
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8497  | https://doi.org/10.1038/s41598-024-57982-3

www.nature.com/scientificreports

Next‑generation sequencing 
of host genetics risk factors 
associated with COVID‑19 severity 
and long‑COVID in Colombian 
population
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Coronavirus disease 2019 (COVID‑19) was considered a major public health burden worldwide. 
Multiple studies have shown that susceptibility to severe infections and the development of long‑term 
symptoms is significantly influenced by viral and host factors. These findings have highlighted the 
potential of host genetic markers to identify high‑risk individuals and develop target interventions to 
reduce morbimortality. Despite its importance, genetic host factors remain largely understudied in 
Latin‑American populations. Using a case–control design and a custom next‑generation sequencing 
(NGS) panel encompassing 81 genetic variants and 74 genes previously associated with COVID‑19 
severity and long‑COVID, we analyzed 56 individuals with asymptomatic or mild COVID‑19 and 56 
severe and critical cases. In agreement with previous studies, our results support the association 
between several clinical variables, including male sex, obesity and common symptoms like cough 
and dyspnea, and severe COVID‑19. Remarkably, thirteen genetic variants showed an association 
with COVID‑19 severity. Among these variants, rs11385942 (p < 0.01; OR = 10.88; 95% CI = 1.36–86.51) 
located in the LZTFL1 gene, and rs35775079 (p = 0.02; OR = 8.53; 95% CI = 1.05–69.45) located in 
CCR3 showed the strongest associations. Various respiratory and systemic symptoms, along with 
the rs8178521 variant (p < 0.01; OR = 2.51; 95% CI = 1.27–4.94) in the IL10RB gene, were significantly 
associated with the presence of long‑COVID. The results of the predictive model comparison 
showed that the mixed model, which incorporates genetic and non‑genetic variables, outperforms 
clinical and genetic models. To our knowledge, this is the first study in Colombia and Latin‑America 
proposing a predictive model for COVID‑19 severity and long‑COVID based on genomic analysis. 
Our study highlights the usefulness of genomic approaches to studying host genetic risk factors in 
specific populations. The methodology used allowed us to validate several genetic variants previously 
associated with COVID‑19 severity and long‑COVID. Finally, the integrated model illustrates the 
importance of considering genetic factors in precision medicine of infectious diseases.
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The COVID-19 pandemic had a major impact on almost all individuals and healthcare systems worldwide. As of 
August 2023, there have been 770,085,713 cases and nearly 6,956,173 deaths reported according to the  WHO1. 
The clinical course and severity of COVID-19 disease are highly variable among individuals and includes a large 
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spectrum of signs and symptoms, also the clinical outcomes of SARS-CoV-2 infection range from asymptomatic 
cases to severe respiratory failure and  death2,3. Given the global relevance of this disease, the scientific community 
has aimed to identify factors influencing COVID-19 severity and long-term effects, principally focused on 
three main areas: viral, sociodemographic and clinical, and host-genetic  factors4–7. Significant progress has been 
made in all these subjects, aiming principally to identify SARS-CoV-2 variants of concern and high-risk patient 
 groups8,9. Multiple sociodemographic and clinical factors, including aging, male sex, presence of cardiovascular, 
respiratory, neurological, and metabolic diseases, have been associated with the clinical  outcome10. Furthermore, 
multiple host-genetic factors are critical players in the COVID-19 interindividual  heterogeneity11,12.

Early genome-wide association studies (GWAS) and case–control genetic studies identified several genomic 
regions, genes, and variants potentially related to COVID-19  severity13,14. Subsequently, numerous groups have 
extended, replicated and deepened such  research15,16. In addition to identifying risk markers, these findings 
provide useful information to understand the pathophysiology of the  disease17,18. Importantly, several studies 
have highlighted the importance of population-specific studies given different genetic backgrounds and complex 
genetic  architectures19,20.

Latin-American countries were hit particularly hard by the COVID-19 pandemic. During the pre-vaccination 
era of SARS-CoV-2 most health systems in these countries were rapidly overwhelmed with critically ill patients 
and limited resources to cope with the impacts of the growing  demands21. Colombia, among these, for example, 
ranked 22nd amongst 187 countries in deaths per 100,000 people by February 2022 and reported 142,780 
deaths by June  202322,23. Research conducted in these countries mainly focused on clinical risk profiling by 
assessing demographic, clinical, and virological  variables24–27. Interestingly, machine learning approaches have 
also been implemented allowing to portray large-scale clinical outcomes on a nationwide scale and creating 
robust predictive  models28,29. The results of these studies have been particularly useful to guide public health 
decisions and clinical assessment, nevertheless, COVID-19 host-genetic susceptibility factors have been relatively 
understudied and there are limitations in the scope of research in this regard.

Next-generation sequencing (NGS) constitutes a cost-efficient strategy to genotype a large number of variants, 
genes and regions simultaneously, and has been successfully applied to identify COVID-19 host-genetic risk 
factors in other  populations30,31. Besides, custom NGS panels also provide a versatile tool to assess specific 
regions not covered by exome sequencing and to incorporate recently discovered genetic variants associated with 
COVID-19 outcomes. These methods have shown to be useful in identifying high-risk individuals, predicting 
outcomes and mortality, and they are expected to play a critical role in genomic and precision  medicine32.

In this study, we performed a case–control analysis with the aim of characterizing clinical and host genetic 
factors related to disease severity and long-COVID development in a sample of the Colombian population using 
a custom NGS panel strategy. The results of this study suggest a positive association between multiple genetic 
variants and severe COVID-19 and long-term symptoms. Furthermore, we incorporated clinical and genetic 
factors into a predictive model useful to provide personalized risk stratification.

Methods
Sample selection and patients
This study enrolled 144 patients who had received a confirmed diagnosis of COVID-19 through positive reverse 
transcriptase polymerase chain reaction (RT-PCR), antigens, or antibodies (IgG and/or IgM specific for SARS-
CoV-2) tests. Among these patients, 67 were classified as controls (non-hospitalized asymptomatic or mild 
COVID-19), while the remaining 77 were classified as cases due to severe or critical disease). COVID-19 clinical 
severity was determined in accordance with the Colombian Health Ministry  guidelines33. Controls were selected 
from a private laboratory (Genética Molecular de Colombia, Bogotá D.C., Colombia) while cases were recruited 
amongst hospitalized patients at the Hospital Universitario Mayor-Méderi (Bogotá, Colombia). According to 
the literature we considered an estimated median recovery time of 21 days from COVID-19, the estimated time 
when viral clearance is  achieved34. Long-COVID was defined based on the recommendation of the Nisreen 
Alwan Panel members, as follows: “not recovering for several weeks or months following the start of symptoms 
that were suggestive of COVID”35. Signs and symptoms of long-COVID were categorized using the classification 
developed by López-León et al.36.

Age is recognized as one of the main risk factors for severe COVID-1937. In order to minimize the impact of 
this variable on our findings, we restricted the age range for enrollment to individuals between 18 and 60 years 
old. Additionally, cases and controls were matched by age groups. Patients were invited to participate in this 
study between December 2020 and July 2021 and those who agreed to participate provided informed consent 
and underwent peripheral blood sampling. All the individuals involved in this study were not vaccinated or had 
received just one dose during the 7 days before the onset of symptoms.

The sample size was defined according to the minor allelic frequency (MAF) for the rs11385942 genetic 
variant obtained from a previous study aimed to assess three COVID-19 genetic risk variants in Colombian 
 population38. The sample size was calculated using the formula n = Nz2*p(1-p)/α2(N-1) + z2*p(1-p) implemented 
in the OpenEpi web tool, using a proportion (p) of 5% (rs11385942 MAF), a confidence interval of 95% (α = 0.05, 
z = 1.96), and a finite population size N = 8,000,000 for the city of Bogotá39. The initial estimated sample size was 
73 individuals, considering possible losses (e.g. loss of clinical follow-up) and the convenience of sequencing 
112 samples in the available platform, this value was approximated to 144 patients to recruit. This study followed 
the guidelines of the Declaration of Helsinki, and all experimental procedures were approved by the Ethics 
Committee of Universidad del Rosario (DVO0051543-CV1334) and the technical committee of the Hospital 
Universitario Mayor-Méderi.
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Clinical data collection and follow‑up
Demographic and clinical information was collected in standardized interviews through phone calls at least 
21 days after the clinical diagnosis and test confirmation. Data included the following clinical and demographical 
information: age, sex, medical history, comorbidities, patient-reported symptoms, and long-term symptoms. 
Additionally, trained healthcare professionals performed an exhaustive revision of clinical records to confirm 
patients’ information and case–control classification according to the clinical guidelines. Previous pilot and 
training interviews were performed to minimize errors in data collection by researchers and ensure full 
comprehension by the participants. Biological samples from patients who completed the clinical follow-up 
were considered for further processing.

