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Dense monocular depth 
estimation for stereoscopic vision 
based on pyramid transformer 
and multi‑scale feature fusion
Zhongyi Xia 1,2, Tianzhao Wu 1,2, Zhuoyan Wang 1,2, Man Zhou 1,2, Boqi Wu 3, C. Y. Chan 1* & 
Ling Bing Kong 1*

Stereoscopic display technology plays a significant role in industries, such as film, television and 
autonomous driving. The accuracy of depth estimation is crucial for achieving high‑quality and 
realistic stereoscopic display effects. In addressing the inherent challenges of applying Transformers 
to depth estimation, the Stereoscopic Pyramid Transformer‑Depth (SPT‑Depth) is introduced. This 
method utilizes stepwise downsampling to acquire both shallow and deep semantic information, 
which are subsequently fused. The training process is divided into fine and coarse convergence stages, 
employing distinct training strategies and hyperparameters, resulting in a substantial reduction in 
both training and validation losses. In the training strategy, a shift and scale‑invariant mean square 
error function is employed to compensate for the lack of translational invariance in the Transformers. 
Additionally, an edge‑smoothing function is applied to reduce noise in the depth map, enhancing the 
model’s robustness. The SPT‑Depth achieves a global receptive field while effectively reducing time 
complexity. In comparison with the baseline method, with the New York University Depth V2 (NYU 
Depth V2) dataset, there is a 10% reduction in Absolute Relative Error (Abs Rel) and a 36% decrease in 
Root Mean Square Error (RMSE). When compared with the state‑of‑the‑art methods, there is a 17% 
reduction in RMSE.
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Depth estimation is a fundamental problem in computer vision, allowing users to objectively perceive realistic 
scenes from flat  images1. It is crucial in many scenarios, including robot navigation, 3D reconstruction, virtual 
reality and autonomous  driving2. Specifically, monocular depth estimation is aimed to extract high-quality scene 
depth information from individual images and predict the depth values for each pixel in a given image.

Currently, research in monocular depth estimation primarily revolves around two aspects: the architecture of 
monocular depth estimation networks and the optimization of monocular depth estimation algorithms. Through 
the optimization of deep learning algorithms, the accuracy of depth estimation has been significantly improved. 
Convolutional Neural Networks (CNNs)3 have emerged as the primary tools in the research of depth estimation 
 algorithms4–7. These models employ pixel-wise learning techniques to convert RGB (RGB stands for red, green, 
and blue, the three primary colors of light used in additive color models.) data into depth maps. However, as the 
volume of data increases, CNNs have not shown the corresponding adaptability. Challenges persist in CNNs 
technologies, including low accuracy in predicting depth maps and insufficient clarity in structural features.

From CNNs to Transformers, significant advancements have been made in deep learning. Transformers 
primarily employ unsupervised learning, whereas CNNs predominantly rely on supervised learning. When 
designing model architectures, training strategies should be selected based on specific contexts. In automatic 
stereoscopic display, achieving sufficiently high generalization performance is required to ensure robustness 
performance and broad applicability of the model. However, the accuracy of depth values plays a critical role 
in enhancing the final presentation quality of stereoscopic display. Consequently, this paper adopts a super-
vised training approach is adopted to improve the accuracy of depth estimation, thereby enhancing the overall 
effectiveness of the stereoscopic display system. In the field of computer vision, CNNs are frequently employed. 
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They leverage local context information, weight sharing, and translation invariance in the convolution process, 
significantly enhancing the performance of neural  networks8. CNNs have become the primary technology in 
computer vision domain. However, it is worth noting that, in most CNNs, 3 × 3 convolution processes are used, 
which limit the networks’ perceptual range. In complex prediction tasks, such as object recognition, depth esti-
mation and semantic segmentation, acquiring global information is essential for maintaining model consistency. 
To obtain more accurate relative depth information in monocular depth estimation, global information can be 
utilized to smooth the differences in input feature maps. It is well known that, by stacking multiple convolutional 
layers, perceptual range of CNNs can be expanded, which is crucial for capturing global context information. 
The encoder-decoder9,10 architecture with stacked convolutional layers is one of the most popular approaches 
in monocular depth  estimation11.

