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Effects of non‑landslide sampling 
strategies on machine learning 
models in landslide susceptibility 
mapping
Tengfei Gu 1,2, Ping Duan 1*, Mingguo Wang 3, Jia Li 1 & Yanke Zhang 4

This study aims to explore the effects of different non‑landslide sampling strategies on machine 
learning models in landslide susceptibility mapping. Non‑landslide samples are inherently uncertain, 
and the selection of non‑landslide samples may suffer from issues such as noisy or insufficient regional 
representations, which can affect the accuracy of the results. In this study, a positive‑unlabeled (PU) 
bagging semi‑supervised learning method was introduced for non‑landslide sample selection. In 
addition, buffer control sampling (BCS) and K‑means (KM) clustering were applied for comparative 
analysis. Based on landslide data from Qiaojia County, Yunnan Province, China, collected in 2014, 
three machine learning models, namely, random forest, support vector machine, and CatBoost, were 
used for landslide susceptibility mapping. The results show that the quality of samples selected using 
different non‑landslide sampling strategies varies significantly. Overall, the quality of non‑landslide 
samples selected using the PU bagging method is superior, and this method performs best when 
combined with CatBoost for predicting (AUC = 0.897) landslides in very high and high susceptibility 
zones (82.14%). Additionally, the KM results indicated overfitting, displaying high accuracy for 
validation but poor statistical outcomes for zoning. The BCS results were the worst.
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Landslides are a common geological hazard in mountainous areas. Due to the uncertainty and complexity of 
landslides, they are characterized by their wide distribution, high frequency, and rapid onset  hazards1,2. Landslide 
susceptibility mapping (LSM) is the first step in preventing and mitigating  landslides3,4.

Many types of empirical, deterministic, statistical, and machine learning models have been proposed for 
 LSM5–12. Among them, machine learning models can best describe the nonlinear relationships between influ-
encing factors and landslides and provide good predictive  performance13. Based on the use of prior knowledge 
(learning the characteristics of landslide and non-landslide samples in advance), machine learning models are 
divided into unsupervised learning models and supervised learning models. The latter fully utilizes prior knowl-
edge and achieves more accurate prediction  results14.

The quality of sample data directly affects the prediction accuracy of models in LSM based on supervised 
learning. The known sample data in susceptibility mapping are landslide samples, which are obtained through 
field surveys or remote sensing  interpretation15,16. However, non-landslide samples are unknown. If the selected 
non-landslide samples are noisy or insufficient regional representations, it will lead to insufficient learning ability 
of the model, thereby affecting the final prediction results. In addition, high-quality non-landslide samples can 
help the model learn the features of both classes in a more balanced way, improve the stability of the model, and 
reduce the fluctuations caused by different sampling results.

The problem of non-landslide sample selection has attracted the attention of some scholars and is mainly 
divided into qualitative and quantitative methods. A qualitative method involves random selection from areas 
where no landslides have occurred, such as selection from outside a 500 m buffer zone of  landslides17, selection 
in areas where no landslides have  occurred18, selection of river channels and areas with slopes less than 5°19, 
and selection in areas where landslides and river channels once  occurred20, which are random in nature. Their 

OPEN

1Faculty of Geography, Yunnan Normal University, Kunming 650500, China. 2Badong National Observation 
and Research Station of Geohazards, China University of Geosciences (Wuhan), Wuhan 430074, China. 3Yunnan 
Institute of Geological Surveying and Mapping Co., Ltd., Kunming 650051, China. 4Wuhan Tianjihang Information 
Technology Co., Ltd., Wuhan 430074, China. *email: dpgiser@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-57964-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7201  | https://doi.org/10.1038/s41598-024-57964-5

www.nature.com/scientificreports/

receiver operating characteristic area under the curve ranges from 0.78 to 0.938, indicating significantly different 
prediction results and low stability. If the selected non-landslide samples are insufficient regional representations, 
it will lead to a model with insufficient learning ability. The latter two algorithms generally rely on only a small 
number of factors, which may exaggerate the impact of a factor on landslides and affect the final accuracy. The 
quantitative selection methods include statistical, unsupervised and semi-supervised methods, such as the use 
of the information quantity or frequency ratio for selection in very low and low susceptibility  areas21,22, the use 
of K-mean clustering to select samples farthest away from landslide  samples23, and the use of a semi-supervised 
multiple-layer perceptron to select samples in very low-susceptibility  areas24. Unsupervised classification-based 
methods cannot obtain classification labels, and the similarity of the obtained sample set features can be very 
high, which can easily lead to overfitting. Statistical methods and semi-supervised classification methods account 
for the diversity of sample selection and make full use of prior knowledge, but in both methods, the selection 
area of non-landslide samples is determined based on one calculation; thus, the complexity of landslides is not 
fully considered, and the accuracy of sample selection may be affected.

