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Employing deep learning 
and transfer learning for accurate 
brain tumor detection
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Artificial intelligence-powered deep learning methods are being used to diagnose brain tumors with 
high accuracy, owing to their ability to process large amounts of data. Magnetic resonance imaging 
stands as the gold standard for brain tumor diagnosis using machine vision, surpassing computed 
tomography, ultrasound, and X-ray imaging in its effectiveness. Despite this, brain tumor diagnosis 
remains a challenging endeavour due to the intricate structure of the brain. This study delves into the 
potential of deep transfer learning architectures to elevate the accuracy of brain tumor diagnosis. 
Transfer learning is a machine learning technique that allows us to repurpose pre-trained models 
on new tasks. This can be particularly useful for medical imaging tasks, where labelled data is often 
scarce. Four distinct transfer learning architectures were assessed in this study: ResNet152, VGG19, 
DenseNet169, and MobileNetv3. The models were trained and validated on a dataset from benchmark 
database: Kaggle. Five-fold cross validation was adopted for training and testing. To enhance the 
balance of the dataset and improve the performance of the models, image enhancement techniques 
were applied to the data for the four categories: pituitary, normal, meningioma, and glioma. 
MobileNetv3 achieved the highest accuracy of 99.75%, significantly outperforming other existing 
methods. This demonstrates the potential of deep transfer learning architectures to revolutionize the 
field of brain tumor diagnosis.
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The human brain, located in the cranium, is a crucial organ responsible for various functions, governed by a 
network of billions of neurons that coordinate electrical and chemical impulses, shaping our experiences and 
 existence1. This extraordinary organ is a linchpin in the realms of perception, emotion, and character. Comprising 
distinct components, each with specialized roles, the brain epitomizes complexity. The cerebral cortex, a convo-
luted outer layer, takes the reins of consciousness, while the cerebellum assumes responsibility for balance and 
 coordination2. This harmonious collaboration among various brain regions is crucial for the seamless orchestra-
tion of our daily activities and responses to the world around us. However, the resilient nature of the brain does 
not shield it entirely from threats. The emergence of abnormal cell growth, encapsulated as a mass or lump, is 
known as a tumor or  neoplasm3. Tumors can be found in various organs, including the brain. The distinction 
between benign and malignant tumors is crucial for understanding their health impact. Benign tumors, slow 
and localized, are less dangerous but can pose a threat if they encroach on vital organs or  tissues4. Malignant 
tumors are aggressive and can invade surrounding tissues and spread through metastasis. Understanding the 
growth and behavior of these tumors is crucial for timely intervention and preserving the intricate functional-
ity of the human brain, which is a marvel that weaves the tapestry of human  experience5. A brain tumor is an 
abnormal cell accumulation within the brain, which can either emerge directly from brain tissue or infiltrate 
the brain through metastasis, where cancerous cells from other parts of the body spread to the  brain6. Brain 
tumor diagnosis involves a comprehensive approach, often involving imaging tests and a biopsy to identify the 
tumors characteristics and grade. The diverse spectrum of brain tumors includes neoplasms from various cell 
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types, each with unique challenges and implications that influence diagnostic approaches, treatment strategies, 
and patient  outcomes7. Malignant gliomas, arising from brain’s glial cells, can develop in any brain region and 
require targeted therapeutic interventions to navigate the cellular matrix, emphasizing the need for effective 
treatment in this formidable tumor  type8. Meningiomas, a distinct category of tumors, originate in the meninges, 
the protective membranes enveloping the brain and spinal cord. Interestingly, most meningiomas are relatively 
benign and often do not pose an immediate threat to  health9. The pituitary gland, located at the brain’s base, 
can cause adenomas, tumors disrupting hormonal regulation, and Schwannomas, stemming from Schwann 
cells responsible for creating the myelin sheath that protects nerve  fibers10. Glioblastomas, the most malignant 
and aggressive type of brain tumors, pose significant challenges in diagnosis and treatment. Understanding the 
intricacies of these diverse brain tumors is crucial for tailoring effective treatment strategies, adding complexity 
to the understanding of brain  pathology11.