DNA extraction and custom NGS panel sequencing
Genomic DNA was extracted from peripheral blood samples using the Quick-DNA™ Miniprep Plus Kit 
(Zymo Research) and assessed for quantity and quality. Genomic DNA was quantified using a nanodrop 
spectrophotometer. All samples were aliquoted and stored at 4 °C until analysis.

We performed targeted sequencing in 112 patients using a custom NGS panel. We considered two sets of 
target regions based on evidence reported in prospective cohorts, systematic reviews, meta-analyses, case–control 
analysis, GWAS and transcriptome-wide association studies (TWAS)12,40–79. The first set of targets were candidate 
genes associated with COVID-19 severity and long-term complications. The second set of targets were candidate 
genetic variants associated with COVID-19 severity and long-term complications. In total, 74 genes and 81 
genetic variants were selected for analysis (Supplementary Table s1 and s2).

A total of 947 probes were designed using the SureDesign software, with an overall probe size of 214 bp. 
Hybrid capture-based enrichment of the target regions was performed using the SureSelect Custom Tier1 DNA 
Target Enrichment Probes (Agilent). Library preparation and capture were performed using the SureSelect XT 
HS2 Target Enrichment protocol (Agilent) and sequencing was performed in a DNBSEQ.G400 instrument 
(MGI). Enrichment, library preparation, capture and sequencing were performed by Gencell (Bogota D.C., 
Colombia).

Bioinformatic analysis
The quality of the raw FASTQ files was evaluated using FastQC software (v0.10.0)80. Raw reads were trimmed 
to remove low-quality reads (< 80% Q30). Filtered reads were mapped to the reference genome GRCh37/hg19 
human genome using the Burrows-Wheeler aligner (v0.17.17) and variants called using the Sentieon software 
package (DNAseq 202,010.02)81,82. The Sentieon DNAseq software is a licensed workflow used to perform 
variant detection implementing GATK Best Practices. The critical steps for this workflow included mapping 
reads to the reference genome (GRCh37/hg19), duplicates marking, indel realignment, base quality score 
recalibration (BQSR) and variant calling. This workflow has demonstrated strong computational performance 
and accuracy compared to other pipelines, including  GATK82. The resulting Variant Call Format (VCF) files 
were annotated using the VarSeq software (Golden Helix)83. Variants were filtered according to the following 
quality parameters: (1) FILTER = PASS, (2) QUAL ≥ 30, and (3) Depth coverage ≥ 10X. Variants must fulfil all the 
previous requirements to be included in the downstream analysis. Sequencing depth and coverage were assessed 
using the “bedcov” function in SAMtools (v1.12)84.

Variant pathogenicity was classified using different approaches. First, we considered the molecular 
consequence of the variant categorizing as pathogenic the Loss-of-function (LoF) (frameshift, nonsense, and 
canonical splice site) variants. Second, for the missense variants, we used the Ensemble Method for Predicting the 
Pathogenicity of Rare Missense Variants (REVEL) and classified as pathogenic those with a REVEL score > 0.585.

Genetic analysis and linkage disequilibrium
We conducted two types of genetic analyses based on the set of targets. First, for the candidate variants, population 
genetic analyses including allelic frequencies, genotypic frequencies and Hardy–Weinberg equilibrium (HWE) 
were assessed using the SNPStats  software86. The deviation of the HWE was established using a χ2 goodness-
of-fit test with 1° of freedom (df). The bivariate association analysis between the candidate polymorphisms 
and COVID-19 severity or the presence of long-COVID was performed with the PLINK software (v1.9)87. 
The association was evaluated under several genetic models (allelic, genotypic, dominant, and recessive) using 
the Cochran-Armitage trend, genotypic (2df), dominant gene action (1df), and recessive gene (1df) tests. The 
Linkage disequilibrium (LD) between the variants localized in the same chromosome was determined by applying 
the D’ value in Haploview (v4.2)88.

Second, for candidate genes, we implemented a bioinformatic filter to identify molecular variants potentially 
pathogenic as mentioned previously. For these variants, populational and genetic parameters were calculated 
including allelic frequencies, genotypic frequencies and HWE.

Statistical analysis and predictive model
Descriptive analysis was performed for all variables. Frequency tables were generated for qualitative variables, 
whereas measures of central tendency and dispersion were calculated for quantitative variables. Normality 
was computed by the Shapiro-Wilks test. Variables with normal distribution were expressed in terms of mean 
and standard deviation. Median, range and upper and lower limits were chosen if the variables did not follow 
normality.

A bivariate analysis was conducted to evaluate the association between clinical and host-genetics factors and 
COVID-19 severity and the presence of long-COVID in cases and controls. T-Student and Mann–Whitney tests 
were used to compare quantitative variables, whilst χ2 test was used to analyze qualitative independent variables. 
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For genetic variants, the bivariate analysis was performed based on the following genetic models: allelic (D vs 
d), dominant (DD, Dd vs dd) recessive (DD vs Dd, dd), and codominant (DD vs Dd vs dd), considering (D) 
as the major allele and (d) as the minor allele. χ2 statistic was used with 1° of freedom for the dominant and 
recessive model, while 2° of freedom was selected for the genotypic model. The Cochran-Armitage test was also 
incorporated for genetic variables that violated HWE. Odds ratios and their respective 95% confidence interval 
were calculated for sociodemographic, clinical, and genetic variables.

Statistically significant variables (p < 0.05) selected by the bivariate analysis were chosen for the construction 
of the multivariate binary logistic regression model. The best model was estimated using the Stepwise Backward 
 method89. Wald test was used to evaluate de significance of the individual coefficients. Model assumptions 
were verified, including non-collinearity, homoscedasticity, and non-error correlation. Model performance and 
goodness of fit were measured using the Hosmer–Lemeshow test, moreover, the discriminatory capacity of the 
model was tested using the ROC curve. All data processing and analysis were done using R language (v4.2), 
whilst PLINK was used for genetic risk modelling.

Results
Clinical and demographic data
The total number of recruited patients was 144, with 77 classifieds as cases and 67 as controls. Out of these, 117 
patients completed the clinical follow-up. Two patients and one family member requested voluntary withdrawal 
of the study, one patient had an incomplete diagnostic algorithm and another patient had insufficient DNA for 
analysis. Although two patients in the case group died, interviews were completed aided by family members. 
In the end, the analysis was performed on 56 cases and 56 controls. A summary of the enrollment process is 
presented in Fig. 1.

Table 1 summarizes the clinical and demographic characteristics of our study sample. The median age 
was similar for both cases and controls, 48 years. Men were overrepresented in the case group, accounting for 
62.5% (n = 35) of cases and 42.8% (n = 24) of controls. The most frequent comorbidities were diabetes mellitus, 
hypertension and obesity. Additionally, 53.6% of total patients did not have any comorbidity (n = 60), whilst 19.6% 
(n = 22) had 2 or more. The most common symptoms in both groups were fatigue 78.6% (n = 88), musculoskeletal 
pain 75.9% (n = 85), headache 67.9% (n = 76), and cough 67% (n = 75). The average symptom recovery time was 
23 days (± 12) for cases and 19 (± 23) for controls (Supplementary Table s3).