To overcome the difficulty of selecting high-quality non-landslide samples, a semi-supervised non-landslide 
sample selection method based on positive-unlabeled (PU) bagging is proposed. The PU bagging algorithm is a 
semi-supervised iterative classification algorithm. Model training is based on randomly sampling points from an 
unlabeled dataset multiple times. The final non-landslide sample selection is based on the comprehensive results 
of multiple model calculations, which provides high stability. Given the “no free lunch” theorem in machine 
learning, this study also focuses on the uncertainty issues brought by machine learning  models25. Random 
forest (RF)26, support vector machine (SVM)27, and categorical boosting (CatBoost)28 models were selected 
for comparative analysis. Qiaojia County, Yunnan Province, China, is selected as the study area. First, the PU 
bagging algorithm is used to select non-landslide sample points and map landslide susceptibility. Then, buffer 
control sampling (BCS), as a qualitative method, and K-means (KM) clustering sampling with an unsupervised 
classification algorithms are selected for comparison to verify the effectiveness of the PU bagging algorithm. 
Finally, RF, SVM, and CatBoost models are used to map landslide susceptibility and verify the stability of the 
algorithm. Accurate and reliable landslide susceptibility mapping results are obtained.

Study area and data
Study area
Qiaojia County is located in the northeastern part of Yunnan Province, China, and belongs to the city of Zhao-
tong. Its geographical location is longitudes from 102°52′E to 103°26′E and latitudes from 26°32′N to 27°25′N, 
covering an area of 3245  km2 (Fig. 1). By the end of 2020, the county had 17 towns, 192 administrative villages, 
and a total population of approximately 625,000. Qiaojia County is bordered by rivers on three sides: the Jinsha 
River in the north and west and the Niulan River in the northeast. The terrain conditions, which have been 
affected by the erosion and dissolution of the Jinsha and Niulan rivers, are complex. With strong neotectonic 
movement, Qiaojia County is one of the key prevention areas for geological hazards in Yunnan Province.

Data sources and impact factor processing
Selecting the appropriate impact factors is an important step in mapping the susceptibility of  landslides30,31. In 
impact factor selection, we considered factors such as field investigations, study area characteristics, relevant 
literature, data availability, and acquired data quality. There were 15 impact factors selected from 5 aspects 
(topography and geomorphology, geological structure, hydrology and ecology, human activities, and earthquake 
conditions) for landslide susceptibility mapping: elevation, slope, aspect, profile curvature (PC), terrain rugged-
ness index (TRI), lithology, distance to faults (DTF), soil type, average annual precipitation (AAP), topographic 
wetness index (TWI), distance to rivers (DTRI), normalized difference vegetation index (NDVI), distance to 
roads (DTR), land use type, and peak ground acceleration (PGA).

The sources of impact factors were as follows. A digital elevation model (DEM) for the Qiaojia area was 
acquired from the China Geospatial Data Cloud site (http:// www. gsclo ud. cn). Based on this DEM, the eleva-
tion, slope, aspect, PC, TRI and TWI were extracted. The lithology and faults were derived from the 1:200,000 
geological map of China, and the lithology description is shown in Table 1. The NDVI was extracted from 
Landsat-8 OLI images (http:// www. gsclo ud. cn). Soil type and precipitation were provided by the Resource and 
Environmental Science Data Center of the Chinese Academy of Sciences (http:// www. resdc. cn). River and road 
data were obtained from Open Street Map (http:// downl oad. geofa brik. de/ asia/ china. html). Land use type data 
were extracted from 30 m land cover data (https:// doi. org/ 10. 5281/ zenodo. 44178 10)32. PGA was derived from 
the United States Geological Survey (https:// earth quake. usgs. gov/ earth quakes/ event page/ usb00 0rzmg/ shake 
map). Using ArcGIS software, all the influencing factors were converted into a raster data format with a reference 
scale of 30 m × 30 m and placed into the same projected coordinate system (Fig. 2).