The relentless pursuit of knowledge in neuro-oncology holds the promise of advancing diagnostic techniques 
and therapeutic interventions, providing a beacon of hope for individuals grappling with the complexities of these 
formidable intrusions into the delicate domain of the human  brain12. The integration of deep learning and artificial 
intelligence (AI) has significantly improved medical image analysis, leading to significant advancements in the 
detection, diagnosis, and characterization of various medical conditions. This has enabled healthcare professionals 
to make more informed decisions, particularly in the accurate classification of cancer types, such as lung and breast 
cancer. This integration has resulted in earlier diagnoses, improved treatment decisions, and improved patient 
 outcomes13. Artificial intelligence plays a crucial role in surgical planning, enabling precise segmentation of lesion 
boundaries and brain structures, balancing intervention with quality-of-life preservation. It predicts complica-
tions, recurrence rates, and therapeutic responses, guiding optimal follow-up strategies and enabling personalized 
patient guidance through tailored screening  protocols14. Transfer learning (TL) is a machine learning technique 
that has gained significant attention in the medical field, focusing on leveraging pre-existing models trained on 
large datasets for specific  tasks15. Transfer learning is a crucial tool in medical image analysis, enabling the crea-
tion of high-performing models with reduced training time and computational cost. As the field evolves, transfer 
learning is expected to play a more significant role in improving patient care. Various transfer learning models, 
including VGG, ResNet, Inception, MobileNet, and DenseNet, have shown remarkable efficacy in this  area16. 
Transfer learning models, utilizing neural networks’ depth and complexity, are used to identify intricate patterns 
in medical images. This versatile approach extends beyond these well-known architectures, with numerous other 
models contributing to the growing range of tools for medical imaging  analysis17. Transfer learning in medical 
imaging has significantly expedited the development process and improved the performance and accuracy of pre-
trained models, enabling faster and more accurate diagnoses of cancerous lesions, particularly in the identification 
and classification of cancerous  lesions18. The efficiency gains achieved through transfer learning models have 
significant implications for patient care, as early detection and precise classification of cancer types are essential 
for initiating timely and targeted treatment strategies. As the synergy between deep learning, artificial intelligence, 
and transfer learning continues to evolve, the landscape of medical image analysis is poised for transformative 
change. The amalgamation of these technologies not only augments the capabilities of healthcare professionals 
but also holds the promise of improving patient outcomes and reshaping the paradigm of medical diagnostics. In 
our study, we compared four transfer learning models—VGG19, ResNet152, DenseNet169, and MobileNetv3—to 
determine which one is most effective in classifying brain MRI data. The main contribution of our paper lies in 
the innovative use of transfer learning and fine-tuning on MR images to categorize brain tumors into four groups.

(i) We fine-tuned the transfer learning models after processing and applied them to three benchmark datasets 
to optimize their performance. Additionally, we enhanced models like ResNet152, VGG19, DenseNet169, 
and MobileNetv3 by adding a single fully connected layer.

(ii) To establish a meaningful comparison, we created a benchmark against which our proposed transfer learn-
ing methodologies can be evaluated in comparison to previous research. The key outcome of our study is 
the achievement of maximum precision. MobileNetv3 demonstrated outstanding precision of 99.75% in a 
historical context, while InceptionV3 achieved remarkable precision of 98.8% in operational scenarios.

(iii) Transfer learning allows leveraging pre-trained models, especially beneficial when dealing with limited 
labelled medical data.

(iv) MobileNetv3, a specific transfer learning architecture, achieved exceptional accuracy in brain tumor diag-
nosis.

(v) These results highlight the effectiveness of our transfer learning methodologies in the classification of brain 
tumors, showcasing their potential impact on advancing diagnostic accuracy in medical image analysis.

The article is structured as follows: Section "Related work": Provides a concise overview of the relevant lit-
erature. Section "Material and methods": Introduces the proposed methodology and outlines the experimental 
setup, including data preparation, model training, and performance evaluation. Section "Experimental results 
and discussion": Presents the experimental results and their thorough analysis. Section "Conclusion and future 
work": Concludes the article with a summary of the findings and outlines potential directions for future research.

Related work
Leveraging the power of deep convolutional neural networks, we developed a highly accurate framework for clas-
sifying brain tumors into three distinct categories: meningioma, glioma, and pituitary adenoma. Our proposed 
approach employs three different CNN architectures, namely AlexNet, GoogLeNet, and VGGNet, to extract relevant 
and robust features from MRI scans. To further enhance the performance of our models, we employed transfer 
learning strategies, including fine-tuning and freezing, and data augmentation techniques to expand the dataset 
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and reduce overfitting. Extensive experimentation using the Figshare MRI brain tumor dataset revealed that the 
optimized VGG16 architecture achieved an impressive detection and classification accuracy of up to 98.69%, dem-
onstrating the effectiveness of our proposed framework in accurate brain tumor  categorization19. In this study, a 
probabilistic neural network (PNN) is employed for classifying MR brain images. PNN is chosen due to its simple 
structure and rapid training process. A dataset of 30 brain MRI samples was used to train the PNN classifier, and its 
performance was evaluated using 12 different sets of images. The trained classifier was tested with a range of smooth-
ing factors, including spread. Experimental results demonstrate that the PNN classifier achieves an accuracy of 
83.3%, which is considered effective given the spread  value20. The proposed method employs a three-step structure 
for improved clarity. Initially, contextual information is incorporated by enhancing the tumour region and designat-
ing it as the region of interest. Subsequently, an adaptive spatial division algorithm, grounded in intensity ordering, 
partitions the expanded tumour region into subregions. Raw image patches, serving as local characteristics, are 
then extracted from these subregions. In the final step, the Fisher kernel framework is employed to amalgamate the 
local characteristics of each subregion into a singular vector representation. Concatenating these representations 
results in the creation of an image-level signature. Subsequently, the comparison between the query picture and the 
images stored in the database is carried out using a closed-form metric learning method after extracting features. 
The evaluation, performed on a substantial dataset consisting of 3604 images featuring meningiomas, gliomas, and 
pituitary tumours, demonstrates an impressive 94.68% average accuracy in extensive  studies21.

