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A multimodal stacked ensemble 
model for cardiac output prediction 
utilizing cardiorespiratory 
interactions during general 
anesthesia
Albion Dervishi 

This study examined the possibility of estimating cardiac output (CO) using a multimodal stacking 
model that utilizes cardiopulmonary interactions during general anesthesia and outlined a 
retrospective application of machine learning regression model to a pre-collected dataset. The data 
of 469 adult patients (obtained from VitalDB) with normal pulmonary function tests who underwent 
general anesthesia were analyzed. The hemodynamic data in this study included non-invasive blood 
pressure, plethysmographic heart rate, and  SpO2. CO was recorded using Vigileo and EV1000 (pulse 
contour technique devices). Respiratory data included mechanical ventilation parameters and end-
tidal  CO2 levels. A generalized linear regression model was used as the metalearner for the multimodal 
stacking ensemble method. Random forest, generalized linear regression, gradient boosting machine, 
and XGBoost were used as base learners. A Bland–Altman plot revealed that the multimodal stacked 
ensemble model for CO prediction from 327 patients had a bias of − 0.001 L/min and − 0.271% when 
calculating the percentage of difference using the EV1000 device. Agreement of model CO prediction 
and measured Vigileo CO in 142 patients reported a bias of − 0.01 and − 0.333%. Overall, this model 
predicts CO compared to data obtained by the pulse contour technique CO monitors with good 
agreement.

Mechanical ventilation (MV) has a predictable impact on  circulation1,2. Cardiorespiratory interactions are clini-
cally important because MV can lead to cardiac  instability3. MV typically uses positive airway pressure, thereby 
increasing intrathoracic pressure (ITP), causing a reduction in venous return, and increasing pulmonary vascular 
resistance, which can decrease preload and subsequently reduce cardiac output (CO). However, increased ITP 
can cause a decrease in the afterload on the heart, leading to increased stroke volume and CO.

In addition, excessive tidal volume and lung hyperinflation caused by overstimulation of sensory nerve 
endings located within the alveolar walls can lead to reflex bradycardia and depression of the somatic nervous 
 system4.

Variations in arterial pulse and systolic pressure in mechanically ventilated patients with adjusted tidal vol-
umes can predict fluid responsiveness during acute circulatory failure related to  sepsis5. A decrease in  CO2 
concentration at the end-tidal concentration  (EtCO2) in humans and animals correlates with a reduction in 
pulmonary blood flow/CO6,7. This relationship is significant and is currently implemented in anesthesia moni-
toring for non-invasive and minimally invasive breath-by-breath CO monitoring in patients ventilated during 
anesthesia and critical  care8.

Presently, various methods for monitoring cardiovascular systems are available, including non-invasive, 
minimally invasive, and invasive techniques for measuring CO. Among these, thermodilution (TD) is considered 
the gold standard method, and pulse contour analysis is widely  used9,10. A non-calibrated pulse pressure analy-
sis device has been demonstrated to be clinically and statistically acceptable under hypo- and normodynamic 
 conditions11.

CO is one of the most challenging hemodynamic parameters to assess in unstable patients. Even with a cali-
brated pulse contour hemodynamic monitoring system (VolumeView/EV1000), considerable overestimation 
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of hemodynamic parameters has been reported when using a peripherally inserted central catheter from the 
brachial vein during calibration with temperature variation (ΔT) in comparison with a centrally inserted venous 
 catheter12.

Moreover, more than a dozen non-invasive methods have been proposed and developed to estimate CO. The 
simplest of these methods involves calculating CO by multiplying the stroke volume (SV) by the heart rate (HR), 
where SV is obtained by multiplying the pulse pressure (systolic blood pressure (SBP)–diastolic blood pressure 
(DBP)) by a constant value (k = 2). This method has been evaluated and observed to have a moderate correlation 
between the measured and estimated CO (r = 0.60, p < 0.001)13. Furthermore, machine learning algorithms have 
been employed in animal models to predict CO accurately by utilizing waveform arterial blood pressure and HR, 
with a difference of − 0.13 (0.69 L/min) between the sheep’s pulmonary arterial blood flow using a transit time 
Doppler flow probe and predicted  CO14.

Cardiorespiratory interaction data comprise heterogeneous information from the patient monitor, anesthesia 
machine, and CO monitor. Because of this diversity, employing a single model is impractical for comprehensively 
learning all facets of the data. Therefore, the rationale behind the use of multimodal stacking ensembles stems 
from their success in integrating multiple information sources for complex decision making in various medical 
machine learning  tasks15,16.

Recently, there has been growing interest in applying machine learning algorithms to estimate CO, particularly 
from arterial pressure  waveforms14,17,18. However, classical lumped parameter models, such as the Windkessel 
and Liljestrand–Zender models, suggest that approximate CO can be derived from basic monitoring  data13,19. 
Therefore, we chose to incorporate cardiorespiratory interactions into the machine-learning prediction of CO 
based on numerical data. To the best of our knowledge, this is the first study to use this approach.