Long-COVID was present in 78.5% of cases (n = 44) and 39.2% (n = 22) of controls. “Common signs and 
symptoms”, including fatigue, headache, insomnia, odynophagia, hair loss, weight loss and diarrhea, were the 
most frequent findings in both groups with 41% (n = 46), followed by “neurological signs and symptoms”, present 
in 33.9% (n = 38). Clinical and demographic characteristics of patients according to long-COVID status are 
detailed in Supplementary Table s4. The median age for long-COVID patients was 48 (21–60), whereas for 
patients without this sequel was 45 (23–60). The phenomenon was more frequent in females (64.1%) than in 
males (54.2%). The prevalence of signs and symptoms in patients with and without long-COVID is presented 
in Supplementary Table s5.

Clinical association analysis
We identified multiple statistically significant associations between clinical variables and COVID-19 
severity. A positive association was obtained between severe disease and male sex (p = 0.03; OR = 2.22; 95% 

Figure 1.  Enrollment process. The illustration depicts the process of enrollment, clinical follow-up and patient 
losses.
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CI = 1.04–4.74), obesity (p = 0.02; OR = 3.05; 95% CI = 1.15–8.09), type 2 diabetes mellitus (p = 0.02; OR = 4.82; 
95% CI = 1.28–18.16) and number of comorbidities. In contrast, a negative association was observed between 
severe disease and no comorbidities (p < 0.01, OR = 0.26, 95% CI = 0.12–0.57). Specific information regarding 
clinical and demographic variables and their associations with COVID-19 severity is presented in Table 1.

Several symptoms showed a significant association with COVID-19 severity, including dyspnea (p < 0.01; 
OR = 16.06; 95% CI = 6.05–42.60), cough (p < 0.01; OR = 5.22; 95% CI = 2.16–12.65), odynophagia (p = 0.01; 
OR = 2.54; 95%; CI = 1.15–5.61), systemic symptoms, including fever (p < 0.01; OR = 4.64; 95% CI = 2.07–10.41) 
and fatigue (p < 0.01; OR = 7.22; 95% CI = 2.28–22.91). Time to recovery was significantly longer (p < 0.01) and 
the frequency of long-COVID signs and symptoms was higher (p < 0.01; OR = 5.67; 95% CI = 2.46–13.04) in the 
severe COVID group. Interestingly, anosmia was the only sign that showed a negative association with severe 
COVID-19 (p < 0.01; OR = 0.28; 95% CI = 0.28). Additional information about signs and symptoms according 
to COVID-19 severity is provided in Supplementary Table s3.

Table 1.  Clinical and demographical characteristics of the studied population. *Statistically significant, 
p-value < 0.05; COPD, Chronic obstructive pulmonary disease; BMI, body mass index; Pack year , index that 
measures the amount smoked over a time period; CI, confidence intervals; OR, Odds ratio; RT-PCR, Reverse 
transcription polymerase chain reaction. † Variable that does not follow a normal distribution, its median was 
calculated (Sl Superior limit; Il Inferior limit).

Variables Controls (n = 56) Cases (n = 56) p-value CI95% OR

Age 48 (59;23)† 48 (50;21)† 0.55 – –

Male Sex 24 (42.8%) 35 (62.5%) 0.04* 1.04–4.74 2.22

Blood group

Group O 39 (69.6%) 40 (71.4%) 0.84 0.48–2.46 1.09

Group A 13 (23.2%) 14 (25.0%) 0.83 0.46–2.62 1.10

Group B 3 (5.3%) 2 (3.57%) 1 0.05–5.97 0.65

Group AB 1 (1.78%) 0 (0.0%) 1 0.00–39.00 0

Diagnostic test

RT-PCR 45 (80.4%) 55 (98.2%)

Antigen 10 (17.8%) 1 (1.8%)

Antibodies 1 (1.8%) 0 ()

Comorbidities

BMI* 26 (34;19)† 28.4 (50;19)†  < 0.01* 0.69–4.19 –

Obesity 7 (12.5%) 17 (30.3%) 0.02* 1.15–8.09 3.05

Hypertension 8 (14.2%) 15 (26.7%) 0.1 0.85–5.70 2.20

T2DM* 3 (5.3%) 12 (21.4%) 0.02* 1.28–18.16 4.82

Cancer 3 (5.3%) 1 (1.78%) 0.62 0.03–3.19 0.32

Coronary artery disease 2 (3.57%) 1 (1.78%) 1 0.04–5.57 0.49

Arrythmia 1 (1.78%) 1 (1.78%) 1 0.06–16.39 1

Chronic kidney disease 0 (0.0%) 3 (5.3%) 0.24 – –

HIV/Immunodeficiency 0 (0.0%) 1 (1.78%) 1 – –

Autoimmune disease 0 (0.0%) 2 (3.57%) 0.5 – –

Asthma 2 (3.57%) 2 (3.57%) 1 0.14–7.36 1

COPD* 0 (0.0%) 2 (3.57%) 0.5 – –

Depression 0 (0.0%) 1 (1.78%) 1 – –

Epilepsy/Seizures 1 (1.78%) 1 (1.78%) 1 0.06–16.39 1

Other comorbidities 24 (42.8%) 10 (17.8%)  < 0.01* 0.12–0.69 0.29

Transplanted 1 (1.78%) 2 (3.57%) 1 0.18– 23.13 2.04

Smoking history 15 (26.7%) 20 (35.7%) 0.31 0.68–3.40 1.52

Active smoker 4 (7.14%) 3 (5.3%) 1 0.16–3.45 0.74

Number of cigarettes per day 0 (40;0)† 0 (70;0)† 0.72 – –

Number of years smoking 0 (30;0)† 0 (40;0)† 0.55 – –

Pack year* 0 (34;0)† 0 (52;0)† 0.75 – –

Use of medication 35 (62.5%) 31(55.3%) 0.44 0.35–1.58 0.74

Chronic steroid use 1(1.78%) 2 (3.57%) 1 0.18–23.13 2.04

Number of comorbidities 0 (4;0)† 1 (5;0)†  < 0.01* – –

No comorbidites 39 (69.6%) 21 (37.5%)  < 0.01* 0.12–0.57 0.26

Inverse of no comorbidities 17 (30.3%) 35 (62.5%)  < 0.01* 1.74–8.39 3.82

2 or more comorbidities 7 (12.2%) 15 (26.7%) 0.06 0.95–6.88 2.56
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General signs and symptoms of long-COVID according to COVID-19 severity are presented in Supplementary 
Table s5. All variables except for anosmia/ageusia and “other signs and symptoms” were statistically significant. 
Among these, a strong association was found with depression (p < 0.01; OR = 17.15; 95% CI = 3.79–77.64), 
psychiatric signs and symptoms (p < 0.01; OR = 14.68; 95% CI = 3.24–137.49) and confusion (p < 0.01; OR = 13.86; 
95% CI = 3.04–73.13).

The analysis of presymptomatic variables and their association with the presence of long-COVID did not 
yield significant results. There was no significant linkage between this outcome and different comorbidities and 
demographic variables, as seen in detail in Supplementary Table s4. However, dyspnea (p < 0.01; OR = 3.52; 95% 
CI = 1.59–7.77), cough (p = 0.01, OR = 3.12, 95% CI = 1.38–7.05), ageusia p = 0.03; OR = 2.39; 95% CI = 1.10–5.21) 
and fever (p < 0.01; OR = 4.94; 95% CI = 1.84–13.24) were symptoms that showed important and strong 
associations. Additional information can be consulted in Supplementary Table s6.

Bioinformatic quality control
In total, we obtained 738.2 million reads, with an average of 6,591,339 reads per sample. For candidate variants, 
seven variants with a depth lower than 10X in more than 5% of the samples were removed (rs622568, rs1981555, 
rs7310667, rs11085727, rs13050728, rs113661667 and rs143334143). Genotypes of variants for patients with 
sequencing depth lower than 10X were designed as unknown (./.). The mean depth for the candidate variants was 
996.4X (75.2X-2782.7X) (Supplementary Table s7). Regarding candidate genes, the target region spanned 179.9 
Kbp and included the coding and 50 bp of flanking intronic sequence per exon. Transcript selection and variant 
nomenclature were based on the principal transcript identified in  Ensembl90. Coverage above 20X was 99.05% and 
the average depth was 1205.9X (503.5X-1987.8X) for all the candidate genes (Supplementary Tables s8 and s9).