Early signs of Parkinson’s disease (PD) can be detected in a person’s handwriting. Leveraging transfer learn-
ing and data augmentation strategies, this study introduces a novel deep convolutional neural network (CNN) 
classifier for accurate PD diagnosis. Two transfer learning methods, freezing and fine-tuning, are evaluated using 
the ImageNet and MNIST datasets as source tasks. A fine-tuning-based strategy applied to the ImageNet and 
PaHaW datasets resulted in a trained network with an accuracy of 98.28%22. This study utilizes an advanced 
deep learning technique to identify and classify brain tumors in MRI scans. Diagnosing brain tumors, a critical 
task, is time-consuming and labor-intensive for radiologists. Their assessments are solely based on their expertise 
and individual judgments, which are often inaccurate. To address the growing challenge of accurate brain tumor 
diagnosis, this work employs deep learning to categorize brain tumor MRI images with high precision. AlexNet’s 
convolutional neural network (CNN) transfer learning model was employed for this purpose. Our technology 
streamlines the entire diagnostic process, achieving an accuracy of 99.62%, thereby enhancing resilience, effi-
ciency, and accuracy in  healthcare23. The integration of artificial intelligence (AI), specifically leveraging deep 
learning (DL), into medical imaging has transformed the landscape of classifying and detecting intricate medical 
conditions, such as brain tumors and other serious diseases. Deep learning has showcased exceptional proficiency 
in accurately segmenting and classifying brain tumors. This study introduces an AI-driven methodology for the 
classification of brain tumors, employing deep learning algorithms and utilizing publicly available datasets. These 
datasets categorize brain tumors into two groups: malignant and noncancerous, comprising a testing set of 696 
T1-weighted images. The proposed approach attains notable performance, achieving a maximum accuracy of 
99.04%. These outcomes underscore the efficacy of the proposed algorithm in the precise classification of brain 
 tumor24. This study aims to automate the detection and diagnosis of brain tumors through the implementation of 
a fine-grained classification technique. The performance of nine pre-trained transfer learning (TL) classifiers—
namely, InceptionResNetV2, InceptionV3, Xception, ResNet18, ResNet50, ResNet101, ShuffleNet, DenseNet201, 
and MobileNetV2—is systematically compared. The evaluation utilizes a publicly available brain tumor clas-
sification (MRI) dataset sourced from Kaggle. Notably, the InceptionResNetV2 TL method outperforms other 
deep learning (DL) techniques, achieving impressive accuracy (98.91%), precision (98.28%), recall (99.75%), and 
F-measure (99%)  values25. Embracing a multilayer-based metadata learning strategy and incorporating a convo-
lutional neural network (CNN) layer, the proposed system architecture facilitates accurate brain MRI classifica-
tion. To effectively handle high-dimensional data, sparse coding estimates are employed, while metadata-based 
vector encoding serves as the encoding scheme. This innovative approach yields results that are both objectively 
and subjectively compelling in terms of categorization. Validated using two datasets, BRATS and REMBRANDT, 
the proposed brain MRI classification algorithm surpasses the performance of existing  methods26. Employing 
a multi-stage approach, the proposed method commences with preprocessing MRI images to eliminate noise 
and artifacts using an adaptive filter. Subsequently, enhanced fuzzy c-means clustering (EFCMC) is applied for 
image segmentation, followed by feature extraction utilizing the local-binary grey level co-occurrence matrix 
(LBGLCM). This comprehensive strategy achieves remarkable classification performance, attaining a sensitivity 
of 98.79%, a specificity of 91.3%, and an accuracy of 98.1% in brain tumor  classification27.