Results
Among the 6388 patients in the VitalDB Dataset, which measured hemodynamics including CO from the Vigileo 
and EV1000 devices and respiratory monitoring data, 722 were eligible for the study (Fig. 1). Patients < 18 years 
old were excluded (n = 8). Data were selected from the beginning to the end of surgery to ensure hands-free, 
automatic, and constant ventilation. Additionally, the absence of lung disease in patients undergoing general 
anesthesia could be achieved by selecting patients with normal pulmonary function testing from their clinical 
information. Consequently, exclusion criteria were applied to patients with abnormal pulmonary function tests 
(n = 110).

Participants with unsynchronized parameter measurements and an absence of intraoperative NIBP measure-
ments were excluded (n = 135). After data preprocessing, 469 patients (EV1000, n = 327; Vigileo, n = 142) met the 

Figure 1.  Data flow of multimodal stacking ensemble learning framework for cardiac output prediction 
during general anesthesia. Machine learning algorithms: Generalized linear model (GLM), random forest (RF), 
gradient boosting machine (GBM), and extreme gradient boosting (XGBoost).
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data requirements for further analysis. A summary of the patients and their clinical characteristics is presented 
in Supplementary Tables S1–3.

Results of the base and multimodal stacked ensemble model regression
We evaluated the individual base learners and multimodal stacking ensemble regressions on three data subsets. 
We first trained and validated the hemodynamic response to cardiopulmonary interactions during MV using 
parameters from the hemodynamic and respiratory subsets (NIBP, HR, MV,  SpO2, and  EtCO2).

The hemodynamic data subsets (NIBP and HR) were then used for training and validation of the base models 
to predict CO from arterial blood pressure and heart rate.

Finally, respiratory data subsets (MV,  EtCO2, and  SpO2) were used for the training and validation of the base 
models and to calculate the hemodynamic effects of MV.

Table 1 presents the best results of the four base models, which were derived from the regression performance 
metrics of GLM, RF, GBM, XGBoost, and multimodal stacked ensemble models. For both CO monitoring 
devices, multimodal stacking outperformed all its base models in terms of the MSE, RMSE, and MAE, measur-
ing 0.096, 0.31, and 0.186 for EV1000 and 0.057, 0.239, and 0.139 for Vigileo, respectively. In addition, based on 
MAE, average errors were evaluated. Compared to base models, RMSE was more sensitive to significant errors 
and multimodal stacking models predicted CO more accurately.

Multimodal stacked ensemble model CO prediction vs. measured CO from the arterial wave-
form analysis device
Figure 2 and Table 2 present the baseline agreement between the multimodal stacked ensemble model for CO 
prediction and the CO measured using the EV1000 device. The difference between the methods was r = 0.985, 
and  R2 was 0.97 (Fig. 2a). Bland–Altman analysis revealed that the mean difference between measurements and 
prediction was − 0.001 L/min (± 1.96 SD, 0.611, and − 0.614 L/min; Fig. 2b). The proportional mean difference 
was − 0.271% (± 1.96 SD, 12.94%, and − 13.488%; Fig. 2c).

The agreement between the multimodal stacked ensemble model prediction of CO and the CO measured 
using Vigileo was r = 0.987, and  R2 was 0.974 (Fig. 2d). The overall mean bias for agreement in CO was − 0.01 

Table 1.  Performance of the base and multimodal stacked ensemble models. Target CO measurements from 
the EV1000 and Vigileo monitoring devices. Machine learning algorithms: Generalized linear model (GLM), 
Random forest (RF), gradient boosting machine (GBM), and extreme gradient boosting (XGBoost). NIBP 
non-invasive blood pressure, HR heart rate, MV mechanical ventilation, SpO2 oxygen saturation, EtCO2 end-
tidal  CO2.

Best model Data MSE RMSE R2 MAE

Multimodal stacked ensemble NIBP/HR/MV/SpO2/EtCO2/Target CO-EV1000 0.096 0.31 0.97 0.186

 RF NIBP/HR/MV/SpO2/EtCO2/Target CO-EV1000 0.12 0.346 0.968 0.197

 XGBoost NIBP/HR/MV/SpO2/EtCO2/Target CO-EV1000 0.123 0.35 0.966 0.211

 XGBoost NIBP/HR/ Target CO-EV1000 0.154 0.393 0.956 0.232

 RF NIBP/HR/ Target CO-EV1000 0.148 0.385 0.955 0.241

 GBM NIBP/HR/ Target CO-EV1000 0.166 0.408 0.953 0.256

 GBM NIBP/HR/ MV/SpO2/EtCO2/Target CO-EV1000 0.182 0.426 0.95 0.275

 GBM MV/SpO2/EtCO2/Target CO-EV1000 0.181 0.425 0.948 0.27

 RF MV/SpO2/EtCO2/Target CO-EV1000 0.192 0.438 0.948 0.262

 XGBoost MV/SpO2/EtCO2/Target CO-EV1000 0.251 0.501 0.927 0.343

 GLM NIBP/HR/MV/SpO2/EtCO2/Target CO-EV1000 1.81 1.345 0.444 1.064

 GLM NIBP/HR/ Target CO-EV1000 1.97 1.403 0.395 1.105

 GLM MV/SpO2/EtCO2/Target CO-EV1000 2.105 1.451 0.353 1.149

Multimodal stacked ensemble NIBP/HR/MV/SpO2/EtCO2/Target CO-Vigileo 0.057 0.239 0.974 0.139