The first supervised learning method for monocular image depth estimation was reported by Eigen et al12. 
In current techniques, images are typically sent to the network for convolutional processing. Nevertheless, the 
convolution process is confined to local information in the input images and cannot establish remote connections 
between images. This limitation in information affects the accuracy of depth prediction in practical  scenarios13. 
To model long-distance dependencies, a self-attention mechanism was initially developed to calculate  sequence14 
representations by connecting different positions in a sequence. In the field of computer vision, the development 
of similar tasks has been driven by the self-attention mechanism of Transformers and its competitive modeling 
capabilities. The first pure Transformer design applied directly to a series of image patches for classification tasks 
was introduced by Dosovitskiy et al. as the Vision Transformer (ViT)15. Several upgraded versions of Transform-
ers have been reported, including the Stereo Transformer (STTR)16 and Dense Prediction Transformer (DPT)17, 
which have achieved outstanding performance in computer vision tasks with high computational costs when 
compared to ViT.

The success of Transformer in the domain of computer vision owes to several pivotal factors. Firstly, the 
attention mechanism present in ViT enables them to learn global dependencies within images, thereby acquir-
ing more comprehensive feature representations. This capability is particularly crucial in tasks such as depth 
estimation, where a thorough understanding of the overall image structure is paramount. Secondly, ViT exhibits 
seamless scalability to larger image sizes, which is vital for handling high-resolution imagery. Additionally, ViT 
demonstrates strong robustness against image noise and occlusion, enabling effective processing of low-quality 
images. Lastly, the parallel processing capability of ViT contributes to its seamless integration into large-scale 
image processing tasks. Despite the aforementioned advantages of ViT, they still face several challenges, including 
high computational costs, lower precision in capturing fine-grained edge details, and excessive parameter scales. 
Addressing these challenges is crucial for the broader adoption of ViT in real-world applications.

Addressing the computational cost issue of ViT, researchers have begun exploring solutions that combine 
CNNs with ViT, aiming to reduce computational costs and parameter sizes while retaining a global receptive 
field. The Swin Transformer, developed by Liu et al18., combines the advantages of both CNNs and Transformer, 
restricting attention costs within a window, significantly reducing computational complexity while maintaining 
efficiency by decreasing computational time complexity. Similarly, the Self-Attention-Based Visual Depth Net-
work (SABV)19, developed by Wang et al., enhances monocular depth estimation by integrating a self-attention 
mechanism inspired by the biological visual system, thereby improving prediction accuracy and presenting richer 
object details in depth maps. Recently, self-supervised monocular depth estimation has attracted widespread 
attention, with a focus on designing lightweight yet effective models for deployment on edge devices. Zhang 
et al20. proposed a lightweight monocular depth estimation hybrid architecture, achieving comparable results by 
efficiently combining CNNs and Transformers, demonstrating state-of-the-art performance on datasets such as 
Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI). Yang et al21. proposed a simple 
yet powerful monocular depth estimation base model, named Depth Anything. They employed a data engine to 
collect and automatically annotate images, significantly expanding the data coverage. Additionally, they utilized 
data augmentation techniques to create more challenging optimization targets and employed pre-trained encod-
ers to acquire semantic priors, thereby enhancing robustness.

Based on the latest developments in monocular depth estimation frameworks, current techniques mainly 
exhibit the following shortcomings: (1) Transformers excel in capturing crucial global information for depth 
estimation but lack translation-invariant features present in CNNs. This limitation becomes evident when apply-
ing Transformers to depth estimation, as it results in the model lacking spatial information during depth estima-
tion. (2) ViT models typically have a large number of parameters, making them resource-intensive during both 
training and inference. This might be impractical for many edge devices and resource-constrained environ-
ments. Furthermore, compared with traditional convolutional operations, self-attention mechanisms may lack 
an understanding of spatial relationships between local pixels when processing images. This could lead to inferior 
performance in predicting texture information, such as edge detection, as compared with CNNs.

