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Comprehensive study 
on the Python‑based regression 
machine learning models 
for prediction of uniaxial 
compressive strength using 
multiple parameters in Charnockite 
rocks
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The strength of rock under uniaxial compression, commonly known as Uniaxial Compressive Strength 
(UCS), plays a crucial role in various geomechanical applications such as designing foundations, 
mining projects, slopes in rocks, tunnel construction, and rock characterization. However, sampling 
and preparation can become challenging in some rocks, making it difficult to determine the UCS of the 
rocks directly. Therefore, indirect approaches are widely used for estimating UCS. This study presents 
two Machine Learning Models, Simple Linear Regression and Step-wise Regression, implemented 
in Python to calculate the UCS of Charnockite rocks. The models consider Ultrasonic Pulse Velocity 
(UPV), Schmidt Hammer Rebound Number (N), Brazilian Tensile Strength (BTS), and Point Load Index 
(PLI) as factors for forecasting the UCS of Charnockite samples. Three regression metrics, including 
Coefficient of Regression (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE), were 
used to evaluate and compare the performance of the models. The results indicate a high predictive 
capability of both models. Notably, the Step-wise model achieved a testing R2 of 0.99 and a training R2 
of 0.988 for predicting Charnockite strength, making it the most accurate model. The analysis of the 
influential factors indicates that UPV plays a significant role in predicting the UCS of Charnockite.

Keywords  Python model, Machine learning techniques, Regression, Uniaxial compressive strength, Indirect 
parameters

Rocks and their structures require careful planning to prevent loss of life and economic damage from human 
error. In civil engineering, mining, cave mining, tunneling applications, and other related fields, evaluating 
rock quality heavily relies on Uniaxial Compressive Strength (UCS), a crucial parameter. The primary goal of 
conducting the UCS test is to determine the strength and properties of the rock. UCS testing can be laborious and 
costly, necessitating the preparation of meticulously crafted samples, particularly in the case of soft and jointed 
rock formations. As a result, researchers have proposed empirical equations that relate UCS to other parameters. 
Past studies have investigated correlations between UCS and other rock properties, and various researchers have 
proposed empirical equations for metamorphic rocks, which are listed in Table 1. Since the chosen rock type 
for the present study is a metamorphic rock, only empirical equations for metamorphic rocks are considered.
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Several researchers have proposed empirical equations for predicting different rock types’ unconfined 
compressive strength (UCS) using physio-mechanical parameters and non-destructive tests. For instance, Fakir 
et al.1 developed equations for the granitoid rocks of South Africa, while Habib et al.2 established excellent 
correlations for sedimentary rocks in Algeria. Jalali et al.3 prepared linear regression equations for igneous and 
metamorphic rocks from different locations in Iran using block punch index, cylindrical punch index, and 
UCS tests. Similarly, Kurtulus et al.4, Son and Kim5, Aldeeky and Hattamleh6, Arman and Paramban7, Bolla 
and Paronuzzi8, and Chawre9 found promising results in relating UCS to NDT tests such as Schmidt hammer, 
Ultrasonic pulse velocity (UPV), and total sound-signal energy for different rock types. Furthermore, Mishra 
et al.10 conducted mechanical, physical, and petrological studies on rock types in India and classified them 
accordingly. Aladejare et al.11 compiled a dataset of experimental correlations between uniaxial compressive 
strength (UCS) and various other rock properties based on published literature, which can help in selecting a 
suitable regression equation for estimating the UCS of a rock site.

Various studies have established predictive models for determining the UCS of rocks using soft computing 
techniques. Wang et al.12 developed a model using a random forest algorithm that showed consistent results with 
laboratory tests. Dadhich et al.13 analyzed the efficacy of an ML model based on various features and concluded 
that random forest regression was the optimal method. Wang et al.14 applied two machine learning models using 
non-destructive and petrographic studies and showed that the extreme gradient boosting model outperformed 
the random forest model in predicting UCS. Tang et al.15 established a predictive model using an improved least 
squares tree algorithm that demonstrated the model’s usefulness in engineering applications. Fattahi16 introduced 
a new relevance vector regression (RVR) method enhanced by two algorithms to forecast the UCS of weak rocks. 
They found that the RVR optimized by the harmony search algorithm outperformed the one optimized by the 
cuckoo search. Lei et al.17 conducted a comparative study of six prediction models that were hybrid and based 
on the BP neural network, along with six optimization algorithms using swarm intelligence. They proved that 
FA-BP was the best model among others in predicting UCS.