 RF NIBP/HR/MV/SpO2/EtCO2/Target CO-Vigileo 0.074 0.273 0.973 0.157

 GBM NIBP/HR/MV/SpO2/EtCO2/Target CO-Vigileo 0.078 0.28 0.972 0.164

 XGBoost NIBP/HR/MV/SpO2/EtCO2/Target CO-Vigileo 0.078 0.28 0.972 0.163

 GBM NIBP/HR/ Target CO-Vigileo 0.101 0.318 0.963 0.186

 XGBoost NIBP/HR/ Target CO-Vigileo 0.108 0.329 0.962 0.188

 RF NIBP/HR/ Target CO-Vigileo 0.1 0.316 0.959 0.198

 RF MV/SpO2/EtCO2/Target CO-Vigileo 0.115 0.34 0.956 0.2

 GBM MV/SpO2/EtCO2/Target CO-Vigileo 0.116 0.34 0.954 0.206

 XGBoost MV/SpO2/EtCO2/Target CO-Vigileo 0.132 0.363 0.951 0.219

 GLM NIBP/HR/MV/SpO2/EtCO2/Target CO-Vigileo 1.072 1.035 0.524 0.787

 GLM NIBP/HR/ Target CO-Vigileo 1.14 1.068 0.494 0.826

 GLM MV/SpO2/EtCO2/Target CO-Vigileo 1.599 1.264 0.291 0.981
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(± 1.96 SD, 0.464, and − 0.477 L/min; Fig. 2e). The proportional mean difference was − 0.333% (± 1.96 SD, 9.924%, 
and − 10.59%; Fig. 2f).

Figure 2.  (a) and (d) show a scatterplot with spatial kernel density  estimation20. In addition, they show a 
regression line between multimodal stacked ensemble model CO prediction and measured CO from EV1000 
and Vigileo devices. (b), (c), (e) and (f) show descriptive statistics for the Bland–Altman analysis of agreement 
between model CO prediction and measured CO from the device.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7478  | https://doi.org/10.1038/s41598-024-57971-6

www.nature.com/scientificreports/

Discussion
In this study, we proposed a multimodal stacking ensemble that combines data from non-invasive cardiovascular 
monitoring and MV parameters, including  SpO2 and  EtCO2. A fundamental principle of the proposed model is 
that stacking makes the prediction accuracy better than that of a single machine learning algorithm, and stacking 
several algorithms significantly improves the prediction accuracy. We demonstrate that the multimodal stacked 
ensemble model predicts accurate and valid CO values with marginal bias and a narrow CO limit of agreement 
compared with those obtained using pulse contour technique devices.

Ensemble stacking regression leverages multimodal information gathered from anesthesia machine and 
patient monitors, deriving benefits from the RF, GBM, and XGBoost base models. It effectively captures the 
nonlinear relationships in the interplay between the heart and lungs during positive-pressure ventilation. Non-
linear interactions of cardiopulmonary features may explain why GLM base models exhibit inferior performance 
compared with other base models in hemodynamic and respiratory data. An additional advantage of ensemble 
stacking regression is the interpretability of the final predictions obtained using the GLM metalearner. Further-
more, it demonstrates robustness by harnessing the strengths of the multiple base models.

The Bland–Altman plot is widely recognized as the standard statistical method for assessing the agreement 
between two consecutive measurements of the same clinical  variable21. When using a clinical CO measurement 
device, Bland–Altman plots do not indicate whether the LoAs are  acceptable22. For example, an agreement limi-
tation of ± 1 L/min may not be acceptable in patients with low CO syndrome. Additionally, our results include 
percentage difference plots demonstrating that multimodal stacked ensemble models accurately predict CO, 
with predictions falling within the acceptable clinical criteria (± 30%) of the proportional mean difference when 
compared those obtained using the Vigileo and EV1000 devices.

In previous studies the calibrated pulse wave analysis device EV1000 has proven to be accurate and consistent, 
and was thus used for our reference CO measurement. The results showed good agreement and interchange-
ability with TD CO measurement, with a bias of − 0.07 L/min, LoA of 2.0 L/min, and a percentage of 29%23. In 
addition, the uncalibrated FloTrac/Vigileo provides clinically acceptable accuracy under stable hemodynamic 
conditions, with an average error below 30% for CO compared with that obtained via  TD11. However, severe 
sepsis and septic shock uncalibrated FloTrac/Vigileo vs. TD revealed no clinically acceptable tracking capability 
with a bias of − 0.86 L/min, LoA of − 4.48 to 2.77 L/min, and a percentage error of 48%24.