Therefore, we propose SPT-Depth to address these issues. We use Scale and Shift Invariant (SSI)22 loss to 
tackle the lack of translation invariance in Transformers. By introducing a Pyramid Transformer as a backbone, 
we reduce the dimension of feature maps through downsampling to decrease the number of tokens, thereby 
reducing computational load. The method proposed in this paper achieves very competitive results in terms of 
RMSE and Abs Rel.There are two variants of SPT: SPT-base and SPT-large.

Related works
CNNs find extensive applications in computer vision. The convolutional operation, incorporating local context 
information, weight sharing, and translation invariance, significantly enhances the effectiveness of neural net-
works. To extract useful information from multi-scale maps and generate multi-scale feature maps, Disparity 
Network (DispNet) based on U-Net, proposed by Ronneberger et al23., is a typical encoder-decoder architecture. 
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Godard et al7. introduced a Residual Network-based (ResNet)24feature encoder Monocular Depth Estimation 
2, making it a widely adopted standard approach. To bridge the semantic gap between the encoder and decoder 
in deep networks, Lyu et al25. redesigned skip connections in the U-Net architecture by fusing features from 
different scales. In this mode, the performance of depth estimation, semantic segmentation, and instance seg-
mentation models on each task outperforms competitors trained separately. Peng et al.26 generated the best depth 
map from the multi-scale outputs of the network and used this extracted depth map to train the same network. 
While this approach can improve model accuracy, we believe it partly offsets the advantages of self-supervised 
mode. Moreover, the additional constraint information significantly increases the number of model parameters.

The original purpose of the Transformer was to capture long-range dependencies in textual information, but 
it quickly found applications in the field of computer vision. Various self-attention networks have demonstrated 
significant advantages over mainstream CNNs in various visual tasks. ViT has also been extended to address 
dense prediction problems, such as depth estimation. For instance, Detection Transformer (DETR)27 is the 
pioneering model utilizing transformers for dense prediction tasks. DETR divides the input image into multiple 
patches and merges them. Global Filter Network (GFNet), proposed by Rao et al28., optimizes spatial connectiv-
ity weights in the Fourier domain, equivalent to circular global convolution in spatial dimensions. Wang et al29. 
designed a Pyramid Vision Transformer (PVT) suitable for dense prediction tasks. It overcomes the challenges 
of porting Transformers to various dense prediction tasks, making it a unified backbone for various visual tasks. 
Wang et al19., inspired by biological visual interaction mechanisms, improved information retention capacity by 
focusing on information transfer between each module of the network, enabling the network to output depth 
maps with rich object information and detail. By studying the interpretable relationship between the biological 
visual system and the monocular depth estimation network, it concretizes the attention mechanism in biologi-
cal vision. Finally, Zheng et al30. designed a new framework, A hybrid of a Convolution, self-attention, and an 
Multilayer Perceptron (MLP)31 network (CSMHNet), by combining decomposed large kernel convolutions and 
multi-layer perceptron to overcome the shortcomings of convolutional static weights and locality, while signifi-
cantly reducing memory overhead compared to the Transformer architecture.