Several studies have demonstrated the effectiveness of Artificial Neural Networks (ANN) and Machine 
Learning (ML) in predicting the UCS. Momeni et  al.18 showed that particle swarm optimization-based 
ANN predictive model outperformed conventional ANN techniques in predicting UCS through direct and 
indirect estimation. Abdelhedi et al.19 demonstrated that the combination of multiple linear regression and 
ANN effectively indicates the UCS values of carbonate rocks and mortar by correlating porosity, density, and 
ultrasonic measurements with UCS. Ozdemir20 utilized artificial intelligence-based age-layered population 
structure genetic programming (ALPS-GP) and an artificial neural network (ANN) to estimate the unconfined 
compressive strength (UCS) and found both methods to be influential. Azarafza et al.21 proposed a DNN model 
and demonstrated its efficacy in obtaining the strength of marlstone. The model was also verified using classifiers 
like support vector machine, logistic regression, decision tree, loss function, MAE, MSE, RSME, R-square, etc. 
Wei et al.22 used the artificial neural network (ANN) approach to estimate the unconfined compressive strength 
(UCS) of sedimentary rocks at the Thar Coalfields. Their findings indicated that the Brazilian tensile strength 
had the most significant influence on UCS estimation. Fang et al.23 predicted equations based on various training 
algorithms and established the supremacy of the ANFIS model over the other models considered. Gupta and 
Nagarajan24, Hassan and Arman25, Liu et al.26, Shahani et al.27, and Qiu et al.28 studied the performance of different 
machine learning models in predicting UCS. They suggested the best model based on factors such as absolute 
error, root mean square error, coefficient of determination, etc.

Over time, multiple techniques have been developed to predict the rocks’ strength accurately. These techniques 
have proven effective for different types of rocks. However, this study aims to introduce two simple machine-
learning methods, the linear regression model and the step-wise regression model, implemented in Python to 
estimate the strength of Charnockite rocks. The models analyze the parameters BTS, PLI, N, and UPV to predict 

Table 1.   Equations for estimation of UCS using PLI, BTS, N

Source Equation Reference Rock type

Basu and Kamran (2010) UCS = 11.103Is(50) + 37.659 P1 Metamorphic

Kahraman and Gunaydin (2009) UCS = 18.45Is(50) + 13.63 P2 Metamorphic

Singh and Singh (1993) UCS = 23.37Is(50) P3 Metamorphic

Singh et al. (2012) UCS = 22.8Is(50) P4 Metamorphic

Diamantis et al. (2009) UCS = 19.79Is(50) P5 Metamorphic

Tandon and Gupta (2015) UCS = 4.792Is(50) + 44.37 P6 Metamorphic

Diamantis et al. (2009) UCS = 17.81Is(50)1.06 P7 Metamorphic

Diamantis et al. (2009) UCS = 21.54Is(50) − 6.02 P8 Metamorphic

Fereidooni (2016) UCS = 24.36Is(50) − 2.14 P9 Metamorphic

Fereidooni (2016) UCS = 10.03BTS + 55.19 B1 Metamorphic

Yilmaz and Sendir (2002) UCS = exp(0.818 + 0.059N) S6 Metamorphic

Gupta (2009) UCS = 0.64N + 37.5 S7 Metamorphic

Fereidooni (2016) UCS = 0.02N2.28 S8 Metamorphic

Torabi et al. (2010) UCS = 0.0465N2 − 0.1756N + 27.682 S9 Metamorphic
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the strength of Charnockite rocks. The models also provide a matching procedure to assess the strength of rocks 
in Chennai City, Tamil Nadu, India.