Our study was based entirely on non-cardiac surgery. Accordingly, NIBP was selected because it is a standard 
measurement for patients with ASA I and II and for intermediate-risk surgery. In addition, NIBP appears to be in 
acceptable agreement with invasively measured BP in patients with cardiogenic  shock25, MV, and  arrhythmia26. 
However, NIBP is not always well calibrated with invasive BP measurement, particularly in hypothermia and 
pronounced  hypotension25. Although invasive BP, known as beat-by-beat measurement, is considered the gold 
standard method of diagnosis, NIBP is associated with fewer complications, particularly catheter-associated 
artery pseudoaneurysms, occlusions, and  infections27. Occasionally, a measurement can be inaccurate owing to 
kinking or damping of the arterial line.

The HR was extracted from finger photoplethysmography and may represent acceptable accuracy based 
on electrocardiography (ECG) during normal breathing. Photoplethysmography and ECG-derived heart rates 
can differ moderately, and photoplethysmography shows an advantage in monitoring changes in ITP caused by 
ventilation, sleep apnea, and even changes in respiratory rate during deep  breathing28,29.

Table 2.  Bland–Altman analysis. Lower and upper limits of agreement (LLoA and ULoA) and standard 
deviation (SD).

Bland–Altman analysis Mean value

CI at 95%

Lower CI Upper CI

Agreement between multimodal stacked ensemble model CO prediction 
and measured EV1000 CO

Mean differences (Bias) (L/min)  − 0.001  − 0.01 0.007

SD of Bias(L/min) 0.312

ULoA (+ 1.96 SD) (L/min) 0.611 0.595 0.626

LLoA (-1.96 SD) (L/min)  − 0.614  − 0.629  − 0.598

Percent differences (Bias) (%)  − 0.271  − 0.466  − 0.076

SD of Bias (%) 6.743

ULoA (+ 1.96 SD) (%) 12.94 12.608 13.284

LLoA (-1.96 SD) (%)  − 13.488  − 13.826  − 13.15

Agreement between multimodal stacked ensemble model co prediction 
and measured vigileo CO

Mean differences (Bias) (L/min)  − 0.01  − 0.018 0.005

SD of Bias(L/min) 0.24

ULoA (+ 1.96 SD) (L/min) 0.464 0.443 0.485

LLoA (-1.96 SD) (L/min)  − 0.477  − 0.497  − 0.456

Percent differences (Bias) (%)  − 0.333  − 0.810  − 0.188

SD of Bias (%) 5.233

ULoA (+ 1.96 SD) (%) 9.924 9.474 10.373

LLoA (-1.96 SD) (%)  − 10.59  − 11.04  − 10.141
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Using the respiratory rate based on capnography, the expiratory tidal volume, and the expiratory Vm enabled 
us to obtain the exact delivered volume per breathing cycle recorded in the anesthesia machine (Fig. 6a–c). 
Noteworthy differences between the set and delivered tidal volumes have been demonstrated in several clinical 
situations, such as patient lung size, lung compliance, airway resistance, and maintenance of spontaneous breath-
ing during general anesthesia through invasively assisted spontaneous  ventilation30,31.

Visualizing cardiopulmonary interactions and variable importance in a multimodal stacked 
ensemble model
Providing decision support using a functional hemodynamic machine learning model based on the complex 
relationship between the heart and lungs during general anesthesia should be understood by the medical envi-
ronment. The predictability of the model was quantified in our work using partial dependence plots (PDPs)32, 
model parameter importance, and interaction  variables33.

The symmetric matrix, derived from the calculation of variable importance and interactions using the RF 
model, was utilized to visualize the interaction variables in Table Fig. 3c, importance variables in Fig. 3b, and 
to construct a network graph in Fig. 3a. Variable importance is assessed exclusively based on changes in MSE. 
In difference, variable interactions are evaluated using the square root of the mean unnormalized version of the 
H-statistic, yielding a value on a scale of 0 to 1. This approach reduces the identification of spurious interactions 
and presents results by quantifying changes in the RMSE, which are measured on the same scale as CO in L/min. 
An RF model incorporating NIBP/HR/MV/SpO2/EtCO2 and CO measured by the Vigileo device was chosen 
to visualize the interaction and importance variables because it displayed the highest performance, with an R2 
of 0.973 and an MSE of 0.074 compared to other base models.

All demographic, hemodynamic, and respiratory parameters displayed interactions to varying degrees with 
a range of H-statistic values (Fig. 3a and c). Hence, these plots facilitate the interpretation of cardiopulmonary 
interactions, particularly concerning total interactions and interactions between pairs of features, where one 
feature remains constant while others change, thereby influencing the accuracy of the cardiac output prediction. 
Demographic and hemodynamic variables, specifically weight and HR, were identified as the most important 
interactions, exhibiting an H-statistic value of 0.091. This finding suggests that an increase in the accuracy of 
the CO prediction corresponds to a reduction in the RMSE of 0.091 L/min. The constant pairs variable, HR, 
demonstrated the strongest reciprocal interactions with age (H-statistic = 0.058), NIBP-SBP (H-statistic = 0.045), 
height (H-statistic = 0.07), and EtCO2 (H-statistic = 0.056). The six variables that contributed the most to the 
prediction of CO in the RF model were HR, age, height, weight, NIBP-SBP, and minute volume (Fig. 3a and b).