CNNs can generally be divided into different blocks, and at the beginning of each block, the length and width 
of the feature map are halved, while the feature dimension (channel) is doubled. There are two main considera-
tions for this: one is that using convolutional or pooling layers with step size 2 for feature dimension reduction 
can increase the receptive field and reduce computation, while compensating for spatial loss with an increase in 
channel dimension. In comparison, ViT has a global receptive field, so ViT can directly tokenize input images 
and continuously stack the same Transformer Encoder layers, which is feasible for image classification. However, 
when applied to dense tasks, it encounters the following problems: First, semantic segmentation and depth esti-
mation often require higher resolution inputs, and when the input image size increases, the computational cost of 
ViT increases sharply; Second, ViT directly uses larger patches for tokenization, such as patch size of 16, resulting 
in coarse-grained features that incur significant loss for dense tasks. Using PVT as the backbone network does not 
encounter the above-mentioned problems. PVT adopts a hybrid pyramid architecture of Transformer, dividing 
the network into different stages, and each stage reduces the H and W of the feature map by half compared to 
the previous one, meaning that the number of tokens is reduced by 4 times. At the same time, to further reduce 
computation, PVT replaces the conventional multi-head attention (MHA)13 with Spatial Reduction Attention 
(SRA)29. The core of SRA is to reduce the number of key and value pairs in the attention layer. In the conventional 
MHA, the number of key and value pairs in the attention layer calculation is the length of the sequence, but 
SRA reduces it to 1/R2 of the original length. In terms of specific accuracy, although PVT does not significantly 
improve over ViT in terms of accuracy, it can significantly reduce computation and output multi-scale feature 
maps, which is crucial for segmentation and detection. Most segmentation and detection models currently use 
the Feature Pyramid Network (FPN) structure, and the feature of PVT can seamlessly serve as a replacement for 
the backbone of CNNs, connecting segmentation and detection heads.

Taking into account the above improvements to the monocular depth framework, we have made a series of 
improvements to the model itself. In this paper, we construct a novel encoder-decoder architecture that com-
bines the strengths of Transformer and CNNs. Using PVT as the backbone for dense prediction tasks, it extracts 
multi-scale feature maps, and through a series of operations including embedding, upsampling, resampling, 
and convolution, it restores multi-scale feature maps to the same resolution and fuses multi-level information 
to complete the depth estimation task.

Method
Figure 1 illustrates the process of transforming a 2D image into Multi-view 3D Format in automatic stereo-
scopic display devices, with the specific steps outlined as follows: (1) Convert the input 2D image into a depth 
map through depth estimation. This is also a crucial step, as the accuracy and quality of the depth map directly 
determine the effectiveness of subsequent stereoscopic display. (2) Stitch the images into a 2D + Z format. (3) Use 
Depth-Image-Based Rendering (DIBR)32 techniques to render the 2D + Z format image, synthesizing content 
from the three-dimensional scene into the two-dimensional image. (4) Synthesize multi-view33 images to display 
the final stereoscopic effect on the screen.

The SPT-Depth network leverages an encoder-decoder  architecture6. In Fig. 2, the role of the PVT encoder is 
to generate high-quality features as the starting point for model training. These features, which integrate shallow 
and deep semantic information, are reshaped into tokens and then restored to the same resolution using different 
magnification upsampling schemes for feature fusion.

The implementation details of SPT are illustrated in Fig. 3. In the experiments, we conducted two reshaping 
operations: one before mapping to convert features into tokens for high-dimensional mapping, and another 
during concatenation to reshape tokens into features for convolutional operations. This is because, in the fusion 
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stage, besides considering the use of bilinear interpolation for upsampling and residual connections for fusing 
multi-scale features, using low-rank fine-tuning attention for fusion is also one of the approaches. However, this 
method should be used with caution because using attention on small datasets is more prone to overfitting, and 
trainable parameters composed of low-rank matrices may impact the model’s robustness, despite its significant 
potential for improving model performance.

Encoder
Embedding
The encoder requires the input to be a sequence of tokens (vectors), characterized as a two-dimensional matrix 
[num_token, token_dim]. Since the format of 3D matrix for image data is [H, W, C], it is obvious that this 3D 
matrix is not the required one by the encoder, so Embedding is used to transform the data to meet the encod-
ing requirements. Firstly, the images are divided into non-overlapping blocks (num_token) with a given patch. 
Secondly, each num_token is mapped into a one-dimensional vector by linear mapping. Finally, the mapping 
dimension token_dim is permuted using patch to obtain a two-dimensional matrix [num_token, token_dim] 
of the input token (vector) sequence suitable for encoding.

Figure 1.  Process from 2D image to stereo vision.