Kirsch’s edge detectors are utilized to identify boundary edge pixels, followed by contrast adaptive histogram 
equalization to enhance the brain image. Subsequently, the enhanced brain image is transformed using Ridgelet 
transform to obtain multi-resolution coefficients. Features are extracted from Ridgelet transformed coefficients, 
optimized using PCA, and classified as Glioma or non-Glioma using the Co-Active Adaptive Neuro Fuzzy Expert 
System (CANFES) classifier. This comprehensive methodology achieves remarkable classification performance, 
attaining 97.6% sensitivity, 98.56% specificity, 98.73% accuracy, 98.85% precision, 98.11% FPR, and 98.185 FNR. 
While images can enhance the content, they are not always necessary. In this case, the revised sentence provides 
a clear and concise description of the proposed methodology and its performance without the need for visual 
 aids28. This study presents a novel brain tumor classification method using deep transfer learning, incorporating 
a new fine-tuning technique and an SVM classifier. The proposed transfer learning-based classification strategy 
is evaluated on the Figshare dataset, which includes MRI brain tumors of meningioma, glioma, and pituitary 
gland origin, under various scenarios. The proposed deep transfer learning approach demonstrates promising 
results, achieving 99.35% accuracy with a CNN architecture and an SVM classifier, and 99.61% accuracy with 
a ResNet-50 architecture and fine-tuning  parameters29. A lightweight ensemble model has been developed to 
improve brain cancer detection and classification using MRI data. The model incorporates MRI preprocessing, 
intensity, texture, and shape feature extraction. The model was evaluated using the BraTS 2020 dataset and 
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achieved excellent performance, with 93.0% accuracy, 0.94 precision, 0.93 recall, 0.94 F1 score, and an AUC-ROC 
value of 0.984. This approach offers a valuable tool for early diagnosis and effective treatment planning in brain 
 cancer30. The solution for brain tumor segmentation in medical imaging, it uses the U-Net model architecture, 
known for its semantic segmentation performance, to train models on distributed data from various medical 
institutions. The federated learning approach is scalable, suitable for large-scale deployment in medical imaging. 
The experimental results show a significant improvement in specificity and dice coefficient when increasing the 
number of clients. The method surpasses existing CNN and RNN-based approaches, achieving higher accuracy, 
performance, and efficiency. The findings hold promise for wider adoption in medical imaging applications 
without compromising data  confidentiality31. A hybrid methodology for brain tumor segmentation in MRI scans, 
combining handcrafted features with convolutional neural networks. The approach extracts feature from MRI 
scans and trains a CNN architecture to detect relevant data. The Brain Tumor Segmentation challenge dataset 
evaluated the performance of the hybrid approach, showing superior performance compared to conventional 
methods. The research holds promise for real-world clinical  applications32. A cascaded strategy for brain tumor 
segmentation, integrating convolutional neural networks (CNNs) with handcrafted feature-based machine learn-
ing algorithms. The method uses data from four MRI modalities and a Global Convolutional Neural Network 
(GCNN). The model achieved a Dice score of 87%, surpassing state-of-the-art methods. This innovative approach 
has the potential to significantly enhance brain tumor segmentation, aiding clinicians in diagnosing and treating 
patients, and reducing the cost, time, and error of manual  segmentation33. Table 1 provides a comprehensive 
overview of the different state-of-the-art methods that have been incorporated into our proposed model.

Material and methods
Material
For model training, we utilized the brain tumor dataset sourced from  Kaggle34. This dataset encompasses MRI 
images of the brains of 7,023 individuals, including those with brain tumors and those without. It comprises cases 
of meningioma, glioma, pituitary gland tumors, and non-tumor. Each category within this collection contains 
over 1,600 high-quality images. Table 2 provides a breakdown of the image distribution across the training and 
test sets. The dataset consists of a total of 7,023 images. Out of these, 5,618 (80%) images are used for training, 
while 1,405 (20%) images are used for testing. Among these images, 1405 normal, and 5618 are malignant. 
Figure 1 depicts the frequency of each type of brain tumor imaging. It reveals that there are approximately 1,800 
images in the No Tumor class, 1,757 images in the Pituitary class, 1,645 images in the Glioma class, and 1,621 
images in the Meningioma class.

Table 1.  State-of-the-art methods details.

Author Year Dataset Method Limitations

Arshia  Rehman18 2019 Figshare AlexNet, GoogLeNet, VGGNet Absence of an in-depth analysis or explanation of the interpretability of the model

Tasnim Azad  Abir19 2018 Kaggle PNN Lack of detailed analysis or discussion regarding the potential biases present in the 
training data

Jun  Cheng20 2016 Figshare Content-based image retrieval
Lack of explicit discussion or consideration of potential limitations related to the 
generalization of the proposed algorithm to external datasets or diverse clinical 
settings

Amina  Naseer21 2019 MNIST, PaHaW ImageNet
The absence of a detailed discussion or analysis regarding the potential biases 
present in the training datasets, particularly ImageNet and MNIST, which were used 
as source tasks for transfer learning

Bakary  Badjie22 2022 Kaggle AlexNet’s CNN Lack of explicit consideration or discussion about the interpretability of the deep 
learning mode

Rajat  Mehrotra23 2020 Figshare CNN The absence of a comprehensive analysis or discussion about the potential impact of 
class imbalances in the dataset on the model’s performance

Naeem  Ullah24 2022 Kaggle Inceptionresnetv2 The comparatively weak performance of pre-trained deep learning (DL) models 
when used as stand-alone classifiers

Saravanan25 2022 BRATS, REMBRANDT CDBLNL Lack of clarity or detailed discussion regarding the potential limitations or chal-
lenges associated with the proposed CDBLNL model

Saravanan  Srinivasan26 2023 REMBRANDT Convolutional RNN
One demerit in the presented work is the lack of detailed analysis or discussion 
about the interpretability of the proposed CRNN (Convolutional Recurrent Neural 
Network) model

Pshtiwan Jabar  Karim28 2023 Figshare CNN + fine-tuned SVM
Lack of detailed discussion or exploration of potential biases in the Figshare dataset 
used for evaluation. Biases in medical datasets, especially related to brain tumors, 
can significantly impact the generalizability of the proposed classification method

Table 2.  Training and testing dataset for each class.