The results of our study were consistent with well-established data demonstrating that CO levels decrease 
with age by approximately 1% per year after the third decade (Fig. 4a). Age-related decline in the stroke index is 

Figure 3.  (a) The two-way interaction (Vint) represents the unnormalized Friedman’s H-statistic between 
variables, depicted by connecting lines in the RF model for predicting the CO. The stronger the interaction, the 
thicker and darker the indigo line. The node’s size and green intensity indicate the variable’s importance (Vimp). 
(b) Contributions of explanatory variables to the RF model, measured in mean squared error "%IncMSE". 
(c) The table matrix presents the numerical values of the unnormalized Friedman’s H-statistic, indicating the 
interacting variables within the RF model for predicting the CO.
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accompanied by decreased body size and HR, which reduces  CO34. We found the exact relationship between body 
size and CO in a straight-line regression, as observed in the last  century35 (Fig. 4c,d). According to our findings, 
in females, one-way PDPs from the RF, GBM, and XGBoost models showed a decrease in CO of approximately 
10% compared to those in males during intraoperative measurements. However, this difference was smaller than 
the 22% difference reported during the resting  state36 (Fig. 4b).

HR is crucial to determining the diastolic filling time, influencing the SV via the Frank–Starling mechanism. 
For cardiopulmonary interactions during MV, venous return can be reduced, which can further compromise 
diastolic filling, particularly at high heart rates. Our study revealed a linear relationship between CO and HR up 
to 90/min, where deceleration began (Fig. 4e). Early curve deceleration is well documented in impaired right 
heart  filling37. However, here, this may have been influenced by factors, such as autonomic nervous system activ-
ity, blood volume, and heart contractility, which were beyond the scope of this study.

The relationships between SBP, DBP, and CO during general anesthesia are complex and dynamic. In our 
study, we observed an increase in SBP corresponding to an increase in CO of up to 120 mmHg following the 
onset of the deceleration curve (Fig. 4f). The decreased CO level during high intraoperative SBP may be caused 
by increased vascular resistance, stiffened large  arteries38, and reduced SV owing to elevated afterload. Our study 
demonstrated a decrease in DBP with a marginal increase in CO (Fig. 5a). An increase in pulse pressure might 
elucidate the observed increase in CO. An increase in SV owing to volume substitution results in increased 
CO, causing an increase in pulse pressure. Cardiopulmonary interactions and additional interventions such as 
vasopressor administration or adjustments to ventilator settings may play a substantial role. Additionally, the 
nonlinear relationship between pulse pressure, cardiac index (CI), and deceleration curve starting at a CI of 3 
L/min/m2 has been well  documented39.

One-way PDPs revealed an inverse relationship between CO and airway pressure (Fig. 5e). A decrease in SV 
and venous return is the primary mechanism by which increasing airway pressure reduces CO. The application 
of airway pressure levels at 10, 20, and 30 cm  H2O led to a variation in the CI between + 6% and − 43%, which 
was associated with corresponding changes in the SV index (p < 0001, r2 = 0.89)40. Our findings align with those 
of earlier studies, as they indicated an increase in airway pressure during lung inflation and a reduction in CO 
at a rate of 0.5 L/min per 10 mbar increase in PIP.

PEEP increases ITP during the entire respiratory cycle to restore normal end-expiratory lung volume during 
MV. Increasing the PEEP levels allowed for greater lung expansion. PEEP during MV may also displace blood 
from the pulmonary circulation, increase mean systemic pressure, reduce venous return, and decrease CO 
and tissue  perfusion41. Our model exhibits a decrease in the CO rate of 0.1 L/min by raising PEEP to 2.5 mbar 
(Fig. 5f). This decrease in CO with increasing PEEP in a curvilinear relationship has been previously  reported42.

A reduction in TV increases CO; nevertheless, the degree of improvement in hemodynamics depends largely 
on  ITP43. Reducing the tidal volume increases chest wall compliance by decreasing ITP during MV and increasing 

Figure 4.  Partial dependence plots for variables in the multimodal stacking ensemble model for CO measured 
by Vigileo monitoring device. Partial Dependence Multimodel Plot gives a graphical depiction of the distributed 
random forest (DRF), gradient boosting machine (GBM), generalized linear model (GLM), and extreme 
gradient boosting (XGBoost). The effect of a variable is measured as the change in the mean cardiac output. HR 
plethysmographic heart rate, NIBP SBP systolic non-invasive blood pressure.
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venous return, leading to increased left ventricular preload and CO. This is consistent with our finding; our 
model showed an increase in CO of 0.03 L/min per 1 mL/kg of TV reduction (Fig. 6b). A tidal volume > 15 mL/
kg markedly decreases HR and blood pressure and reduces  CO44. However, we could not evaluate this observa-
tion with limited training data for tidal volumes > 15 mL/kg, and a machine learning model could not make 
meaningful predictions.