Candidate variants analysis
Descriptive population genetic statistics for the candidate COVID-19 variants, including allelic and genotypic 
frequencies, and HWE equilibrium by case and control groups are presented in Table 2. Similarly, a descriptive 
analysis by presence or absence of long-COVID is reported in Supplementary Table s10. Excluding variants 
rs41264915, rs2232354, rs147509469, rs4424872 and rs73510898 all SNVs were found to be in HWE (93.1%; 
n = 67).

The association analysis under the allelic genetic model between candidate variants and COVID-19 severity 
revealed that 13 variants were significantly associated with the worst outcome (rs7528026, rs2232354, rs17713054, 
rs71325088, rs10490770, rs11385942, rs35081325, rs73064425, rs35775079, rs62054835, rs112572874, rs1819040, 
rs368565). The variants with the strongest association strength were rs11385942 (p < 0.01; OR = 10.88; 95% 
CI = 1.36–86.51), rs10490770 (p < 0.01; OR = 9.69; 95% CI = 1.20–77.89), rs35081325 (p < 0.01; OR = 9.69; 95% 
CI = 1.20–77.89), rs71325088 (p < 0.01; OR = 9.69; 95% CI = 1.20–77.89) and rs73064425 (p < 0.01; OR = 9.69; 
95% CI = 1.20–77.89) located in or close to LZTFL1, and rs35775079 (p = 0.02; OR = 8.53; 95% CI = 1.05–69.45) 
located in CCR3 (Table 2). Due to the close genomic proximity of several candidate variants, we assessed 
linkage disequilibrium (LD) strength with r 2 and Lewontin’s D’ statistic using the Haploview software. For 
variants located in chromosome 3, five of them (rs17713054, rs71325088, rs10490770, rs35081325, rs73064425) 
displayed LD with D’ values of 1 or close to 1 (Supplementary Figure s1A). Likewise, three of the associated 
variants in chromosome 17 were found to be in linkage disequilibrium (rs62054835, rs112572874, rs1819040) 
(Supplementary Figure s1B).

The association analysis under the allelic genetic model between candidate variants and long-COVID 
identified 4 variants associated with this clinical condition (rs147509469, rs9577175, rs368565, rs8178521). 
The variants with the strongest association strength were rs8178521 located in IL10RB (p = 0.01; OR = 2.51; 
95% CI = 1.27–4.94) and rs9577175 (p = 0.04; OR = 1.99; 95% CI = 1.034–3.83) located in the genomic region 
13:112,889,041 (Supplementary Table s10). These associated variants were located in different chromosomes 
therefore no LD analyses were conducted.

Candidate genes analysis
A total of 291 variants were identified in the 74 candidate genes related to severe COVID-19 or long-COVID. 
After our filtering strategy, we obtained 65 variants, from which 69.2% (n = 45) correspond to LoF variants and 
30.8% (n = 20) stand for predicted pathogenic missense variants (REVEL score > 0.5). Regarding LoF variants, 
TLR3 was the gene harboring the higher number of variants (n = 9) followed by MUC1 (n = 7). All the other genes 
had less than 5 LoF variants. Likewise, FOXP4 was the gene accounting for the highest number of predicted 
pathogenic missense variants (n = 3) followed by DPP4 and FUT2 with 2 variants each (Table 3, Supplementary 
Table s11). LoF variant frequencies among the cases were slightly higher (n = 36) than in the controls (n = 30), 
nevertheless, this difference was not statistically significant (p = 0.33). Conversely, the number of predicted 
missense pathogenic variants in the control group was higher than in the group of cases (n = 34 vs n = 22), with 
a significant difference (p = 0.03). On the other hand, several genes such as TLR3 (n = 6), OAS3 (n = 2) and APOE 
(n = 1) presented LoF variants exclusively in the case group. Similarly, THBS3 (n = 1) and ATP11A (n = 1) harbored 
predicted missense pathogenic variants exclusively within the case group.

Concerning the assessment of potential deleterious variant frequencies between patients with and without 
long-COVID, there were no significative differences in LoF (p = 0.27) or predicted pathogenic missense variants 
(p = 0.70) frequencies. Nevertheless, some genes like UGT2A1 (n = 5), PLSCR1, and ARL17B (n = 2) showed LoF 
variants exclusively in the long-COVID group. Likewise, FOXP4 (n = 4), and TLR3 (n = 1) harbored predicted 
pathogenic missense variants only in the long-COVID group (Supplementary Table s12).

Extended information about potential pathogenic variants in candidate genes is presented in Supplementary 
Table s13. Notably, we identified a novel variant (NM_030930.4: c.1360 + 2 T > A) in UNC93B1 exclusively present 
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Variant Ref/Alt
Genomic 
coordinates Closer gene

Minor 
allele

Allele 
frequency 
controls

Allele 
frequency 
cases

Genotype frequency 
controls Genotype frequency cases

HWE p-value ORWT Alt WT Alt
WT/
WT

WT/
Alt Alt/Alt

WT/
WT

WT/
Alt Alt/Alt

rs114301457 C/T 1:155,066,988 EFNA4 C 1.00 0.00 0.99 0.01 0.99 0.01 0.00 0.98 0.02 0.00 1.00 0.32 NA

rs7528026 G/A 1:155,175,305 TRIM46 G 1.00 0.00 0.98 0.02 1.00 0.00 0.00 0.91 0.09 0.00 1.00 0.02* NA

rs41264915 A/G 1:155,197,995 THBS3 A 0.97 0.03 0.98 0.02 0.96 0.02 0.02 0.98 0.0 0.02  < 0.01* 0.76 0.82

rs1123573 A/G 2:60,480,453 BCL11A A 0.79 0.21 0.76 0.24 0.62 0.34 0.04 0.54 0.45 0.02 0.27 0.52 1.22

rs2232354 T/G 2:113,129,758 IL1RN T 0.86 0.14 0.72 0.28 0.04 0.21 0.75 0.14 0.27 0.59 0.01* 0.01* 2.29

rs147509469 G/A 2:191,909,428 CAVIN2, 
TMEFF2 A 0.97 0.03 1.00 0.00 0.02 0.02 0.96 0.00 0.00 1.00 0.01* 0.08 0.00

rs73062389 A/G 3:45,793,925 SLC6A20 G 0.95 0.05 0.95 0.05 0.02 0.07 0.91 0.00 0.11 0.89 0.27 1.00 1.00

rs2271616 G/T 3:45,796,521 SLC6A20 T 0.87 0.13 0.89 0.11 0.75 0.23 0.02 0.82 0.14 0.04 0.19 0.54 0.77

rs2531743 G/A 3:45,796,808 SLC6A20, 
LZTFL1 A 0.71 0.29 0.77 0.23 0.46 0.48 0.05 0.55 0.43 0.02 0.89 0.29 0.72

rs72893671 T/A 3:45,809,291 SLC6A20, 
LZTFL1 T 0.96 0.04 0.91 0.09 0.91 0.09 0.00 0.82 0.18 0.00 1.00 0.18 2.09

rs17713054 G/A 3:45,818,159 SLC6A20, 
LZTFL1 G 0.99 0.01 0.92 0.08 0.98 0.02 0.00 0.84 0.16 0.00 1.00  < 0.01* 9.69

rs71325088 T/C 3:45,821,460 SLC6A20, 
LZTFL1 T 0.99 0.01 0.92 0.08 0.98 0.02 0.00 0.84 0.16 0.00 1.00  < 0.01* 9.69

rs10490770 T/C 3:45,823,240 SLC6A20, 
LZTFL1 T 0.99 0.01 0.92 0.08 0.98 0.02 0.00 0.84 0.16 0.00 1.00  < 0.01* 9.69

rs11385942 Del/A 3:45,834,968 LZTFL1 Del 0.99 0.01 0.91 0.09 0.98 0.02 0.00 0.82 0.18 0.00 1.00  < 0.01* 10.88

rs35081325 A/T 3:45,848,429 LZTFL1 A 0.99 0.01 0.92 0.08 0.98 0.02 0.00 0.84 0.16 0.00 1.00  < 0.01* 9.69