Methodology
Data from the 2014 landslide in Qiaojia County were taken as the research object. First, the study area was 
divided into landslide area and remaining area using the landslide data. Impact factors were collected and 
preprocessed from five aspects (topography and geomorphology, geological structure, hydrology and ecology, 
human activities, and earthquake conditions). Second, landslide samples are selected in the landslide area, and 
non-landslide samples are selected in the remaining area by PU Bagging, BCS and K-means, respectively, to 
build the sample data set. Finally, three sample data sets were combined with three machine learning models 
(RF, SVM, CatBoost) to map and evaluate landslide susceptibility, in which confusion matrix and ROC curve 
were used to verify accuracy. The flowchart of the research method is shown in Fig. 3.

http://www.gscloud.cn
http://www.gscloud.cn
http://www.resdc.cn
http://download.geofabrik.de/asia/china.html
https://doi.org/10.5281/zenodo.4417810
https://earthquake.usgs.gov/earthquakes/eventpage/usb000rzmg/shakemap
https://earthquake.usgs.gov/earthquakes/eventpage/usb000rzmg/shakemap
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Non‑landslide sampling methods
PU bagging
PU bagging is a semi-supervised iterative classification  algorithm33,34. The landslide sample data are learned, and 
then using the learned knowledge, the unlabeled samples are classified. The probability of landslides occurring 
in areas other than landslides is calculated through quantitative methods, and then non-landslide samples are 
selected in areas with low probability values, thereby improving the quality of the selected samples. The specific 
steps are as follows (Fig. 4):

(1) Based on the landslide samples, an equal number of unlabeled samples are randomly selected from the 
unlabeled samples as non-landslide samples to construct a training sample set.

(2) A decision tree is used to train the training sample set and generate a classifier.
(3) A classifier is used to predict the samples that are not drawn from the unlabeled samples (out-of-bag sam-

ples) and treat the value as the probability that the sample belongs to the landslide samples.
(4) Steps (1)–(3) are repeated to calculate the probability that all unlabeled samples belong to the landslide 

samples. The average probability obtained from the above multiple calculations was used as the final land-
slide probability for the unlabelled samples, aiming to mitigate prediction uncertainty and overfitting risks.

Buffer control sampling
The BCS method was inspired by the first law of  geography35, which states that areas closer to landslides are 
more prone to landslides, and vice versa. The principle of this method in selecting non-landslide samples is 
simple, and it is easy to implement. In this method, which is the most commonly used method in landslide 
susceptibility mapping, the areas outside the landslide are considered non-landslide areas. Specifically, buffer 
zones are established around all landslide sample points, with the area outside the buffer zones considered non-
landslide area. Samples from these areas, which are referred to as non-landslide samples, are randomly selected, 
as shown in Fig. 5. The size of the buffer distance is determined according to the scale of the landslide. However, 
areas outside the buffer zone may contain ancient or potential landslides. When a portion of potential landslide 
samples is misclassified as non-landslide samples, it increases the difficulty of learning for the model, leading to 
misguidance in the learning process and ultimately affecting the accuracy of the final predictions.

Figure 1.  Location map of the study area (a) administrative boundaries map of China (b) administrative 
boundaries map of Yunnan Province, and (c) a digital elevation model of Qiaojia County where triangles show 
landslides of the study area. (Created using ArcGIS v10.229).
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K‑means clustering
The KM clustering method is an unsupervised classification algorithm that is applicable to the classification of 
unlabeled sample  data36. The KM clustering method does not need to know the label (landslide or non-landslide) 
of each sample when training the model. It is based on classifying samples into different categories using the 
attribute characteristics of the impact factors. If there is a high degree of similarity within a category and a large 
difference between different categories, the classification result can be considered good.

The specific process of the KM clustering method in non-landslide sample selection is as follows: first, the 
study area is transformed into numerous individual samples, and the corresponding impact factor attribute 
eigenvalues of the samples are used as input data for the classification calculation. Then, the KM clustering 
method is used to classify the sample data into several classes. Finally, the number of landslide samples in each 
category is counted, and the category with the least number of landslide samples is selected as the data source 
for the non-landslide samples. The non-landslide samples selected using this method are highly similar to each 
other, resulting in them only representing a portion of the non-landslide areas and unable to fully reflect the 
complexity and variations of the non-landslide areas. When the representation of non-landslide samples is 
insufficient, the model may not adequately learn the characteristics of these samples, leading to overfitting by 
excessively learning from landslide samples during the training process.

Landslide susceptibility mapping based on machine learning models
Random forest
RF is a very representative bagging ensemble algorithm consisting of multiple decision trees and is widely used 
in landslide susceptibility  mapping37. It adopts a parallel method to establish multiple independent decision trees 
and then calculates the final prediction results based on the prediction results of each decision tree through voting 
principles. The construction of each tree relies on numerous a number of randomly selected impact factors, from 
which an optimal impact factor is selected when each node in the decision tree splits. The optimal impact factor 
can be determined by using the information entropy or Gini index, which indicates the correlation between the 
impact factor and the predicted  result38,39. Compared with decision trees, RF has a stronger generalization ability 
and reduces the risk of overfitting by averaging decision trees.