Changes in exhaled carbon dioxide during general anesthesia with stable ventilation correspond to changes 
in CO and metabolic  CO2  production45. At  ETCO2 levels > 30 mmHg, RF, GBM, and XGBoost models predict a 
satisfactory CO increase of 0.5 L/min per 10 mmHg of  ETCO2 (Fig. 5d). A similar correlation between  ETCO2 
and CO has been reported in previous  studies46. An animal model during cardiopulmonary resuscitation showed 
a correlation coefficient of 0.79 between  EtCO2 and  CI47. This finding is consistent with that of the GLM model. 

Figure 5.  Partial dependence plots for variables in the multimodal stacking ensemble model for CO measured 
by Vigileo monitoring device. Partial dependence multimodel plot gives a graphical depiction of the distributed 
random forest (DRF), gradient boosting machine (GBM), generalized linear model (GLM), and extreme 
gradient boosting (XGBoost). The effect of a variable is measured as the change in the mean cardiac output. 
NIBP-DBP diastolic non-invasive blood pressure, FiO2 fraction of inspired oxygen, SPO2 oxygen saturation, 
EtCO2 infrared spectrometry capnography, which measures end-tidal CO2, PIP peak inspiratory pressure, PEEP 
positive end-expiratory pressure.

Figure 6.  Partial dependence plots for variables in the multimodal stacking ensemble model for CO measured 
by Vigileo monitoring device. Partial dependence multimodel plot gives a graphical depiction of the distributed 
random forest (DRF), gradient boosting machine (GBM), generalized linear model (GLM), and extreme 
gradient boosting (XGBoost). The effect of a variable is measured as the change in the mean cardiac output. RR 
respiratory rate based on capnography, TV expiratory tidal volume, Vm expiratory minute volume.
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However, the GLM model had a lower performance than that of the RF, GBM, and XGBoost models and had 
less training data with  EtCO2 < 30 mmHg.

A decline in  SpO2 was observed with decreasing CO in all base models in our study (Fig. 5c). Decreased CO 
caused by cardiopulmonary interactions is the primary factor in the reduction of arterial oxygen content observed 
during  MV48. Hypovolemia and vasodilation, which are commonly observed during general anesthesia, may also 
contribute to this phenomenon. However, our data did not allow us to determine whether the increased inspired 
 O2 fraction reflected an increase in CO (Fig. 5b). It is widely recognized that increases in  FiO2 at fixed values of 
CO fail to detect conditions of low oxygen supply during central venous oxygen  saturation49.

This study may be more compelling if the model was applied to a dataset that included direct CO measure-
ments obtained through thermodilution using a pulmonary artery catheter. Nevertheless, the interpretability of 
the developed multimodal stacking ensemble is a notable strength of the proposed system. By offering valuable 
insights into the interpretation of the model, we deepen our understanding of all purely physiological inputs 
implicated in CO estimation. This not only enhances scholarly comprehension within the discipline, but also 
promotes the endorsement and integration of the system among healthcare practitioners. The architecture of this 
model aligns with the characteristics of "locked" algorithms as defined in the proposed regulatory framework for 
modifications to Artificial intelligence/machine learning (AI/ML)-based Software as a Medical Device by the food 
and drug administration (FDA)50. Training the complex algorithm with numerical data enhanced its versatility, 
allowing the model to be saved, exported, and deployed in diverse medical environments for production use.

Further limitations of this study are as follows. The data analyzed was from one source only and focused solely 
on adult patients. During data mining, we could not find synchronized records of sudden blood loss or vasoactive 
infusions. This limitation has an impact on our model’s ability to assess fluid responsiveness and requires thor-
ough evaluation when our model undergoes testing in real-time general anesthesia scenarios. The perioperative 
clinical information dataset contained data on estimating intraoperative blood loss and cumulative intraoperative 
use of vasoactive medications (ephedrine, phenylephrine, and epinephrine). However, this information lacks 
a recorded time, making it unsuitable for inclusion in our model. Mechanical ventilation without spontaneous 
effort may affect hemodynamics differently; nonetheless, the ventilation modes were not documented in the Vit-
alDB data, leading to their exclusion from this study. In addition, the small number of patients with obstructive 
or restrictive lung diseases made it difficult to include them in the data subset. Although constant ventilation was 
ensured during surgery in this study, it is important to recognize that the period from the onset of anesthesia to 
the start of surgery and the time between the end of surgery and extubation are important for comprehending 
the influence of cardiopulmonary interactions on hemodynamics. During extubation or weaning, spontaneous 
inspiratory efforts in patients with obstructive and restrictive lung disease may strongly decrease CO by increas-
ing the left ventricular afterload, especially if left ventricular function is already  impaired43. Our model should 
be improved in the future to address these cardiopulmonary interactions.

Conclusion
Using a multimodal stacking ensemble algorithm, involving two-component regression based on hemodynamic 
and respiratory monitoring inputs, acceptable performance was achieved in comparison to data obtained by the 
pulse contour technique CO monitors.