Phase Malignant (80%) Normal (20%) Total

Train 4494 1124 5618

Test 1124 281 1405

Total 5618 1405 7023
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Methods
The proposed model, illustrated in Fig. 2, employs four well-known transfer learning approaches—ResNet152, 
VGG19, DenseNet169, and MobileNetv3—to create four classes for analyzing and estimating the recommended 
frame. The data undergoes four transfer learning techniques, and following analysis, it’s divided into an 80% 
training set and a 20% testing set. This split is crucial for training, validating model performance, and assessing 
generalizability. The proposed model proves reliable in diverse scenarios. In this study, we use image augmenta-
tion, a key technique using Keras’ ImageDataGenerator, to expand the dataset for training a deep learning model 
in brain tumor diagnosis. By creating modified copies of images with rotations, zooming, and flipping, the model 
gets exposed to a wider range of variations, improving its ability to handle new data. This is vital for simulating 
the variability in medical imaging, making the model more robust to noise and variations. The ultimate goal 
is to build a reliable and strong deep learning model, especially in the medical field where data is limited, and 
adapting to diverse and unseen cases is crucial. It introduces variations like rotations, flips, shifts, and zooms, 
contributing to balanced classes during model training.

This augmentation strategy contributes to a more comprehensive and diverse training dataset, empowering 
the model to generalize better across a myriad of scenarios. The utilization of ImageDataGenerator during model 
training yields a twofold advantage. Firstly, it ensures that the deep learning model is exposed to a richer set 
of training examples, facilitating improved learning of intricate patterns and features. Secondly, the automatic 
generation of augmented images enhances the model’s robustness by making it less susceptible to overfitting 
and more adaptable to diverse input variations. This augmentation-driven approach has been recognized for 
its efficacy in enhancing the overall performance of deep learning models, leading to improved accuracy and 
resilience in real-world  applications35. Figure 3 depicts the normal and augmented images of brain MRI.

Figure 1.  Pie chart illustrating the distribution of images across tumor classes.

Figure 2.  Proposed model architecture.
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Transfer learning model evaluation
Transfer learning is a machine learning technique that enables a model trained for one task to be repurposed for a 
different but related task. This method reduces the time and effort required to develop high-performance models, 
especially for complex tasks like image recognition and natural language processing. By fine-tuning the weights 
of an existing model, researchers can effectively tackle new challenges. Transfer learning leverages knowledge 
acquired from a large dataset during initial training, allowing the model to effectively tackle new challenges. 
This approach contrasts with the traditional method of training a model from the ground up, which can be time-
consuming and resource-intensive. Transfer learning has proven successful in various domains, including image 
identification, natural language processing, and speech recognition, especially in scenarios with limited training 
data. In this work, four different transfer learning models were employed, each using an input RGB picture size 
of (224 × 224) to ensure uniformity across all models. Transfer learning has played a crucial role in numerous 
deep learning applications, including image categorization, object recognition, and medical condition diagnosis.

ResNet152. ResNet-152 is a deep convolutional neural network architecture developed by Microsoft Research, 
featuring 152 layers. Its key innovation is the introduction of residual connections or skip connections, which 
enable the network to learn residual functions, making it easier to train very deep  networks36. ResNet-152’s 
depth allows it to extract intricate features and patterns from data, making it effective for tasks like image classi-
fication and object recognition. This architectural depth, coupled with skip connections, addresses the vanishing 
gradient problem, facilitating the training of extremely deep networks refer in Fig. 4.

Visual geometry group 19. VGG19 is a deep convolutional neural network architecture, an evolution of the 
original VGG16 architecture. It consists of 19 layers, including 16 convolutional layers and 3 fully connected 
layers. VGG19 captures intricate patterns and features in image data through its deep architecture, which uses 
3 × 3 convolutional filters for feature  extraction37. Max-pooling layers reduce input spatial dimensions, lowering 
computational complexity. The final layers are fully connected, allowing predictions based on high-level features 
extracted by the convolutional layers. VGG19 uses the Rectified Linear Unit (ReLU) activation function for non-
linearity. Widely used for image classification, VGG19 has become a benchmark in computer vision. Despite 
its depth and simplicity, it has been surpassed by modern architectures like ResNet and Inception in terms of 
performance and efficiency. Figure 5 depicts the architecture of VGG19.

DenseNet169. DenseNet169 is a convolutional neural network (CNN) architecture designed to overcome chal-
lenges in feature reuse and gradient flow in deep networks. Named after its 169 layers, it features dense connec-
tivity, where each layer receives input from all preceding layers, promoting efficient feature reuse and enhanced 
information flow. To address computational complexity, DenseNet169 utilizes bottleneck layers, which incor-
porate 1 × 1 convolutions to reduce the number of input feature  maps38. Dense blocks, each containing multiple 

Figure 3.  Augmentation (a) normal; (b) augmented images.

Figure 4.  ResNet152 architecture.
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densely connected layers, contribute to the overall depth and feature extraction capabilities. Transition layers 
are employed between dense blocks to control feature map growth and reduce spatial dimensions. DenseNet 
architectures commonly use global average pooling, which reduces the number of parameters and aids in better 
generalization. DenseNet169 has demonstrated strong performance in image classification tasks and is known 
for its parameter efficiency, achieving competitive accuracy with fewer parameters compared to other architec-
tures. Figure 6 depicts the DenseNet169 architecture.