rs73064425 C/T 3:45,859,597 LZTFL1 C 0.99 0.01 0.92 0.08 0.98 0.02 0.00 0.84 0.16 0.00 1.00  < 0.01* 9.69

rs71325091 G/A 3:45,890,915 LZTFL1 G 0.96 0.04 0.92 0.08 0.93 0.07 0.00 0.84 0.16 0.00 1.00 0.15 2.35

rs13433997 T/C 3:46,008,273 FYCO1, 
XCR1 T 0.92 0.08 0.88 0.12 0.84 0.16 0.00 0.77 0.23 0.00 0.60 0.27 1.67

rs34438204 T/C 3:46,039,814 XCR1 T 0.96 0.04 0.92 0.08 0.91 0.09 0.00 0.84 0.16 0.00 1.00 0.27 1.87

rs7642320 A/G 3:46,049,130 XCR1 A 0.88 0.12 0.86 0.14 0.77 0.23 0.00 0.71 0.29 0.00 0.21 0.55 1.26

rs9877748 A/G 3:46,069,589 XCR1 A 0.91 0.09 0.88 0.12 0.84 0.14 0.02 0.77 0.23 0.00 1.00 0.51 1.33

rs13069742 A/G 3:46,072,724 XCR1 A 0.91 0.09 0.88 0.12 0.84 0.14 0.02 0.77 0.23 0.00 1.00 0.51 1.33

rs35110864 G/A 3:46,112,965 XCR1, 
CCR1 G 0.96 0.04 0.92 0.08 0.91 0.09 0.00 0.84 0.16 0.00 1.00 0.27 1.87

rs13085367 T/C 3:46,131,332 XCR1, 
CCR1 T 0.96 0.04 0.92 0.08 0.093 0.07 0.00 0.86 0.12 0.02 0.31 0.15 2.35

rs4443214 T/C 3:46,136,372 XCR1, 
CCR1 T 0.94 0.06 0.91 0.09 0.88 0.12 0.00 0.84 0.14 0.03 0.48 0.62 1.27

rs35775079 C/T 3:46,220,620 CCR3 C 0.99 0.01 0.96 0.04 0.98 0.02 0.00 0.91 0.09 0.00 1.00 0.02* 8.53

rs11919389 T/C 3:101,705,614 RPL24 T 0.79 0.21 0.81 0.19 0.61 0.36 0.04 0.66 0.30 0.04 1.00 0.52 0.80

rs343320 G/A 3:146,517,122 PLSCR1 G 0.91 0.09 0.96 0.04 0.84 0.15 0.02 0.93 0.07 0.00 0.35 0.09 0.37

rs56162149 C/T 5:131,995,059 ACSL6 C 0.83 0.17 0.79 0.21 0.68 0.30 0.02 0.64 0.29 0.07 0.55 0.40 1.33

rs9271609 T/C 6:32,623,820 HLA-DRB1 T 0.66 0.34 0.65 0.35 0.36 0.61 0.04 0.46 0.38 0.16 0.41 0.78 1.08

rs2496644 A/C 6:41,515,007 LINC01276 C 0.74 0.26 0.73 0.27 0.54 0.41 0.05 0.54 0.39 0.07 0.81 0.88 1.04

rs1886814 A/C 6:41,534,945 FOXP4 A 0.77 0.23 0.77 0.23 0.59 0.36 0.05 0.59 0.36 0.05 1.00 1.00 1.00

rs28368148 C/G 9:21,206,606 IFNA10 C 1.00 0.00 0.99 0.01 1.00 0.00 0.00 0.98 0.02 0.00 1.00 1.00 1.00

rs505922 T/C 9:133,273,813 ABO T 0.84 0.16 0.82 0.18 0.70 0.29 0.02 0.68 0.29 0.04 1.00 0.72 1.13

rs529565 T/C 9:133,274,084 ABO T 0.84 0.16 0.78 0.22 0.70 0.29 0.02 0.61 0.34 0.05 1.00 0.24 1.50

rs61882275 G/A 11:34,482,745 ELF5 G 0.61 0.39 0.54 0.46 0.32 0.57 0.11 0.32 0.45 0.23 0.70 0.34 1.29

rs10774671 G/A 12:112,919,388 OAS1 A 0.76 0.24 0.82 0.18 0.57 0.38 0.05 0.71 0.21 0.07 0.25 0.25 0.68

rs2660 G/A 12:112,919,637 OAS1 A 0.82 0.18 0.85 0.15 0.66 0.32 0.20 0.77 0.16 0.07 0.18 0.59 0.82

rs10850097 C/T 12:112,923,312 OAS1 T 0.79 0.21 0.84 0.16 0.61 0.36 0.04 0.75 0.18 0.07 0.21 0.40 0.74

rs6489867 C/T 12:112,925,745 OAS1 T 0.77 0.23 0.82 0.18 0.57 0.39 0.04 0.73 0.18 0.09 0.24 0.32 0.71

rs7955267 C/T 12:112,941,234 OAS3 T 0.79 0.21 0.80 0.20 0.59 0.39 0.02 0.71 0.18 0.11 0.24 0.74 0.89

rs56106917 C/Del 12:132,489,231 FBRSL C 0.74 0.26 0.71 0.29 0.57 0.34 0.09 0.50 0.41 0.09 0.48 0.55 1.19

rs9577175 C/T 13:112,889,041 ATP11A C 0.79 0.21 0.72 0.28 0.59 0.39 0.02 0.50 0.45 0.05 0.21 0.28 1.40

rs4424872 T/A 15:93,046,840 RGMA A 0.96 0.04 0.97 0.03 0.95 0.02 0.04 0.96 0.02 0.02  < 001* 0.47 0.58

rs117169628 G/A 16:89,196,249 SLC22A31 G 0.88 0.12 0.87 0.13 0.77 0.23 0.00 0.79 0.16 0.05 0.47 0.69 1.17

rs79600142 T/C 17:45,820,356 CRHR1 T 0.87 0.13 0.94 0.05 0.73 0.27 0.00 0.89 0.09 0.02 1.00 0.07 0.43

rs62054835 A/C 17:45,857,306 MAPT-AS1 A 0.87 0.13 0.95 0.05 0.73 0.27 0.00 0.91 0.07 0.02 1.00 0.04* 0.36

Continued
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in patients from the control group with an allelic frequency of 8.93% and in patients belonging to the non long-
COVID group with a frequency of 8.70%. This variant showed a significant association with asymptomatic/mild 
COVID-19 (p = 0.02) and no long-COVID clinical outcome (p = 0.01) and has been previously associated with 
influenza  susceptibility61,91.

Predictive models
Genetic and clinical variables with significant association with the outcomes of interest, severe COVID-19 and 
long-COVID, were incorporated into binary logistic regression models. Three different predictive models for 
each of our main outcomes were built, a clinical model, a genetic model, and a mixed model. The best model 
was selected according to the Akaike information criteria (AIC) using the stepwise backward method. These 
comparisons showed that the mixed models have the best discriminatory power, both for severity (AUC = 0.86; 
95% CI = 0.78–0.93) and for long COVID (AUC 0.83; 95% CI = 0.74–0.91). A complete comparison of these 
models, including selected variables, is shown in Tables 4, 5, and Fig. 2. Quality and model assumptions were 
validated identifying the absence of collinearity, with the variance inflation factor test (< 1.2), homoscedasticity, 
with the Breusch-Pagan test (p > 0.05), calibration with the Hosmer–Lemeshow test (p > 0.05), and error 
independence, with the Durbin-Watson test (p > 0.05).

For the severity COVID-19 predictive mixed model the variables included were sex, body mass index (BMI), 
presence of comorbidities, and the genetic variants rs2232354, rs11385942 and rs1819040, belonging to the genes 
IL1RN, LZTFL1 and KANSL1, respectively. The resulting predicting score is presented in Eq. 1.

COVID-19 severity predictive model. Where the adjusted score is a number between 0 and 1, “male” male 
sex, “BMI” body mass index, “comorb” presence of comorbidities and “WT/Alt” the presence of the alternative 
allele for each genetic variant.