Table 1.  Description of stratum lithology in Qiaojia County.

Erathem System Series Stratum symbol Description

Cenozoic erathem
Quaternary system

Holocene series Q4 Gravel, sand, sandy clay, clay, and humus

Upper Pleistocene series Q3 Moraine gravel

Middle pleistocene series Q2 Moraine conglomerate and limestone

Unclassified series Q –

Neogene system Unclassified series N Conglomerate and carbonaceous claystone

Mesozoic erathem

Cretaceous system Lower series K1 Conglomerate

Jurassic systerm Lower series J1 Clastic rock

Triassic system

Upper series T3 Mudstone, sandstone, and conglomerate

Lower series T1 Purple mudstone and siltstone shale

Unclassified series T –

Upper paleozoic erathem

Permian System
Upper series P2 Basalt

Lower series P1
Limestone, carbonate rock, sandstone, shale, bauxite, and carbonaceous 
shale sandwiched coal seam

Carboniferous system
Middle series C2 Carbonate rock

Lower series C1 Carbonate rock

Devonian system

Upper series D3 Carbonate rock

Middle series D2 Clastic rock, carbonate rock, and marl rock

Lower series D1 Clastic rock

Lower palaeozoic erathem

Silurian system
Upper series S3 Shale

Middle series S2 Argillaceous rock, carbonate rock, and clastic rock

Ordovician system

Middle and upper series O2-3 Dolomite

Middle series O2 Clastic rock and carbonate rock

Lower series O1 Argillaceous rock, siltstone, and sandstone

Cambrian system

Upper series  ∈ 3 Dolomite

Middle series  ∈ 2 Shale, dolomite, clastic rock, argillaceous dolomite, and gypsum rock

Lower series  ∈ 1
Fine sandstone, mudstone, dolomite, limestone, siltstone, argillaceous 
rock, and shale

Upper proterozoic erathem Sinian system
Upper series Zb Dolomite

Lower series Za Quartz sandstone, gravel sandstone, feldspar rock, and clastic sandstone

Lower proterozoic erathem Changchengian System Huangcaoling group Zc Phyllite and slate
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Support vector machine
SVM is a machine learning model that follows the principle of structured risk  minimization40,41. It converts the 

Figure 2.  Thematic maps of landslide factors: (a) elevation, (b) slope, (c) profile curvature (PC), (d) terrain 
ruggedness index (TRI), (e) distance to faults (DTF), (f) peak ground acceleration (PGA), (g) average annual 
precipitation (AAP), (h) topographic wetness index (TWI), (i) distance to rivers (DTRI), (j) normalized 
difference vegetation index (NDVI), (k) distance to roads (DTR), (l) land use type, (m) soil type, (n) aspect, and 
(o) lithology. (Created using ArcGIS v10.229).
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landslide sample data from a low-dimensional space to a high-dimensional space and converts the nonlinear 
classification problem in a low-dimensional space to a linear classification problem in a high-dimensional space. 
By finding an optimal hyperplane, the landslide and non-landslide data are spaced at a maximum distance apart. 
The kernel function is the core of the SVM and includes linear, polynomial, radial basis, and sigmoid functions. 
Linear or nonlinear classification problems can be satisfied with a variety of kernel functions.

CatBoost
The CatBoost model is a modification of the gradient boosting decision tree (GBDT) algorithm  framework42. 
Compared with the mainstream GBDT (extreme gradient boosting and light gradient boosting machine) algo-
rithms, the main advantage of the CatBoost model is that it deals with category-based factors using a target sta-
tistical approach without having to convert the category data into numerical data in advance. Second, CatBoost 
uses an ordered boosting framework to solve the gradient estimation bias problem and reduce the complexity of 
the algorithm. Finally, the complete binary tree used in the CatBoost model reduces the occurrence of overfitting 
and increases the speed of  prediction43.