MobileNetv3. MobileNetV3 is a neural network architecture designed for mobile and edge devices with lim-
ited computational resources. It is the third iteration of the MobileNet series, focusing on efficiency, speed, and 
accuracy. Key features include resource-efficient building blocks, lightweight inverted residuals, and two vari-
ants: MobileNetV3-Large and MobileNetV3-Small39. These building blocks optimize computation and memory 
usage, ensuring efficient operation on resource-limited hardware. Inverted residuals reduce computational over-
head while maintaining the network’s ability to extract meaningful features from input data. MobileNetV3 is 
available in two variants: MobileNetV3-Large for moderate computational resources and MobileNetV3-Small 
for strict constraints. Figure 7 depicts the architecture of MobileNetv3.

MobileNetV3 is a network architecture designed for tasks such as image classification, object detection, and 
semantic segmentation. It uses non-linear activation functions, such as swish and hard-swish, to improve model 

Figure 5.  VGG19 architecture.

Figure 6.  DenseNet169 architecture.
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accuracy and learn more complex decision boundaries. Efficient Squeeze-and-Excitation (SE) blocks are used 
for channel-wise feature recalibration, enhancing the network’s representational power. Techniques like neural 
architecture search and network pruning are employed to optimize the architecture for deployment on devices 
with limited resources. The lightweight design of MobileNetV3 makes it suitable for deployment on mobile 
devices, enabling real-time inference on edge devices with constrained resources. The architecture features a 
bottleneck block, allowing for dynamic adjustment of channel importance, enhancing performance. Table 3. 
Specification and bottle neck block of MobileNetv3.

Preparation and evaluation of experiments
In this experiment, a large dataset of images was employed, and the training of our model was conducted on 
Google Colab. To ensure the effectiveness of the training and testing phases, access to a robust computing envi-
ronment is essential. Kaggle was used to re-publish the dataset’s training names. Importantly, the same dataset 
was utilized for all advanced models, encompassing both the training set and the test set. The Transfer Learn-
ing (TL) model underwent training using the specified training dataset and was subsequently evaluated using 
the corresponding test dataset. The success of our models can be attributed to the collaborative contributions 
of Sklearn, TensorFlow, and Keras. For optimal performance in all high-end models, a block size of 128 was 
determined to be the most effective. Table 4 illustrates the hyperparameter details of transfer learning models.

We applied the cross-entropy loss to both the train and test sets for each epoch. All models were trained for 
50 epochs using the Adam optimizer with a learning rate of 0.001. Figure 8 shows the training and validation loss 
for each model over the course of the training epochs. For the ResNet152, VGG19, and MobileNetv3 models, the 
training and validation losses are very close and sometimes overlap. However, the DenseNet169 model exhibits a 
different behavior. While the training loss decreases, the validation loss increases for every epoch. This suggests 
that the DenseNet169 model may be overfitting the training data. In contrast, the MobileNetv3 model shows a 
stable training process with minimal fluctuations in both training and validation loss. By the end of training, the 
MobileNetv3 model achieves a training loss of 0.0451 and a validation loss of 0.1265. The VGG19 and ResNet152 
models achieve training losses of 0.0603 and 0.001 and validation losses of 0.1862 and 0.010, respectively. Among 

Figure 7.  MobileNetv3 architecture.

Table 3.  Specification and bottle neck block of MobileNetv3.

Input Operator Size Output Stride

224 × 224 × 3 conv2d, 3 × 3 – 16 2

112 × 112 × 16 bneck, 3 × 3 16 16 2

56 × 56 × 16 bneck, 3 × 3 72 24 2

28 × 28 × 24 bneck, 5 × 5 88 24 1

28 × 28 × 24 bneck, 5 × 5 96 40 2

14 × 14 × 40 bneck, 5 × 5 240 40 1

14 × 14 × 40 bneck, 5 × 5 240 40 1

14 × 14 × 40 bneck, 5 × 5 120 48 1

14 × 14 × 48 bneck, 5 × 5 144 48 1

14 × 14 × 48 bneck, 5 × 5 288 96 2

7 × 7 × 96 bneck, 5 × 5 576 96 1

7 × 7 × 96 bneck, 5 × 5 576 96 1

7 × 7 × 96 conv2d, 1 × 1 – 576 1

7 × 7 × 576 pool, 7 × 7 – – 1

1 × 1 × 576 conv2d, 1 × 1, NBN – 1024 1

1 × 1 × 1024 conv2d, 1 × 1, NBN – k 1



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7232  | https://doi.org/10.1038/s41598-024-57970-7

www.nature.com/scientificreports/

the evaluated models, ResNet152 exhibited superior performance, achieving the highest validation loss of 0.0241 
at epoch 39 and validation accuracy of 98.86%.

Among the evaluated models, DenseNet169 exhibited the lowest validation loss of 0.0664 at epoch 18 but 
experienced the most fluctuation in both training and validation accuracy. It ultimately achieved training and 
validation accuracies of 99.22% and 98.32%, respectively. VGG19 and MobileNetv3 also demonstrated promis-
ing results, with VGG19 achieving training and validation accuracies of 99.07% and 96.72%, respectively, and 
MobileNetv3 achieving training and validation accuracies of 99.75% and 98.52%, respectively. While VGG19’s 
training and validation accuracies were relatively stable, MobileNetv3’s validation accuracy showed some fluc-
tuation. Figure 9 depicts the training and testing accuracy of four transfer learning models. Table 5, illustrates 
the four models training phase and testing phase accuracy and loss values.