(1)

Adjusted score =
1

1+ e

−(−2.04+ 0.99(male)+ 0.15(BMI)+ 1(comorb)+
3.36(rs11385942WT/Alt)+ 0.86(rs2232354WT/Alt)− 1.77(rs1819040WT/Alt))

Variant Ref/Alt
Genomic 
coordinates Closer gene

Minor 
allele

Allele 
frequency 
controls

Allele 
frequency 
cases

Genotype frequency 
controls Genotype frequency cases

HWE p-value ORWT Alt WT Alt
WT/
WT

WT/
Alt Alt/Alt

WT/
WT

WT/
Alt Alt/Alt

rs112572874 A/G 17:45,995,618 MAPT A 0.86 0.14 0.94 0.06 0.71 0.29 0.00 0.89 0.09 0.02 1.00 0.04* 0.40

rs1819040 T/A 17:46,142,465 KANSL1 T 0.85 0.15 0.94 0.06 0.73 0.23 0.04 0.89 0.09 0.02 0.11 0.03* 0.37

rs2532300 T/C 17:46,152,620 KANSL1 T 0.87 0.13 0.94 0.06 0.73 0.27 0.00 0.89 0.09 0.02 1.00 0.07 0.43

rs3848456 C/A 17:49,863,260 TAC4 C 0.75 0.25 0.77 0.23 0.52 0.46 0.02 0.57 0.39 0.04 0.12 0.75 0.90

rs77534576 C/T 17:49,863,303 TAC4 C 0.83 0.17 0.85 0.15 0.66 0.34 0.00 0.73 0.23 0.04 0.73 0.72 0.87

rs12610495 A/G 19:4,717,660 DPP9 A 0.78 0.22 0.71 0.29 0.61 0.34 0.05 0.55 0.32 0.12 0.21 0.28 1.39

rs2109069 G/A 19:4,719,431 DPP9 G 0.75 0.25 0.70 0.30 0.55 0.39 0.05 0.52 0.36 0.12 0.48 0.37 1.30

rs2277732 C/A 19:4,723,658 DPP9 C 0.77 0.23 0.71 0.29 0.59 0.36 0.05 0.54 0.34 0.12 0.33 0.29 1.38

rs4804803 A/G 19:7,747,847 CD209 A 0.82 0.18 0.85 0.15 0.68 0.29 0.04 0.75 0.20 0.05 0.18 0.59 0.82

rs73510898 G/A 19:10,305,768 ZGLP1 G 0.96 0.04 0.96 0.04 0.91 0.09 0.00 0.95 0.02 0.04 0.01* 1.00 1.00

rs74956615 T/A 19:10,317,045 RAVER1 T 0.94 0.06 0.98 0.02 0.88 0.12 0.00 0.96 0.04 0.00 1.00 0.09 0.27

rs34536443 G/C 19:10,352,442 TYK2 G 0.96 0.04 0.98 0.02 0.93 0.07 0.00 0.96 0.04 0.00 1.00 0.41 0.49

rs429358 T/C 19:44,908,684 APOE T 0.88 0.12 0.95 0.05 0.79 0.18 0.04 0.89 0.11 0.00 0.20 0.11 0.46

rs368565 C/T 19:48,697,960 FUT2 T 0.66 0.34 0.51 0.49 0.48 0.36 0.16 0.36 0.29 0.35 0.04* 0.02* 1.87

rs4801778 G/T 19:48,867,352 PLEKHA4 G 0.85 0.15 0.88 0.12 0.73 0.23 0.04 0.77 0.21 0.02 0.44 0.56 0.79

rs17860115 C/A 21:33,230,000 IFNAR2 C 0.52 0.48 0.48 0.52 0.25 0.54 0.21 0.25 0.46 0.29 1.00 0.59 1.15

rs2300370 G/A 21:33,232,252 IFNAR2 G 0.54 0.46 0.46 0.54 0.27 0.54 0.20 0.23 0.46 0.30 1.00 0.29 1.33

rs2252639 A/G 21:33,245,424 IFNAR2 A 0.52 0.48 0.53 0.47 0.23 0.57 0.20 0.29 0.48 0.23 0.70 0.89 0.96

rs2236757 A/G 21:33,252,612 IFNAR2 G 0.54 0.46 0.52 0.48 0.25 0.57 0.18 0.30 0.43 0.27 0.18 0.79 1.07

rs2300371 C/T 21:33,259,936 IFNAR2 C 0.54 0.46 0.55 0.45 0.25 0.57 0.18 0.34 0.43 0.23 1.00 0.79 0.93

rs8178521 C/T 21:33,287,378 IL10RB C 0.76 0.24 0.74 0.26 0.57 0.38 0.05 0.61 0.27 0.12 0.13 0.64 1.15

rs35370143 Del/Ins 21:33,959,663 LINC00649 Del 0.83 0.17 0.79 0.21 0.66 0.34 0.00 0.62 0.34 0.02 0.35 0.49 1.26

rs2298660 C/T 21:41,473,706 TMPRSS2 C 0.79 0.21 0.81 0.19 0.62 0.34 0.04 0.68 0.27 0.05 0.76 0.74 0.89

rs2298661 C/A 21:41,473,715 TMPRSS2 C 0.78 0.22 0.82 0.18 0.61 0.34 0.05 0.70 0.25 0.05 0.38 0.40 0.75

rs3787946 G/C 21:41,475,808 TMPRSS2 C 0.78 0.22 0.80 0.20 0.61 0.34 0.05 0.66 0.29 0.05 0.57 0.62 0.85

Table 2.  Variant candidate analysis for COVID-19 severity. This table presents the data summary for the 
variants analysed in the present study. Alt, Alternative allele; HWE, Hardy–Weinberg equilibrium; OR, Odds 
ratio; Ref/Alt, Reference/Alternative, WT, Wild-type allele.
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Gen

LoF variants

Predicted 
pathogenic 
missense variants

TotalCases Controls Cases Controls

APOE 0 0 0 0 0

APOL1 0 0 0 0 0

ARHGAP27 0 0 0 0 0

ARL17B 1 1 0 0 2

ATP11A 1 1 1 0 3

BCL11A 0 0 0 0 0

CCR3 0 0 0 0 0

CCR5 0 0 0 0 0

CCR9 0 0 0 0 0

CD14 0 0 0 1 1

CENPS 0 0 0 0 0

CFAP73 0 0 0 0 0

DPP4 2 2 1 1 6

DPP9 0 0 0 0 0

FCGR2A 1 2 0 0 3

FDX2 0 0 0 0 0

FOXP4 1 0 2 2 5

FURIN 0 0 0 0 0

FUT2 1 0 13 17 31

FYCO1 0 0 0 0 0

HSD17B14 1 0 0 1 2

ICAM1 0 0 0 0 0

ICAM3 0 0 0 0 0

ICAM5 0 1 0 0 1

IFITM3 0 0 0 0 0

IFNA10 0 0 0 0 0

IFNAR1 0 0 0 0 0

IFNAR2 0 2 0 0 2

IRF3 0 0 0 0 0

IRF7 0 0 0 0 0

KANSL1 0 0 0 0 0

KLRC2 0 0 0 0 0

LZTFL1 1 0 0 0 1

MAPT 0 0 0 0 0

MUC1 5 6 0 0 11

MX1 1 0 0 0 1

NAPSA 0 0 0 1 1

NCOA4 0 0 0 0 0

NUCB1 0 0 0 0 0

OAS1 0 0 0 0 0

OAS3 2 0 0 2 4

OCLN 0 2 0 0 2

PDE4A 0 0 0 1 1

PIGN 1 0 0 1 2

PLSCR1 1 1 0 0 2

PPP1R15A 0 0 0 0 0

RPL24 0 0 1 0 1

SLC30A5 1 0 1 0 2

SLC6A20 0 0 0 0 0

SPDEF 0 0 0 0 0

TAC4 5 4 0 0 9

TBK1 1 0 0 0 1

THBS3 0 0 1 0 1

TICAM1 0 0 0 0 0

Continued
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For the long-COVID predictive mixed model, the variables included were anosmia, fever, fatigue, COVID-
19 clinical severity and presence of rs8178521 in the IL10RB gene. The resulting predicting score is presented 
in Eq. 2.