Materials and methods
Location of the study site
The Perungudi region, situated in the southern part of Chennai, is a bustling commercial hub with numerous 
construction projects. The area is home to Charnockite and Granite rocks, widely found throughout Chennai. 
This article presents an alternative method for estimating the UCS of Charnockite rocks in the Perungudi region, 
which can also be applied to other parts of the city. Figure 1 displays the location of the Perungudi region.

Rock material testing and database
Petrographic analysis
Macroscopic and microscopic observations were conducted to determine the type of rock. The rocks appeared 
dark grey to black in their fresh state, with a fine-to-medium-grained texture and an equigranular granoblastic 
homogeneous fabric without layering. It was difficult to distinguish the dark grey plagioclase from the mafic 
portion of the rock, and the presence of hornblende gave it a black hue. Thin sections of basic granulites exhibited 
granulitic texture, with minerals interfering with each other’s growth. The common minerals constituting the 
basic granulites were labradorite, hypersthene, and augite, with a constant association of secondary hornblende, 
sometimes prepondering over the pyroxenes. Black opaque was present in negligible amounts, along with biotite 
and apatite. The development of faint gneissose structure due to the sublinear arrangement of mafic constituents 
was observed in some of the slides. The dark color of Charnockite is caused by thin greenish or yellowish-brown 
veins and stringers throughout the rock, particularly in the feldspars but also in quartz and other minerals. Images 
of rocks under a petrographic microscope are displayed in Fig. 2. The primary and minor minerals observed 
from thin section analysis are shown in Table 2.

Laboratory testing methods
Various properties and parameters of rocks, including index properties, physical parameters, and destructive and 
non-destructive parameters, have been found to correlate with the UCS of different types of rocks. Equations 
have been established with high levels of accuracy by Bagherpour et al.29 and Daoud et al.30. However, Aladejare31 
suggests using these equations only for the same rock types they were developed for. To investigate the UCS of 
rocks in the Perungudi region in Chennai, 84 specimens were collected from different locations. These specimens 
were then transported to the laboratory for various tests, including the UCS test, BTS test, PLI test, SHN, and 

Figure 1.   Map showing the location of Perungudi in Chennai.
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UPV, following ASTM standards. The specimens were prepared and tested by ASTM D4543-1932 and ASTM 
D701233 standards. Procedures for determining pulse velocities, rock hardness by rebound hammer method, 
Brazilian tensile strength, and point load index were suggested by ASTM D2845-0834, ASTM D5873-9535, ASTM 
D3967-95a36, and ASTM D5731-0237, respectively. All tests reported in this paper adhered to the standards 
(Fig. 3). The results of the various tests performed in the laboratory are shown in Table 3. The table provides 
statistical information on the properties of the rocks, which was used as a database for the study. Figure 4 depicts 
a histogram plot showing the variation of the properties.

Regression ML models using Python
In a recent study, Liu et al.26 examined the UCS prediction capabilities of three different boosting machine 
models: adaptive boosting, category gradient boosting, and extreme gradient boosting. They compared the 
models’ performance using five regression metrics. Another study by Xu et al.38 introduced a novel prediction 
model called the SSA-XGBoost model. This model was more effective in predicting the UCS of rocks than 
six other models evaluated using RMSE, correlation coefficient, MAE, and variance interpretation. The paper 
presents two machine learning-based regression models, namely, Linear Regression and Step-wise Regression, 
that can predict the UCS of Charnockite rocks. The models are constructed using 84 sample data from 4 different 
parameters (UPV, N, BTS, and PLI) to find the UCS value of the Charnockite rock samples. In both models, 
80% of the data are trained with the help of Python supported machine learning techniques like (scipy, numpy, 
pandas, seaborn, and matplotlib) and with those trained data, the model is fitted in such a way to predict the 
coefficient and intercept of the data. These findings are necessary to form the linear regression equation, and 
the r value is obtained from that. The performance of the models was evaluated, and a superior UCS estimation 
model was reported.

Linear regression ML model
Linear regression is the most widely used machine learning model. The Scikit-Learn module is used in Python 
to build, train, and test the linear regression model. To estimate the unconfined compressive strength (UCS) of 
Charnockite rocks, we utilize the following rock properties: UPV, N, BTS, and PLI. These properties are extracted 
from a dataset of 84 Charnockite rock samples and fed into the Jupyter Notebook for prediction. To understand 
the dataset better, a pair plot can be generated. The dataset has been split into two distinct sets: one for training 

Figure 2.   Images of rock under a petrographic microscope.