Accuracy verification
A landslide problem is a binary classification problem (landslide or non-landslide), and the confusion matrix 
and ROC curve are the most commonly used evaluation  indexes44–47. In the confusion matrix, the classification 
of the different sample categories can be clearly seen. We use several metrics to evaluate the performance of the 
model, including sensitivity, specificity, precision, accuracy, and F1-score. The five metrics vary between 0 and 
1, and larger values indicate better model prediction  performance48. The ROC curve is based on the confusion 
matrix and reflects the true positive rate (TPR) (sensitivity) and false positive rate (FPR) (1-specificity) under 
different thresholds. In the ROC curve approach, each inflection point has a corresponding FPR value as the 

Figure 3.  Flowchart of the methods.
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x-coordinate and a TPR value as the y-coordinate49. The area under the curve (AUC) of the ROC curve is an 
indicator to measure the prediction effect of the model. The AUC value is between 0 and 1, and the larger the AUC 
value is, the better the prediction effect of the  model50,51. The confusion matrix of landslides and non-landslides 
is shown in Table 2, and the equation for each metric is shown in Table 3.

Results
Sample dataset construction
First, the sample data needed for the model are prepared. The landslide samples were obtained from a detailed 
survey of geological hazards in 2014 by the Yunnan Institute of Geological Sciences, and a total of 188 landslide 
points were obtained. An equal number of non-landslide samples were selected to form a sample set, 70% of 

Figure 4.  Flowchart of PU bagging.

Figure 5.  Schematic diagram of the BCS method.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7201  | https://doi.org/10.1038/s41598-024-57964-5

www.nature.com/scientificreports/

which were used as training samples, and the remaining 30% were used as test  samples52,53. A total of 264 train-
ing samples and 112 test samples were obtained. The sampling results for the three non-landslide samples are 
as follows.

(1) PU bagging method to construct non-landslide samples.

The grid corresponding to the study area was converted into single sample point data, and a total of 3,586,374 
sample points were obtained. To improve the operational efficiency, 1 million sample points (188 landslide sam-
ples and 999,812 unlabeled samples) were extracted from all the data for the experiment. To ensure the accuracy 
of sample selection, the model was first trained. We selected 70% of the samples as training data and 30% of 
the samples as test data (56 samples were extracted from 188 landslide samples, and 56 samples were randomly 
selected from 999,812 unlabeled samples). Then, the trained model was used to calculate the probability value 
of the unlabeled samples being landslides. The above steps were repeated five times, and the average probability 
value of the five steps was used as the final probability value. Finally, non-landslide samples were selected by set-
ting the probability threshold for landslide occurrence to 0.5, with samples exceeding this threshold classified as 
landslide samples and those equal to or below this threshold classified as non-landslide samples. The recall rate 
was used to verify the model training results, and it represents the ratio of the number of landslide samples that 
were correctly predicted to the total number of landslide samples. Because only landslide samples were known 
among all samples, this indicator was used as the evaluation basis. After calculations, the recall rate of the test 
samples was 0.95, indicating that the model provides high prediction ability for landslide samples. It can select 
non-landslide samples from the unlabeled sample set based on probability values. Finally, 272,008 landslide sam-
ples and 727,880 non-landslide samples were obtained from the unlabeled sample set. Additionally, 188 samples 
were randomly selected from the 727,880 samples regarded as non-landslide samples (Fig. 6a).

(2) Buffer control sampling method to construct non-landslide samples.

The BCS method was constructed on the basis of landslide samples. A total of 188 samples outside the 500 m  
buffer zone of the landslide points were randomly selected as non-landslide samples. To avoid the distances 
between the selected non-landslide samples from being too close to one another, the minimum distance threshold 
was set to 500 m (Fig. 6b).

(3) K-means clustering method to construct non-landslide samples.

The KM clustering algorithm and the PU bagging method use the same data, with 1 million samples for 
experiments. The attribute characteristics of all samples were substituted into the KM clustering algorithm, and 
the classification result was set to 5. To select a non-landslide sample set, the number of landslides in each cat-
egory was counted. The number of landslides in each category and the relative landslide ratio results are shown 
in Table 4. The category with the least number of landslide samples and the lowest relative landslide ratio was 
selected as the source of non-landslide samples. It can be seen from the table that clustering result 3 met the 
requirements, the number of landslide samples was at least 9, and the relative landslide ratio was also the low-
est. Therefore, 188 samples were randomly selected from clustering result 3 as non-landslide samples (Fig. 6c).

Table 2.  Landslide and non-landslide confusion matrix.

True situation

Prediction result

Landslide Non-landslide

Landslide TP FN

Non-landslide FP TN

Table 3.  Quantitative evaluation metrics for accuracy verification.