This innovative methodology has the potential to discern the intrinsic physiological processes occurring 
in cardiopulmonary interaction during mechanical ventilation at a 14-s interval, particularly in the context of 
CO estimation. Based on the last recorded monitoring parameter, the model predicts only current CO for each 
interval of 14 s. By predicting CO cumulatively over time, we can assess the impact of cardiopulmonary interac-
tion on CO during mechanical ventilation.

Current research has the potential to address the rising demand for non-invasive CO measurements; however, 
it is crucial to conduct external validation using several data sources and diverse patient conditions.

Methods
Data source
In this study, de-identified data were used from an open database of non-cardiac surgery patients who underwent 
routine or emergency operations at Seoul National University Hospital, Seoul, Korea, from August 2016 to June 
 201751. This database contains prospectively collected intraoperative vital sign data from 6,388 general, thoracic, 
urological, and gynecological surgery cases, with the formal approval of an ethics committee/IRB (H-1408-101-
605) and registered at www. clini caltr ials. gov (identifier: NCT02914444). Perioperative clinical information was 
retrospectively obtained. In addition, several anesthesia devices recorded up to 12 waveforms and 184 numeric 
data tracks during surgery using the Vital Recorder program.

Monitoring parameters and data structure
Hemodynamic data, obtained as numeric values at 2-s intervals, included non-invasive blood pressure (NIBP), 
plethysmographic HR, and  SpO2 data (Solar™ 8000 M, GE healthcare, Wauwatosa, WI, USA). In addition, CO 
was recorded using pulse contour technique monitors such as Vigileo and EV1000 (Edwards Lifesciences, Irvine, 
CA, USA).

Respiratory data collected using the anesthesia machine (Primus, Dräger, Lübeck, Germany) were recorded 
at 7-s intervals. MV was determined by estimating the fraction of inspired oxygen  (FiO2), expiratory TV, expira-
tory minute volume (Vm), positive end-expiratory pressure (PEEP), peak inspiratory pressure (PIP), respiratory 
rate based on capnography, and infrared spectrometry capnography, which measures  EtCO2, thereby ensuring 
adequate and accurate ventilation per period.

http://www.clinicaltrials.gov
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According to the official VitalDB data descriptor, invalid data tracks that were identified during the data check 
were excluded. Following this exclusion, the data were organized into nonconstant time  intervals51.

Data extraction occurred at a rate of one second per interval, involving 16 parameters and comprising a total 
of 6,236,640 rows over a duration of 1732.4 h (EV1000:1288.03 h; Vigileo: 444.1 h) intraoperative monitoring 
with 99,786,240 datapoints. Hemodynamic monitoring data, collected at 2-s intervals, were aligned with the 
anesthesia machine data and recorded at 7-s intervals. Consequently, data synchronization occurred every 14 s, 
encompassing 538,354 rows of data. CO, marked as a target intraoperative parameter, demonstrated a 43.5% 
reduction in missed data, leaving 234,225 rows.

The NIBP measurements in VitalDB were recorded every 2 s. However, intraoperative NIBP in this data subset 
was intermittently measured over a period of 2–45 min, with interval data ranging from 1 to 10 min recorded for 
each measurement. The absence of NIBP during surgery led to a 77.9% reduction in data. After extracting data 
for adult patients aged > 18 (constituting 2.4% of the dataset) and removing the remaining 1% of missing values, 
a total of 49,007 pairs of row measurement data were available for subsequent analyses. To uphold the rigor of the 
analysis and enhance the precision of the results, rows containing missing values were excluded from the dataset.

Retrieving demographic and patient characteristics
The VitalDB records were identified using case IDs that could be matched with the case IDs in the periopera-
tive clinical information. After data preprocessing, each record was matched to its corresponding perioperative 
clinical information to retrieve the demographic and patient characteristics. Subject characteristics, including 
age, sex, weight, height, body mass index (BMI), ASA grade, preoperative comorbidity, department, operation 
type, surgical approach, and postoperative ICU stay, were analyzed. In addition to describing the parameters, 
descriptive statistics were used to describe them in terms of minimum, maximum, mean, standard deviation, 
median, 25th–75th quartiles, and 95% confidence intervals (see Supplementary Tables S1–3).

Evaluating levels of general anesthesia
Both inhalational and intravenous anesthetics influence systemic vascular resistance and cardiac contractility, 
leading to a reduction in  CO52. Therefore, it is imperative to delineate the depth of anesthesia while maintaining 
general anesthesia in this project. In instances of total intravenous anesthesia (TIVA), propofol was titrated to 
maintain the bispectral index (BIS) at 41.07 ± 9 and delivered through a target-controlled infusion pump. For 
inhalational anesthesia, sevoflurane and desflurane were adjusted using a vaporizer to target the Minimum Alveo-
lar Concentration (MAC) at 0.87 ± 0.24 independently of the BIS value. The depth of anesthesia administered 
during general anesthesia for this study is delineated in Supplementary Table 5.