Table 2.   Findings from the analysis of rocks under a thin section.

Mineral Percentage

Plagioclase feldspar 32

Quartz 35

Hypersthene and Hornblende 30

Stained Quartz < 0.5

Mica—Biotite < 0.5

Mica—Muscovite < 0.2

Secondary Mineral—Sillimenite < 0.5

Rock type—Charnockite
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purposes and another for testing. This study used a split of 80:20, with 80% of the dataset allocated for training 
and the remaining 20% reserved for testing. A linear regression machine learning model was then created and 
trained using the segregated data. To simplify the process, sci-kit-learn was utilized. Afterward, the machine 
learning model was applied to the test data set to generate predictions. Scatter plots were created to compare the 
predicted values with the actual values. To visually evaluate the performance of the model, the residuals were 
plotted. Python code has been developed considering all four parameters. All 4 data have been considered for 
both test and train datasets. After training the model with the train data, the test data of variables (UPV, N, BTS, 
and PLI) are introduced to the trained model to determine the predicted UCS. Then, the model calculates the 
correlation coefficient by comparing the predicted UCS and the test value of the observed UCS. To represent the 
findings visually, Python’s graphical options present them in chart and plot formats.

Figure 3.   Laboratory tests on a rock specimen.

Table 3.   Engineering properties of Charnockite rocks.

Property Range Mean Standard deviation

PLI (MPa) 1.8–5.98 4.05 1.248

BTS (MPa) 2.25–17.88 9.49 4.17

Rebound number 24–50 37.76 7.44

UPV (m/s) 5008–6721 5858.49 525.78

UCS (MPa) 16.16–109.16 62.17 28.03
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Figure 4.   Plot of the properties of Charnockite rocks.
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Python code for linear regression model
Import matplotlib.pyplot as plt

import pandas as pd
import numpy as np
import scipy as sp
import seaborn as sns
plt. style.use(’plot)
raw_data = pd.read_csv(’R2model.csv’)
x = raw_data[[’UPV’]]
y = raw_data[’UCS’]
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.9)
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x_train, y_train)
print(model.coef_)
print(model.intercept_)
line = f ’UCS = {model.coef_}UPV + ({model.intercept_})’
print(line)
#UPV = x_train
#UCS = y_train
#fig, ax = plt.subplots()
#ax.plot(UPV, UCS, linewidth = 0, marker = ’s’, label = ’Training Data points’)
#ax.plot(UPV, model.intercept_ + model.coef_ * UPV, label = line)
#ax.set_xlabel(’UPV’)
#ax.set_ylabel(’UCS’)
#ax.legend(facecolor = ’white’)
#plt.show()
m = pd.DataFrame(model.coef_, x.columns, columns = [’Coeff ’])
print(m)
predictions = model.predict(x_test)
r = sp.stats.linregress(y_test, predictions)
print(r)
slope, intercept, r, p, stderr = sp.stats.linregress(y_test, predictions)
line = f ’r = {r:.2f}’
fig, ax = plt.subplots()
ax.plot(y_test, predictions, linewidth = 0, marker = ’s’, label = ’Test Data points(UPV)’)
ax.plot(y_test, intercept + slope * y_test, label = line)
ax.set_xlabel(’Observed UCS’)
ax.set_ylabel(’Predicted UCS’)
ax.legend(facecolor = ’white’)
plt.show()
#plt.scatter(y_test, predictions)
#plt.show()
plt.hist(y_test - predictions)
plt.show()
from sklearn import metrics
a = metrics.mean_absolute_error(y_test, predictions)
line = f ’MAE = {a}’
print(line)
b = metrics.mean_squared_error(y_test, predictions)
line = f ’MSE = {b}’
print(line)
c = np.sqrt(metrics.mean_squared_error(y_test, predictions))
line = f ’SQRT(MSE) = {c}’
print(line)