Metrics Equation Description

Sensitivity Sensitivity= TP
TP+FN

The ratio of the number of landslides successfully classified as landslides to the total 
number of landslides

Specificity Specificity= TN
FP+TN

The ratio of the number of successfully classified non-landslides to the total number of 
non-landslides

Precision Precision= TP
TP+FP

The ratio of correct landslide results to the number of landslide results predicted by the 
classifier

Accuracy Accuracy= TP+TN
TP+FP+TN+FN

The ratio of correctly predicted landslide and non-landslide samples to the total number 
of samples

F1-score F1 - score = 2×
Precision×Sensitivity
Precision+Sensitivity

Both precision and sensitivity metrics are considered together
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Landslide susceptibility assessment
To enhance model performance, the best hyperparameters for each model were calculated using a Bayesian 
optimization  algorithm54, and then the best hyperparameters were substituted into the models. All models were 
built using the Python language based on PyCharm software. Test samples were used to validate the prediction 
accuracy of the models.

Accuracy assessment
Five metrics, sensitivity, specificity, precision, accuracy, and F1-score, were used to validate the accuracy of the 
nine models (Table 5). For different non-landslide sample selection methods, the results showed significant 
differences. Comprehensive analysis of the five indicators shows that KM yields the highest values, followed by 
PU, and BCS produces the worst. For landslide prediction problems, using sensitivity (the proportion of success-
fully predicted landslides) to further measure the results yields the same results. However, during the statistical 
analysis of partitioning in section “Statistical analysis by zone”, it was noted that the KM prediction results display 
overfitting. Notably, the prediction accuracy of the PU method is superior, exhibiting a 0.089 higher accuracy 
than BCS. Regarding different machine learning models, for the PU bagging samples, the SVM model performs 
best in terms of the specificity and precision indicators. The CatBoost model yields the highest sensitivity, accu-
racy, and F1-score. Specificity reflects the effectiveness of the prediction results for non-landslide samples, and 
precision indicates the proportion of correctly predicted landslides in actual landslide forecasts. As landslides 
constitute highly hazardous disasters, while precision is important, greater attention should be given to the cor-
rect identification of landslides. The SVM identified 43 landslides, whereas CatBoost identified 47, indicating 
that the CatBoost model performs better. For the BSC samples, the performance of the SVM model was superior 
to that of both the RF and CatBoost models. The RF and CatBoost models exhibited strengths and weaknesses 
across different metrics. For the KM samples, the RF performed best in terms of specificity, precision, accuracy, 
and F1-score. CatBoost excels based on sensitivity, correctly predicting 94.6% of landslides.

An accuracy assessment was performed using ROC curves, and the results of the ROC curves are shown in 
Fig. 7. Overall, the AUC values varied widely among models. From the perspective of non-landslide samples, 
the AUC values calculated using different non-landslide sampling strategies differed widely. The KM clustering 
results were the highest, the PU bagging results were the second highest, and the BCS results were the lowest. The 
values calculated using the same strategy differed less. This shows that different non-landslide sampling strate-
gies have a large impact on the prediction results. From the perspective of machine learning models, CatBoost 
always displayed excellent prediction performance. In the sampling method using PU bagging, the AUC values 

Figure 6.  Sampling distribution map of three non-landslide samples: (a) result of PU bagging (PU), (b) result 
of buffer control sampling (BCS), and (c) result of K-means clustering (KM) (Created using ArcGIS v10.229).

Table 4.  Statistical table of k-means clustering analysis.

Clustering result Number of sample points (pieces) Landslide points (pieces) Relative landslide ratio(10–4)

1 236,563 37 1.56

2 193,407 29 1.50

3 92,069 9 0.98

4 262,315 46 1.75

5 215,646 67 3.11
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of different models differed by a maximum of 0.032. Because the data used for accuracy verification were test 
samples, a partitioned statistical analysis was conducted to further explore the prediction performance of the 
three non-landslide sample selection methods in the study area.

Statistical analysis by zone
The trained classifier was used to predict the study area and generate the landslide susceptibility prediction 
map in Qiaojia County. The landslide susceptibility probability map was divided into five classes according to 
the equal interval  method55: very low (0–0.2), low (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and very high 
(0.8–1) (Fig. 8).