Experimental results and discussion
The proposed transfer learning models leverage the confusion matrix to assess their performance, employing 
metrics like precision, recall, F1 score, and accuracy. The confusion matrix, typically a square matrix, provides a 
comprehensive overview of model performance. Table 6 presents the confusion matrix, where TP denotes true 
positives, FP denotes false positives, and FN denotes false negatives. The F1 score is derived as the harmonic 
mean of precision and recall.

We conducted a comprehensive assessment of our model’s performance, and the findings are presented 
through the examination of various performance metrics. Specifically, in Fig. 10, we depict the confusion matrix 
associated with the MobileNet model. The confusion matrix × serves as a valuable tool for evaluating the model’s 

Table 4.  Hyperparameters of transfer learning models for image classification.

Quantifying performance and evaluation Assessing measurement outcomes

Size of the batch 128

Optimizer Adam

No. of epochs 50

Rate of learning 0.001

Evaluation criterion Cross entropy loss

Training Five-fold cross validation

Figure 8.  Training and testing loss of DenseNet169, MobileNetv3, VGG19 and ResNet152.
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classification outcomes. In this matrix, the tumor classes are systematically labelled from 0 to 3, where each 
numerical identifier corresponds to a specific tumor type: 0 for ’Pituitary,’ 1 for ’Normal,’ 2 for ’Meningioma,’ 
and 3 for ’Glioma.’ This systematic numbering allows for a clear representation of the model’s classification 
results. Upon close inspection of the confusion matrix, it is evident that the MobileNet model demonstrated 
commendable performance. Specifically, the model correctly identified 24 images belonging to the ’Pituitary’ 
class, accurately classified 24 images as ’No tumor,’ recognized 43 images as ’Meningioma,’ and correctly identi-
fied 32 images as ’Glioma.’

Figure 11, depicts the incorrectly classified images by the proposed model. These numerical values within the 
matrix provide valuable insights into the model’s effectiveness in accurately categorizing images across different 
tumor classes. Table 7 summarizes the performance metrics of four transfer learning models on the test dataset, 
providing insights into their efficacy in handling the given task. ResNet152 achieved the highest accuracy, fol-
lowed by VGG19, DenseNet169, and MobileNetV3, which demonstrated commendable accuracy but trailed 
slightly behind. These evaluations were conducted after training each model for 50 epochs, suggesting that 

Figure 9.  Training and testing accuracy of DenseNet169, MobileNetv3, VGG19 and ResNet152.

Table 5.  Performance across four transfer learning models Over 50 Epochs.

Architecture

Training phase Testing phase

Acc (%) Loss Acc (%) Loss

ResNet152 98.86 0.0603 96.92 0.1854

VGG19 99.07 0.0451 95.62 0.1245

DenseNet169 99.22 0.0241 97.53 0.958

MobileNetv3 99.75 0.0359 98.52 0.1272

Table 6.  Formula for confusion matrix.

Predicted positive Predicted negative

Actual positive TP FN

Actual negative FP TN
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ResNet152 consistently outperformed the other models. The varying architectures of the four models underscore 
the nuanced trade-offs between computational efficiency and model accuracy. This analysis aids in discerning 
their strengths and weaknesses, offering valuable insights for informed decision-making.

Discussion
Table 8 provides a comprehensive overview of the accuracy metrics for all models at both the maximum and 
minimum epoch numbers. The MobileNet model outperforms all other models, achieving the highest train-
ing accuracy of 99.75% at epoch 50 and a peak validation accuracy of 98.52% at epoch 45. To facilitate concise 
communication and notation, we use the terms Mx_Acc and Mi_Acc to represent Maximum Accuracy and 
Minimum Accuracy, respectively, and Mx_Ep and Mi_Ep to represent Maximum Epochs and Minimum Epochs, 
respectively. Table 9 details the duration of the training set for each epoch, providing insights into the time 
investment required for model training on Google Collaboratory’s Graphics Processing Unit (GPU) runtime. 

Figure 10.  MobileNetv3 confusion matrix.

Figure 11.  Incorrectly classified by proposed model.
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This information is crucial for optimizing resource allocation and enhancing the efficiency of model training 
procedures.

The precise detection and classification of brain tumors in medical images, particularly those obtained 
through MRI and CT scans, are crucial aspects of medical diagnostics. MRI is a powerful tool for medical 
diagnostics, playing a significant role in both diagnosing and categorizing various types of brain tumors. Table 8 
and Fig. 12 summarizes the progress and anticipated future advancements in brain tumor detection and clas-
sification, comparing the current state with what we expect to achieve in the future. The MobileNetv3 model is a 
key part of our proposed approach and has achieved an impressive accuracy rate of 99.75%. This shows that the 
model is effective at discerning and predicting the presence of brain tumor cells in medical images, making it a 
valuable tool for medical diagnosis. Table 10 illustrates the classification accuracy comparison of the proposed 
and other existing models. Figure 12 depicts the classification accuracy comparison of proposed and other 

Table 7.  Five-fold test performance of four transfer learning models on the dataset.