Step‑wise regression ML model
Step-wise regression is a method that involves step-by-step inclusion or exclusion of variables to create a 
regression model that precisely explains the data with the minimum number of essential variables. This approach 
automatically selects the most significant variables and excludes the insignificant ones, making it superior to many 
other regression techniques. Initially, all four variables are considered, and at each step, the most insignificant 
variable is eliminated to provide a better result and to determine the significance of the data.
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The data array must be defined and converted to a data frame using NumPy and pandas packages to perform 
step-wise regression. The Sequential Feature Selector function from the mixed package is used to conduct 
step-wise regression, and the chosen features are specified using the k_features parameter. Once the step-wise 
regression is complete, the desired features are used to examine the characteristics of the data. A data frame 
consisting solely of the selected components and the k_feature_names_ property is then created. The dataset 
is divided into training and testing sets using the train_test_split method provided by the scikit-learn library. 
Then, a logistic regression model is fitted based on the chosen features. Finally, the accuracy_score function 
from the sklearn library is used to assess the model’s performance. The sklearn module of Python will handle 
the computational complexity, so even in real-time predictions or large-scale application usage, it will be feasible 
and effective since this model is used for fitting regression models with predictive models. It is carried out 
automatically. Each step adds or subtracts the variable from the set of explanatory variables. The approaches for 
stepwise regression are forward selection, backward elimination, and bidirectional elimination.

In this method, Ultrasonic pulse velocity (UPV) and Schmidt Hammer Rebound Number (N) have been 
eliminated in each step, and the model predicted Brazilian Tensile Strength (BTS) and Point Load Index (PLI) 
are the significant variables to determine the result.

Python code for step‑wise regression model
Import numpy as np

import statsmodels.api as sm
import pandas as pd
import scipy as sp
import matplotlib.pyplot as plt
plt.style.use(’ggplot’)
from sklearn.linear_model import LinearRegression
data = pd.read_csv(’R2model.csv’)
x_columns = data[[’BTS,’ ’PLI’]]
y = data[’UCS’]
def get_stats():
results = sm.OLS(y, x_columns).fit()
print(results.summary())
get_stats()
linear_model = LinearRegression()
linear_model.fit(x_columns, y)
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_columns, y, test_size = 0.2)
y_pred = linear_model.predict(x_test)
print("Prediction for UCS is ", y_pred)
from sklearn import metrics
a = metrics.mean_absolute_error(y_test, y_pred)
line = f ’MAE = {a}’
print(line)
b = metrics.mean_squared_error(y_test, y_pred)
line = f ’MSE = {b}’
print(line)
c = np.sqrt(metrics.mean_squared_error(y_test, y_pred))
line = f ’SQRT(MSE) = {c}’
print(line)
r = sp.stats.linregress(y_test, y_pred)
print(r)
slope, intercept, r, p, stderr = sp.stats.linregress(y_test, y_pred)
line = f ’r = {r:.2f}’
fig, ax = plt.subplots()
ax.plot(y_test, y_pred, linewidth = 0, marker = ’s’, label = ’Test Data points’)
ax.plot(y_test, intercept + slope * y_test, label = line)
ax.set_xlabel(’Observed UCS’)
ax.set_ylabel(’Predicted UCS’)
ax.legend(facecolor = ’white’)
plt.show()

Results and discussion
Two machine learning models, Linear Regression and Step-wise Regression, were developed using the majority 
(80%) of the dataset for training, and the remaining 20% was utilized for testing the model. The model will initially 
train the data of all four variables to predict the linear regression equation using the Python functionalities (scipy, 
numpy, pandas) to find the r value. After that, the sklearn functionality will handle the multicollinearity issue 
with the trained model and predict the UCS with the help of test data.

Regression metrics, including R2, MAE, and RMSE, were used to evaluate the accuracy of the models. The 
database was provided by sampling and testing the rocks obtained from the Perungudi region in Chennai. The 
following datasets were used for training and testing to validate the models. These data are representative of the 
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Charnockite population, as seen in the various literature datasets. UPV range is 5016–6721 m/s, UCS range is 
16.72–109.16 MPa, SHN range is 24–50, PLI range is 1.81–5.98 MPa and BTS range is 2.25–17.88 MPa.