In the classification statistical analysis, two indicators, the area ratio and landslide ratio of each susceptibility 
zone, were used, and the statistical results are shown in Fig. 9. By observing the susceptibility partition map, we 
found that more than 90% of the area of the results obtained using the KM clustering method was classified as 
high or very high susceptibility areas. There were no very low or very high susceptibility areas in the KM_RF 
and KM_CatBoost maps. These prediction results are missing certain partitions, which obviously do not match 
the actual situation. The KM clustering method with the highest AUC value had the worst prediction results for 
the study area, with the illusion of better prediction accuracy, and the results of the remaining two non-landslide 
sampling methods were distributed among 5 classifications. From the landslide ratio, it was found that the BCS 
value suddenly decreased, and the PU value was the largest in the very high susceptibility area. In general, land-
slides should occur in the very high susceptibility zone. In both the very high and high susceptibility zones, the 
percentage of landslides based on the BCS method was less than 66.1%. In contrast, the percentage was higher 
than 66.1% based on the PU bagging method; the best value was 82.14%. Overall, the best landslide susceptibility 
results were obtained using the PU bagging method.

Table 5.  Model performance based on several evaluation metrics. Maximum values are in [bold].

Non-landslide sampling method Model Sensitivity Specificity Precision Accuracy F1-score

PU bagging

RF 0.696 0.786 0.765 0.741 0.729

SVM 0.768 0.839 0.827 0.804 0.796

CatBoost 0.839 0.804 0.810 0.821 0.825

BCS

RF 0.750 0.643 0.677 0.696 0.712

SVM 0.750 0.696 0.712 0.723 0.730

CatBoost 0.696 0.679 0.684 0.688 0.690

KM

RF 0.929 1.000 1.000 0.964 0.963

SVM 0.929 0.982 0.981 0.955 0.954

CatBoost 0.946 0.946 0.946 0.946 0.946

Figure 7.  ROC curve results.
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Discussion
The impact of different non‑landslide sampling strategies on landslide susceptibility mapping
Training samples obtained by different non-landslide sampling strategies play an important role in the predic-
tion of machine learning models. From the ROC accuracy verification and zonal statistics results in the paper, 

Figure 8.  Landslide susceptibility classification map: (a) PU_RF, (b) PU_SVM, (c) PU_CatBoost, (d) BCS_RF, 
(e) BCS_SVM, (f) BCS_CatBoost, (g) KM_RF, (h) KM_SVM, and (i) KM_CatBoost. (Created using ArcGIS 
v10.229).
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it was found that the non-landslide sampling strategy has an important impact on the prediction results. For 
landslide susceptibility mapping, only the landslide area sample data are known, and non-landslide samples are 
not directly available. The area beyond the landslide contains both non-landslide and potential landslide areas. 
Whether the selected non-landslide samples can represent the whole research area affects the model learning 
and generalization abilities.

The spatial distribution of the sample dataset constructed based on PU bagging was inferred, as shown in 
Fig. 10a. The non-landslide samples were randomly selected from the sample points with a probability less than 
0.5, the data quality of both landslide and non-landslide samples was relatively high, and the distribution was bal-
anced. The quality of the training sample data was high, and the characteristics of the landslide and non-landslide 
samples were relatively clear for separation; therefore, the calculated AUC values were relatively high. When the 
selected training samples represent the research area, it facilitates the learning of the model. From the statistical 
results of landslide susceptibility classification obtained by the PU bagging method, it was found that its landslide 
susceptibility zoning also conforms to basic laws. Some of the landslides were in very low susceptibility areas 
because they occurred on slopes behind buildings. Models tend to overlook special cases when they learn general 
laws. Landslides are a kind of natural hazard, their occurrence law is not fixed, and there are certain special cases.

The spatial distribution of the sample dataset constructed based on BCS can be assumed, as shown in Fig. 10b. 
Non-landslide samples were randomly sampled outside the landslide buffer zone. They may contain many false 
non-landslide samples, and some of the non-landslide samples will have similar characteristics to the landslide 
samples. When some potential landslide samples are regarded as non-landslide samples, the learning difficulty 
of the model will increase, and it will become difficult to find regularity. When the number of fake non-landslide 
samples reaches a certain number, the learning process of the model will be misled. Thus, the model’s prediction 
ability will be insufficient, and the prediction accuracy will be reduced. By overlaying the landslide data with the 
landslide susceptibility map, the overall predictive ability of the BCS method was found to be insufficient from 
the susceptibility classes to which the landslide sites were assigned. Except for the high landslide occurrence area 
in the eastern part of Qiaojia County, landslides in other regions were not well predicted.