Model development
For multisystem CO prediction, we used multimodal stacking-based ensemble learning regression techniques 
(Fig. 1). We split the multimodal data into training, validation, and test sets at a ratio of 7.5:1.25:1.25.

After preprocessing, the training and validation data were used to train and validate the model using both 
hemodynamic and respiratory parameters (NIBP, HR, MV,  SpO2, and  EtCO2), to calculate the relationship 
between cardiorespiratory interactions and CO. Further training and validation data were separated into hemo-
dynamic (NIBP and HR subsets) and respiratory parameters (MV,  SpO2, and  EtCO2 subsets). Three data subsets 
were constructed using the demographic variables (age, height, weight, and sex).

Four base learner models were used for the multimodal stacking ensemble in this study (Level-0): a general-
ized linear model (GLM)53, Random Forest (RF)54, Gradient Boosting Machine (GBM)55, and extreme gradient 
boosting (XGBoost)56. Excluding GLM, all other models were nonlinear regressions.

Within the R interface for ‘H2O’, a scalable open-source platform, we employed a random grid search meth-
odology to pinpoint an optimal set of hyperparameter values for maximizing the effectiveness of our models 
on the dataset. The H2O platform employs a random hyperparameter search with time and metric based early 
stopping, enabling the identification of high-quality models within a limited computational  timeframe32,57.

To optimize the hyperparameters of the GLM, distributed RF, GBM, and XGBoost regression models in the 
three data subsets, a random search was conducted by splitting the training set fivefold to optimize the hyper-
parameters and enhance the model performance by lowering the predicted value error measured through the 
mean absolute error (MAE). The key hyperparameters for DRF, GB, and XGBoost (ntrees, max_depth, learn_rate, 
sample_rate/col_sample_rate, and min_rows) were employed, whereas for GLM, alpha and lambda were uti-
lized. Additionally, search criteria including max_models, max_runtime_secs, stopping_tolerance, and stop-
ping_rounds were applied. The hyperparameters of the base models are summarized in Supplementary Table 4.

The best optimized regression predictions of the 12 base models from the three data subsets were subsequently 
used as input features for the multimodal stacking ensemble method (Level-1)15.

In the second step, the Stacked Ensemble method uses a metalearning algorithm to learn the optimal com-
bination of the base  learners58. The metalearner is a default H2O GLM with non-negative weights. The GLM 
metalearner was evaluated during the implementation of a stacking regression with cross-validation, where 
lambda was employed as a hyperparameter.

The comparison results of the base models and multimodal stacked assembly with the performance metrics 
in the regression are listed in Table 1.

Performance metrics in regression
The mean square error (MSE), root mean square error (RMSE), MAE, and coefficient of determination  (R2) 
were used as performance indicators to evaluate the regression algorithms. The MSE and RMSE are commonly 
used regression metrics.
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By taking the square root of MSE, the RMSE (Eq. 1) measures the difference between the predicted CO ypi  
and measured CO values yi . The RMSE was calculated as the square root of the sum of all regression errors per 
row divided by the total number of observations. The regression performance improved, with lower RMSE and 
MSE values.

The MAE measures the difference between the measured CO yi and predicted CO ypi  values divided by the 
total number of observations (Eq. 2). Low MAEs indicate high model accuracy.

R2 represents how well a regression model explains the variability between the measured and predicted CO. 
From 0 to 1, the higher the value, the better the model (Eq. 3).  R2 represents the variability explained by the 
model (squared difference between the target yi and the predicted value ypi  ) divided by the total deviance y value 
(squared difference between the target yi and the mean target values y).

Model evaluation
We used the Bland–Altman method as a statistical standard to compare the measures of CO yi from both EV 
1000 and Vigileo with the multimodal stacking ensemble model prediction CO ypi 59. The Bland–Altman plot was 
introduced to describe the agreement, where the y-axis shows the difference between the measured and model-
predicted CO ( yi − y

p
i  ), and the x-axis represents the average of the measured and model-predicted CO ((yi+y

p
i

)/2). In summary, the absolute mean difference between the measured and predicted CO ( d =
1

N

∑N
i=1

(yi − y
p
i  ) 

can be used to estimate the constant bias, and the limits of agreement (LoAs) lie between d− 1.96Sd and d+1.96Sd, 
where  Sd is the standard deviation. Percentage difference plots and analyses were used to assess the proportional 
differences between the measured and model-predicted CO. This shows how this error influences lower CO 
measurements, whereas for higher CO values, the percentage bias is  decreased60. In the proportional Bland–Alt-
man plots, bias changes over the measuring range, and are presented as a proportional mean difference d = 
1

N

∑N
i=1

(yi−y
p
i )

(yi+y
p
i )/2

 , and the LoA lay between d− 1.96Sd and d+1.96Sd.

Data availability
The datasets generated and/or analysed during the current study are available in the VitalDB repository, https:// 
physi onet. org/ conte nt/ vital db/1. 0.0/. The R-based interactive web applications for this study can be accessed at 
the address provided below: https:// albio nderv ishi. shiny apps. io/ CO_ Shiny/.
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