COVID-19 predictive model. Where the adjusted score is a number between 0 and 1, “severe COVID-19” 
presence of severe disease, “anosmia”, “fatigue” and “fever” refer to the presence of these symptoms and “WT/
Alt” presence of the rs8178521 variant.

Discussion
In just a matter of months, SARS-CoV-2 emerged as one of the most critical public health emergencies of the 
twenty-first century. Despite substantial progress in the understanding of this disease, the significant phenotypic 
variation in host responses and outcomes has not been fully  elucidated2,3,29. This variability is influenced by 
several factors, encompassing viral and host-related characteristics. Host genetic factors constitute important 
risk factors for COVID-19 severity, mortality, and the presence of sequels. It is important to note that these 
genetic factors have remained understudied in Latin-American countries. In this study, we aim to characterize 
clinical and host genetic factors related to disease severity and long-COVID development in a sample of the 

Adjusted score =
1

1+ e

−(−1.72+ 1.6(severeCOVID − 19)+ 1.17(anosmia)+ 1.16
(

fatigue
)

+ 0.8
(

fever
)

+

1.06(rs8178521WT/Alt))

(2)

Gen

LoF variants

Predicted 
pathogenic 
missense variants

TotalCases Controls Cases Controls

TLR3 6 0 0 1 7

TLR7 0 0 0 0 0

TMEM65 1 0 0 0 1

TMPRSS2 0 0 0 0 0

TRIM46 0 0 0 0 0

TYK2 0 0 2 5 7

UGT2A1 1 4 0 0 5

UGT2A2 0 0 0 1 1

UNC93B1 1 4 0 0 5

WNT3 0 0 0 0 0

XCR1 0 0 0 0 0

ZNF561 0 0 0 0 0

Total 35 30 22 34 121

Table 3.  Number of patients with potential pathogenic variants per gene according to COVID-19 severity.

Table 4.  Comparison of clinical, genetic and mixed models for COVID-19 severity. AIC, Akaike information 
criteria; CI, confidence interval; OR, Odds Ratio; SD, Standard deviation.

Predictors

Clinical model Genetic model Mixed model

OR SD 95% CI Statistic p-value OR SD 95% CI Statistic p-value OR SD 95% CI Statistic p-value

Intercepts 0.02 0.03 0.00–0.47 –2.40 0.01 7.74 9.29 0.74–81.39 1.70 0.08 0.13 0.30 0.00–11.83 –0.89 0.37

Male sex 2.62 1.16 1.10–6.24 2.18 0.02 2.72 1.36 1.02–7.27 1.99 0.04

BMI 1.16 0.07 1.03–1.29 2.55 0.01 1.17 0.08 1.02–1.33 2.29 0.02

No comorbidity 0.49 0.23 0.20–123 –1.52 0.12 0.37 0.20 0.13–1.05 –1.87 0.06

rs2232354 0.35 0.17 0.14–0.89 –2.22 0.42 0.42 0.22 0.15–1.18 –1.64 0.10

rs1819040 4.71 2.97 1.37–16.21 0.01 5.87 5.87 4.11 1.49–23.15 2.53 0.01

rs11385942 0.06 0.06 0.01–0.52 0.01 0.03 0.03 0.04 0.00–0.37 –2.78 0.00

Comparison

Observations 107 107 107

Deviation 126.44 126.82 104.43

AIC 134.44 134.82 118.43

Log Likelihood 
ratio –63.22 –63.41 –52.21
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Colombian population. We identified multiple genetic and non-genetic risk factors associated with these 
outcomes. Furthermore, we incorporated these factors into two predictive models for our outcomes: disease 
severity and long-COVID. This study illustrates the potential usefulness of a combined strategy using clinical 
and genomic data to identify high-risk individuals in a specific population.

Several non-genetic factors have demonstrated a substantial association with severe COVID-19 disease, 
including male sex, advanced age, and the presence of various  comorbidities92. Our study supports such findings, 
revealing a significant association between male sex, obesity, and diabetes mellitus with more adverse outcomes. 
There is growing evidence suggesting that comorbidities play a role in the development of endothelial damage, 
promoting a prothrombotic and inflammatory status and higher viral replication, ultimately exacerbating clinical 
 outcomes93,94. Regarding the clinical manifestations of the disease, respiratory and systemic signs and symptoms, 
including dyspnea, cough, odynophagia, fever, and fatigue, have shown a significant association with severe 
COVID-19  cases95. This association can be attributed to the immune-cytopathic effect of the virus on lung 
tissue. This effect leads to a systemic proinflammatory response and widespread viral dissemination, which, in 
turn, exacerbates symptoms through multiorgan  involvement96. Interestingly, our study identified anosmia as a 
protective factor for severe disease, an observation previously made in other  studies97.

Regarding non-genetic factors and long-COVID, we found that severe COVID-19 is associated with a higher 
prevalence of long-COVID, as previously  reported98. We did not find any additional statistically significant 

Table 5.  Comparison of clinical, genetic and mixed models for long-COVID. Note: AIC, Akaike information 
criteria; CI, confidence interval; OR, Odds Ratio; SD, Standard deviation.

Predictors

Clinical model Genetic model Mixed model

OR SD 95% CI Statistic p-value OR SD 95% CI Statistic p-value OR SD 95% CI Statistic p-value

Intercept 0.08 0.06 0.02–0.31 –3.68  < 0.01 3.36 1.34 1.54–7.34 3.04  < 0.01 0.18 0.14 0.04–0.79 –2.27 0.02

Anosmia 4.12 2.06 1.55–11 2.83  < 0.01 3.23 1.67 1.17–8.89 2.27 0.02

Fever > 38 °C 2.04 0.99 0.79–5.29 1.47 0.14 2.25 1.13 0.84–6.02 1.61 0.10

Fatigue 3.82 2.28 1.19–12.28 2.25 0.02 3.21 1.98 0.96–10.75 1.89 0.05

Clinical severity 4.42 2.24 1.64–11.92 2.94 0.00 4.98 2.63 1.77–14.02 3.04  < 0.01

rs9577175 0.54 0.22 0.24–1.20 –1.51 0.13

rs8178521 0.38 0.16 0.17–0.87 –2.28 0.02 0.35 0.18 0.13–0.95 –2.06 0.04

Comparison

Observations 107 107 107

Deviation 113.22 137.48 108.79

AIC 123.22 143.48 120.79

Log Likelihood 
ratio  − 56.61  − 68.74  − 54.39

Figure 2.  Predictive model ROC curves. Comparison of receiver operating characteristic curve (ROC) curves 
derived from the different predictive models. ROC curves for clinical, genetic, and mixed predictive models for 
COVID-19 severity (A) and long-COVID (B).
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associations between long COVID and either presymptomatic clinical or demographic variables, contrary to 
what has been reported in other studies. Previous research has indicated that patients over 50 years old and those 
with multiple comorbidities are more likely to experience long-COVID99. We believe that these discrepancies are 
due to differences in the methodological design, as these conclusions have been mostly based on considerably 
older  patients100,101. On the other hand, clinical manifestations during the acute phase of the disease, including 
respiratory and systemic signs and symptoms, show a correlation with long-COVID, in agreement with 
previous  reports102. This finding suggests that these acute-phase symptoms might serve as indicators of vascular, 
pulmonary, and central nervous system  damage99.

To date, it has been recognized that the response to COVID-19 infection is influenced by host genetic 
factors. Evidence from a study of twins, for instance, suggests a 50% heritability of COVID-19  risk103. Given the 
implication of these factors, several initiatives have been developed to identify risk variants and genes associated 
with COVID-19 severity and mortality. The methods include GWAS, whole exome sequencing, whole genome 
sequencing, and case–control  associations14,43. Importantly, several authors have highlighted the limitations 
of these studies concerning the small number of variants or genes assessed and the underrepresentation of 
Latin-American populations. To the best of our knowledge, our study is the first to incorporate a custom NGS 
technique to evaluate host genetic factors contributing to both COVID-19 severity and long COVID within a 
Latin-American sample.