The results obtained from the experiments are presented in Figs. 5, 6 and 7. Both models proved to be highly 
accurate methods for predicting the UCS of the rock. Figure 5 shows the scatter distributions between the 
variables in the linear regression model. Figure 6 shows the predicted values of the UCS against the observed 
values during the training and testing of the linear regression model. Figure 7 shows the predicted values of 
the UCS against the experimental values during training and testing of the step-wise regression model. The 
experiments were carried out by the ASTM standards on 84 Charnockite samples that were recovered from 
various parts of the Perungudi region. The samples were tested in the laboratory to assess properties such as 
UCS, UPV, N, BTS, and PLI. The results from the experiments were used to evaluate the performance of the 
models. The predictive values that the linear and step-wise regression models prepared were compared with the 
observed values by regression. The results showed that both models correlated well with the observed values.

Table 4 provides the empirical equations for estimating UCS with individual parameters. The analysis showed 
a good correlation between all parameters and the UCS, with UPV having the highest correlation and N having 
the lowest. The estimated R2 for the linear regression model was 0.98 and 0.986 for training and test datasets, 
indicating high accuracy of data overlap. Similarly, for the step-wise regression model, the estimated R2 was 0.988 

Figure 5.   Pair plot of the database.

Figure 6.   Regression line for ML linear regression model.
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and 0.99 for training and test datasets, indicating high accuracy. The straight line in both scatter plots suggests 
that the machine-learning models have accurately predicted the UCS values. The residuals from the model’s 
histogram show that they are typically distributed, demonstrating its efficiency.

Table 5 presents the regression metrics of the linear regression model and step-wise regression model. The 
indices show the variations between the values that were predicted and the ones that were observed. According to 
the analysis, for the training dataset in the linear regression model, the estimated values for MAE and RMSE were 
3.41 and 4.41, respectively. For the test dataset, the values were 2.90 and 3.83, respectively. Similarly, for the step-
wise regression model, the estimated MAE and RMSE for the training dataset were 3.63 and 4.66, respectively, 
and for the test dataset, the values were 2.71 and 3.60, respectively. The MAE and RMSE values were lower in 
the step-wise regression model than in the linear regression model. The reduction in the MAE and RMSE values 
indicated the high accuracy of the prediction capacity of the step-wise regression model.

Conclusions
The strength of rock, along with other properties, plays a crucial role in civil projects. Many properties can be 
conveniently tested in both the laboratory and the field. In this research, we performed tests to measure the rock 
properties in the laboratory. We determined properties such as UPV, N, BTS, and PLI for Charnockite samples 
obtained from the Perungudi region in Chennai. We used Python to implement the Linear Regression ML model 
and Step-wise Regression to predict the Uniaxial Compressive Strength (UCS). Petrographic studies confirmed 
the rock as Charnockite rocks, displaying high percentages of Quartz, Feldspar, Hypersthene, and Hornblende, 
with slight traces of mica and Sillimanite. The statistical analysis showed UPV had the most significant effect on 
the UCS. We evaluated the criteria of the models (R2, MAE, RMSE), which showed high accuracy for estimating 
the UCS using these methods. Among the models, the Step-wise regression model showed the best results for 

Figure 7.   Regression line for step-wise regression.

Table 4.   Equation for UCS estimation from various parameters.

Parameter involved Linear regression Correlation coefficient (R2)

UPV UCS = 0.052*UPV − 244.46 0.95

BTS UCS = 6.54*BTS − 1.58 0.92

N UCS = 3.14*N − 54.03 0.84

PLI UCS = 21.06*PLI − 22.29 0.85

Table 5.   Regression metrics table for the Models.

Model

Training data Test data

R2 MAE RMSE R2 MAE RMSE

Linear regression 0.98 3.41 4.41 0.986 2.90 3.83

Step-wise regression 0.988 3.63 4.66 0.99 2.71 3.60
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forecasting the UCS. Comparing the results of the two models, the Step-wise regression model, with R2 = 0.99, 
MAE = 2.71, and RMSE = 3.60, showed the best performance for estimating the UCS of Charnockite rocks.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.
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