The spatial distribution of the sample dataset constructed based on KM clustering can be assumed, as shown 
in Fig. 10c. KM clustering uses distance as its similarity index. There is little similarity between different cat-
egories and high similarity within each category. The non-landslide samples selected according to this method 
have a high similarity, resulting in non-landslide samples that only represent a part of the non-landslide area. 
Thus, the complexity and changes in the non-landslide area cannot be fully reflected. The difference between the 
landslide and non-landslide samples was obvious, so the accuracy of the AUC value obtained under this training 
sample was very high, causing the illusion of high predictive power. The attribute features of the non-landslide 

Figure 9.  Susceptibility zonal statistics: (a) PU bagging, (b) buffer control sampling, (c) k-means clustering.
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samples were simple and easy for the model to learn, so the model preferred to learn the features of the landslide 
samples. In the process of model learning, there was little interference from the non-landslide samples, so the 
prediction results in the study area were easily overestimated. The results of susceptibility classification also 
proved that approximately 90% of the study area was predicted as high or very high susceptibility areas, but the 
high predictive ability was due to model overfitting. In addition, most of the areas in the partition results were 
only located in two of the susceptible partitions, which is obviously unreasonable.

The impact of different machine learning models on landslide susceptibility mapping
We evaluate the performance of machine learning models using several metrics in a confusion matrix (sensitiv-
ity, specificity, precision, accuracy, and F1-score) and ROC curves. No single model is optimal for all metrics. In 
view of the overfitting exhibited by KM, the discussion focuses on the relationship between the different machine 
learning models and the two methods, PU bagging and BCS. For the RF model, PU bagging method is best under 
Specificity, Precision, Accuracy, F1-score metrics and BCS method is best in Sensitivity. For the SVM model, 
PU bagging performed best under all metrics. For the CatBoost model, also PU bagging performs best. Because 
the focus of different evaluation metrics in the confusion matrix is different, there may also be conflicts among 
the metrics. Therefore, the appropriate metrics should be selected according to the requirements in practical 
applications. From the analysis of the number of correctly predicted landslides (Sensitivity), CatBoost combined 
with PU bagging predicted the most (83.9%). In addition, the optimal results predicted among different machine 
learning models are not fixed, and this problem has been reported in several previous modeling  studies56. This is 
because the classification criteria for models vary for different datasets and are influenced by the structure and 
underlying mechanisms of different models. The results show that the accuracy of SVM and CatBoost models 
is higher than RF. However, in the validation of ROC curves, the results display some regularity. The CatBoost 
model always maintains excellent prediction performance regardless of the sample dataset. CatBoost is a GBDT 
framework based on oblivious trees-based learners. This model can efficiently and effectively handle category-
based factors and solve gradient bias and prediction shift problems. Thus, this approach reduces the occurrence of 
overfitting, and the accuracy and generalization ability of the model are improved. In addition, when evaluating 
model performance, the actual application of a model should be accounted for, and model performance should 
be analyzed comprehensively. In general, model performance is evaluated using training data or test data, but it 
is important to avoid generalized or biased results, such as in KM clustering.

Conclusions
To overcome the difficulty of selecting high-quality non-landslide samples, an innovative hybrid model com-
bining PU bagging and machine learning was proposed. In addition, BCS and KM were applied for compara-
tive analysis. Based on landslide data from Qiaojia County, Yunnan Province, China, collected in 2014, three 
machine learning models, namely, RF, SVM, and CatBoost, were used for LSM. Then, the performance of different 
non-landslide sampling strategies was evaluated using the analysis results. The results of the study showed the 
following:

(1) In machine learning models, there is a significant difference in the results obtained based on different 
non-landslide sampling strategies, indicating that the quality of selected non-landslide samples impacts 
the effectiveness of model training and prediction. However, the AUC values calculated from the same 
non-landslide sampling strategy displayed relatively minor differences.

Figure 10.  The spatial distribution of samples based on different non-landslide sampling methods: (a) PU 
bagging, (b) buffer control sampling, and (c) k-means clustering.
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(2) The PU bagging method performed the best, with AUC values ranging from 0.865 to 0.897 across different 
machine learning models. Additionally, within very high and high susceptibility zones, this method suc-
cessfully predicted 82.14% of landslides. However, the KM prediction results indicate overfitting, displaying 
high accuracy in validation but poor statistics-based zoning outcomes.

(3) For different machine learning models, the CatBoost model displays excellent predictive performance. For 
the PU bagging samples, CatBoost identified the highest number of landslides (47). For the KM samples, 
CatBoost predicted the highest number of landslides (53). For the BSC samples, the performance of the 
SVM model was superior to that of both the RF and CatBoost models.

This study focuses on the selection of non-landslide samples, providing guidance for researchers when select-
ing samples. In cases in which definite positive samples (landslide samples) and uncertain negative samples 
(non-landslide samples) were analyzed using machine learning models, the PU bagging method proved to be 
adequate in producing reliable predictions.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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