This study identified 13 genetic variants associated with COVID-19 severity. Several of these variants, 
mainly located in the critical loci 3p21.31 and 17q21.31, have been described as important risk factors. In 
agreement with previous GWAS studies, we found that rs11385942, an intron variant located in LZTFL1, shows 
the strongest association (p < 0.01; OR = 10.88) with severe or critical COVID-1943,63,104. These findings support 
the utility of this risk allele as a useful molecular prognostic biomarker in diverse populations. Conversely, we 
identified rs1819040, a variant located in KANSL1, as a protective allele against severe or critical disease (p = 0.03; 
OR = 0.37), as previously reported in other  studies43. This variant was found in linkage disequilibrium with two 
intronic variants, rs62054835, and rs112572874, located in MAPT-AS1 and MAPT, respectively. Transcriptome-
wide association studies, GWAS, and eQTL studies have suggested the role of MAPT as a susceptibility gene for 
severe COVID-1948. Indeed, genetic variants within MAPT have been related to autoimmune diseases, normal 
lung function, and interstitial lung  disease105,106. Additionally, we found a significant association between severe 
COVID-19 and rs35775079, a variant located in the intronic region of CCR3 (p = 0.02; OR = 8.53). CCR3 encodes 
a chemokine receptor highly expressed in eosinophils, basophils, TH1 and TH2 CD4 + T cells, and airway 
epithelial  cells107. This receptor is an important mediator of allergic responses and genetic mouse model studies 
have demonstrated its crucial role in airway inflammatory cell  infiltration107,108. It has been proposed that variants 
in this gene may impact the disease outcome through an excessive inflammatory response, one of the hallmarks 
of severe COVID-19, as well as of other severe respiratory virus  infections109,110.

Currently, long-COVID symptoms are recognized as common sequelae of COVID-19 and represent 
a crucial focus of ongoing research. Similar to other reports, our research identifies an overall incidence of 
long-COVID, approximately 80% among non-severe COVID-19 patients and 40% among those with severe 
 cases111. Remarkably, we identified 4 genetic variants associated with this clinical condition. The variant with the 
strongest association, rs8178521, is located within the IL10RB gene (p = 0.01; OR = 2.51). This variant has been 
previously linked to COVID-19  severity45. However, our study represents the first report suggesting its potential 
association with long-COVID. IL10RB encodes for a receptor of type III interferons and plays a pivotal role in 
immunomodulation through its regulation of IL-10 influencing the differentiation, proliferation, and cytokines 
production of mast  cells112. Moreover, recent reports have suggested that the deregulated release of inflammatory 
mediators by mast cells is one of the potential mechanisms underlying the development of long-COVID113,114.

Our study identified 70 potential deleterious rare variants in candidate genes associated with the pathogenesis 
and immune response against SARS-CoV-2 infection. Rare and low-frequency variants have been shown to 
contribute to COVID-19 and other immune-related complex  disorders115,116. However, despite these associations, 
our study did not find any significant difference in variant frequency within our study sample. This lack of 
significance could be attributed to limitations in the sample size of patients included in our study. Intriguingly, 
some of the LoF variants identified in this study were exclusively present in patients with severe or critical 
COVID-19. TLR3, for example, harbored 9 LoF variants in the case group compared to 0 among the controls. 
Other genetic variants in TLR3, such as rs3775291, have been related to an impairment in the immune 
response and associated with COVID-19 susceptibility and  mortality117. Given the protective role of TLR3 and 
its function in innate immunity during SARS-CoV-2 infection, other potentially deleterious variants could 
similarly influence COVID-19 clinical outcomes. Likewise, we identified a potential deleterious missense variant, 
UGT2A1 c.576 T > A, (rs111696697) exclusively in patients with long-COVID (allele frequency 0.75). This gene 
is expressed in the olfactory epithelium and codifies for a protein member of the UDP-glycosyltransferase family 
which plays an important role as an odorant metabolizing  enzyme118. Furthermore, UGT2A1/UGT2A2 has been 
associated with COVID-19 anosmia, one of the most frequent long COVID  symptoms70. It should be highlighted 
that although some clinical and paraclinical predictors of long-COVID have been identified, the genetic factors 
related to this condition remain largely unknown. Identifying such factors could be useful to illuminate the 
biological and molecular basis of this disease.

In addition to genetic host variants, numerous studies have highlighted the role of viral genetic factors in 
COVID-19 pathogenicity, infectivity, and  outcomes119,120. The appearance of variants of concern (VOC) and 
variants of interest (VOI), in particular, has been continuously monitored and evaluated since the beginning 
of the  epidemic121,122. Although our study did not examine viral genetic factors, genomic surveillance studies 
conducted during the collection period of the samples (December 2020—July 2021) in Bogotá, indicated that 
the predominant variants were B.1.621 (Mu) 57.3% (469/819), P.1 (Gamma) 14% (114/819), and B.1.1.7 (alpha) 
2.8% (23/819)22. Therefore, the variant most detected during this period was Mu. This variant was later classified 
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as a variant being monitored (VBM) by the Centers for Disease Control and Prevention (CDC U.S.) and had 
no reports of significant effects of this variant on infectivity, transmissibility, or severity in contrast to VOIs. 
While complex viral and host genetic interactions cannot be discarded, we estimate that patients among the 
groups can be compared since they were enrolled during the same period, when the previously mentioned 
viral variants were circulating. On the other hand, although Bogota is a large city, with an area of 1636  km2, the 
Hospital Universitario Mayor-Mederi and the private laboratory Genética Molecular de Colombia, where cases 
and controls were enrolled, respectively, are just 8 km away from each other. Also, it should be highlighted that 
controls were recruited from a different location than cases, given that Colombian healthcare policies advised 
to not attend hospitals for mild COVID-19 symptoms. As a result, there were limited options to include mild 
cases from hospital settings.

As depicted, the hybrid models combining both clinical and genetic host variables constitute strong and 
reliable tools to predict COVID-19 outcomes. The biological basis of clinical variables has been discussed in 
previous models and  reviews123–125. On the other hand, recent studies have integrated specific genetic variants 
into predictive  models38,126. It is to be noted that the inclusion of variants from the IL1RN and KANSL1 genes in 
our model represents a novel approach. The absence of these variants in previous models may reflect differences 
in the genetic background of the studied populations and the complexity of the genetic architecture underlying 
COVID-19 outcomes. Thus, this study suggests that such a multivariable approach is a useful and innovative 
tool to identify high-risk individuals and prioritize limited health resources. We believe that such approaches 
are consistent with genomic and personalized medicine initiatives and may be useful for future pandemics.

Conclusions
This study analyzed the association between genetic and non-genetic factors with COVID-19 severity and the 
presence of long-COVID in a sample of the Colombian population. We found an association between these 
two outcomes and several genetic and non-genetic factors. The risk genetic variants are located in genes whose 
products participate in immunological signaling and humoral response against microorganisms. We highlight the 
usefulness of combining clinical and genomics data to develop models to predict COVID-19 response. Applying 
these predictive models in the clinical setting can help to identify high-risk individuals and focus resources and 
actions to reduce morbidity and mortality.

Limitations
Among the limitations of this study, we should mention that although the sample size might be sufficient to 
identify genetic variants with a medium or large effect, it may have been underpowered to detect the association 
of low-effect variants. The sample size, also, was calculated based on the available information on allele frequency. 
Third, we noticed that after the custom panel was designed and the probes were synthesized, novel candidate 
variants and genes were described in the literature. These were not included in this study and this fact highlights 
the importance of periodically updating NGS custom panel with clinical applications. On the other hand, 
although we took several measures to reduce potential bias, this may have been introduced during the interviews 
or clinical data collection. Finally, we should underline that the proposed models were not validated in a larger 
cohort, thus, more studies will be necessary to evaluate their accuracy and precision.

Data availability
The datasets generated and/or analysed during the current study are not readily available because the nature of 
this research contains information that could compromise the participants’ privacy and they did not agree to 
share their data publicly. Requests to access the datasets should be directed to Oscar Ortega-Recalde (oortegar@
unal.edu.co).
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