s medium (Sigma-Aldrich) containing 20% fetal bovine serum, 50 
U/ml penicillin, 50 μg/ml streptomycin, 2 mM L-glutamine, nonessential amino acids (100 ×), and 0.1 mM 
2-mercaptoethanol. Mouse iPS cells were suspended at 1.5 ×  104 cells/ml in the differentiation medium and 
seeded 0.2 ml into each well of a 96-well U-shaped-bottom microplate (Nunclon Sphera; Thermo Fisher Scientific, 
Waltham, MA, USA). The plates had a cell-nonadherent surface treatment, which allowed uniform and stable EBs 
to form. For further differentiation, the culture was switched from floating to adherent on day 5. Plastic dishes 
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of 100 mm diameter and MEA (Alpha MED Scientific, Osaka, Japan) were used for magnetic measurement, and 
glass bottom dishes (AGC Techno Glass, Shizuoka, Japan) were used for fluorescence microscopy. These dishes 
were coated with 0.1 w/v% gelatin solution (FUJIFILM Wako Chemicals) and one EB was transplanted at the 
center of each dish. Beating areas began to appear on day 7. Magnetic measurement was performed during days 
19–21 when the area of differentiated cells was extensive and synchronized beating was observed. Fluorescence 
microscopy was also performed at this time. To ensure that one peak corresponded to the electrical activity 
of the entire cell population, samples with a single beating area larger than 3 mm square were selected for 
measurement. To bring the cells closer to the sensor, the cylinder of the MEA was excised to a height of 1 mm. 
For comparison with iPS-CMs, MEFs were also cultured in cloning rings with an inner diameter of 5 mm. In 
the experiment to detect the drug’s chronotropic effects from magnetic signals, the medium was replaced with a 
medium supplemented with isoproterenol at a final concentration of 10 μM, and magnetic signals were measured 
from iPS-CMs after incubation for 30 min.

Fluorescent staining
Cardiomyocytes were immunostained on day 19 of differentiation, and the expression of cardiomyocyte 
marker cardiac troponin T and connexin 43 that forms gap junctions was confirmed. iPS-CMs were fixed in 4% 
paraformaldehyde for 20 min at 4 °C, followed by blocking with 5% goat serum (Nichirei, Tokyo, Japan) and 
0.1% Triton-X diluted in Dulbecco’s phosphate buffered saline (DPBS) for 20 min at RT. The cells were washed 
three times for 5 min with DPBS and incubated with a primary antibody diluted in DPBS containing 1% goat 
serum for 1 h at RT and then overnight at 4 °C. The primary antibodies were rabbit polyclonal IgG anti cardiac 
troponin T antibody (1.4 μg/mL; Proteintech, Rosemont, IL, USA) and rabbit polyclonal IgG anti connexin 43 
antibody (10 μg/mL; Thermo Fisher Scientific). The cells were washed three times for 5 min with DPBS with 
shaking and further incubated with the secondary antibody Alexa fluor 546 goat anti rabbit IgG (Invitrogen, 
Carlsbad, CA, USA; 1:1000 dilution in DPBS/0.05% Triton X-100) for 30 min at RT. The cells incubated with 
connexin 43 antibody were also treated with Alexa fluor 488 Phalloidin (Thermo Fisher Scientific; 1:50 dilution 
in DPBS/0.05% Triton X-100) and stained for actin filaments. The cells were washed three times with tris buffered 
saline for 5 min and once with DPBS for 5 min, and immersed in 4’,6-diamidino-2-phenylindole (DAPI)-added 
anti-fading agent (Nacalai Tesque). Observation and imaging were performed with an IX71 fluorescence 
microscope (Olympus, Tokyo, Japan).

Electrophysiology
We measured FPs using  MEA38. We selected the electrode near the center of the beating area and recorded 
the potential difference between it and a reference electrode not in contact with the cells. To avoid noise when 
measuring simultaneously with magnetic signals, we output the electrical signals from the probe externally 
through an IC clip and did not use the attached connector. When measuring FP only, we used it. We performed 
the measurement at room temperature and recorded data at the sampling rate of 1 kHz with HPF at 0.16 Hz, 
LPF at 160 Hz, and notch filters at 60 Hz.

Software
Deep learning network training and data classification were performed in MATLAB (Mathworks Inc., Natick, 
MA, USA). The GA for parameter optimization of the AP model and the numerical simulation of the electrical 
activity of cardiomyocytes were performed using our programs implemented in C#.

Statistical analysis
Data are presented as mean ± standard error of the mean (SEM). Comparisons between two groups were analyzed 
using the unpaired t-test unless otherwise indicated. For comparisons of three or more groups, when equal 
variances could be assumed, one-way ANOVA was used, followed by Tukey’s test as a post hoc test. When equal 
variances could not be accepted, the Brown–Forsythe correction was performed, followed by the Games–Howell 
test as a post hoc test. Differences between data were considered statistically significant at p < 0.05.

Data availability
The data used in this study are available from the corresponding author upon reasonable request.
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