Architectures Class Precision Recall F1 score Accuracy

ResNet152

Pituitary 1 0.93 0.98

0.985

Normal 0.98 1 0.97

Meningioma 1 1 1

Glioma 0.96 1 0.99

Total 3.94 3.93 3.94

VGG19

Pituitary 1 1 0.95

0.960

Normal 0.95 0.92 0.95

Meningioma 1 1 1

Glioma 0.93 1 0.94

Total 3.88 3.92 3.84

DenseNet169

Pituitary 1 0.85 0.94

0.9675

Normal 0.88 1 0.93

Meningioma 1 1 1

Glioma 1 1 1

Total 3.88 3.85 3.87

MobileNetv3

Pituitary 1 1 1

0.960

Normal 1 0.83 0.92

Meningioma 1 1 1

Glioma 0.88 1 0.92

Total 3.88 3.83 3.84

Table 8.  Accuracy summary across epochs for different transfer learning models.

Transfer learning model Phase M × -Acc M × -Ep Mi-Acc Mi-Ep

VGG19
Training 98.78 50 70.22 1

Testing 96.91 50 81.45 1

ResNet152
Training 98.12 50 69.34 1

Testing 97.78 45 80.96 6

DenseNet169
Training 99.08 38 95.42 1

Testing 98.68 47 90.77 2

MobileNetv3
Training 99.75 30 77.12 1

Testing 99.52 46 90.27 1

Table 9.  Epoch-wise training duration for transfer learning models.

TL models Timeline (HH:MM)

ResNet152 03:15

VGG19 03:37

DenseNet169 02:45

MobileNetv3 04:33
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state-of-the-art methods. Figure 13 clearly demonstrates that the proposed model outperformed other models 
with an accuracy of 99.75%.

Conclusion and future work
In this investigation, we delve into the application of transfer learning methods for the classification of brain 
tumors using MRI scans. The study meticulously assesses the efficacy of four distinct transfer learning mod-
els—ResNet152, VGG19, DenseNet169, and MobileNetv3—across three diverse brain tumor image datasets. 
The evaluation encompasses crucial performance metrics, including accuracy, precision, f1-score, and recall. 
Remarkably, ResNet152 emerges as the frontrunner among the models, demonstrating outstanding performance 
with an accuracy of 98.5%, surpassing the performance of all other models in the study. Additionally, Mobile-
Netv3 demonstrates exceptional efficacy with an accuracy of 99.75%, showcasing its robust performance in brain 

Figure 12.  Training timeline for four transfer learning models.

Table 10.  Classification accuracy comparison of the proposed and other existing models.

Author Year Dataset Method Accuracy (%)

Tasnim Azad  Abir16 2018 Kaggle PNN 83.33

Bakary  Badjie19 2022 Kaggle AlexNet’s CNN 99.12

Naeem  Ullah21 2022 Kaggle Inceptionresnetv2 98.91

Saravanan24 2020 Kaggle CANFES 98.73

Proposed model 2023 Kaggle Transfer Learning approach 99.75

Figure 13.  Accuracy comparison of proposed and state-of-the-art methods.
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tumor classification. It’s important to highlight that this study relies on a secondary dataset. Future research could 
explore extending the proposed model’s application to CT images, enhancing its adaptability. This extension 
holds the potential to broaden the model’s impact in medical applications. In conclusion, the proposed model, 
particularly ResNet152 and MobileNetv3, shows significant promise in advancing medical image classification. 
Continued investigation and exploration, involving a range of imaging modalities, offer the potential to uncover 
valuable insights that could significantly enhance applications in medical diagnostics. By expanding the study 
to include diverse imaging techniques beyond the currently examined MRI scans—such as PET, CT, or ultra-
sound—researchers can achieve a more comprehensive understanding of the proposed model’s adaptability and 
effectiveness across a broader spectrum of medical imaging data. The integration of diverse imaging modalities 
not only allows for a more holistic assessment of the proposed model’s performance but also contributes to its 
resilience and applicability in real-world medical scenarios. Each imaging modality comes with unique challenges 
and characteristics, and a collective exploration can refine the proposed model’s capabilities while pinpointing 
areas for improvement. The study has some limitations. It didn’t check how well the model works in different 
situations or on other datasets, making it unclear how it would perform in the real world. The dataset used might 
not represent all kinds of patients, causing potential biases in the predictions. The study also didn’t consider the 
costs of training and using the models, which could be a problem for using them in healthcare. Despite these 
limitations, future work will aim to improve the model’s usefulness in different healthcare settings. In the future, 
we aim to explore more model architectures, improve their performance, and make them better suited for differ-
ent datasets and clinical situations. Ongoing research will focus on checking how well these models work in the 
real world by testing them on different datasets and in various clinical settings. Additionally, we plan to refine 
image enhancement techniques for specific tumor categories to ensure a well-balanced dataset and robust models.

Data availability
We used the balanced dataset which is publicly available https:// www. kaggle. com/ datas ets/ masou dnick parvar/ 
brain- tumor- mri- datas et
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