Figure 2.  Architecture overview. Before entering the encoder, the image undergoes several steps. Firstly, feature 
extraction is performed using patch embedding to convert the feature map into tokens (2D), along with relative 
positional encoding to preserve spatial information. Then, the encoder extracts high-level abstract features such 
as edges, textures, and shapes. Finally, there is a reshaping step to restore the tokens into a three-dimensional 
feature map. This process is repeated four times to achieve a pyramid-style down-sampling. Since each feature 
map has different resolutions and multi-scale information, the feature maps go through an "Expansion" process 
to restore them to the same resolution size for feature fusion. It is noteworthy that in our training process, 
we have frozen a significant portion of the weights in the PVT encoder. To enhance the performance of the 
backbone network in depth estimation, we employ fine-tuning strategies within the MHA module, such as 
incorporating low-rank trainable matrices into the Linear layers. Subsequently, the feature maps (tensors) 
generated through progressive downsampling are utilized for decoding. We have drawn inspiration from ResNet 
to accomplish multi-scale feature fusion. Before feeding the feature maps into the decoder, they undergo another 
round of embedding. The reason is evident: feature fusion requires tokens (2D), while the up-sampled feature 
maps (3D) do not align with this requirement.
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This principle is implemented with a 16 × 16 convolution, 768 channels, and stride 16, transforming the input 
feature map from [224, 224, 3] to [14, 14, 768]. The output is reshaped to a [196, 768] matrix.

The approach of PVT involves adding a [class] token in Stage 4, which is a trainable parameter and rep-
resents a vector of size [1, 768]. This [class] token is then concatenated with the rest of the tokens, forming a 
two-dimensional matrix of size [197, 768], which is subsequently fed into the encoder. At this point, its shape 
matches that of the positional embeddings, which is [197, 768].

MHA and linear SRA
SRA29 is built upon the  MHA13, aiming to further reduce computational complexity by decreasing the number of 
key-value pairs in the attention layer. In conventional MHA, the number of key-value pairs is equivalent to the 
length of the sequence; however, SRA divides the feature map into patches, linearly transforming patches into 
HW
R2

× C , thereby reducing the number of key-value pairs to 1
R2

 of the original count. Linear  SRA34 is an improved 
version of SRA. It achieves resolution reduction by replacing convolutional operations with a combination of 
pooling and convolution operations. Prior to the attention operation, an average pooling is applied to reduce 
the spatial dimensions (h× w) to a fixed size (P × P) , where P represents the pooling size in Linear  SRA34. 
Therefore, Linear SRA incurs linear computations and memory overhead, similar to convolutional layers. Since 

Figure 3.  Implementation Details. Firstly, the encoder generates four feature maps F1-F4 through progressive 
downsampling, which are then transformed into tokens under reshaping. Subsequently, under the mapping 
process, these tokens are mapped to high dimensions, and then restored to three-dimensional features through 
concatenation for convenient resizing by subsequent convolutions. Under resampling, these feature maps are 
upsampled to the same shape while preserving shallow and deep semantic information. Finally, multi-scale 
feature fusion is accomplished through fusion. In the encoder, we employ Linear SRA, which reduces time 
complexity through Spatial Reduction. On top of frozen Linear SRA weights, we use trainable weight matrices 
with ranks lower than the original SRA to fine-tune the encoder (for example, for a tensor shape of (196,768), it 
would be decomposed into two trainable weight matrices of sizes 1961 and 1768, preserving the original weights 
in a similar manner to ResNet). In the MLP, we replace the activation function with Gaussian Error Linear Unit 
(GELU) to enhance the model’s robustness to noise and data biases.
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Transformers can only represent sequence lengths L, while in Vision Transformers, images are represented in 
two dimensions, it is necessary to convert the sequence into the length and width of an image to describe the 
time complexity of different attention methods. Replacing L with h× w , we obtain �(Linear SRA) = 2hwP2c.

Both Linear SRA and MHA can focus on inputs in different semantic spatial dimensions by dividing the 
hidden state vectors into multiple heads, generating numerous sub-semantic spaces. As shown in Fig. 4, Spatial 
Reduction reduces the resolution of the feature maps of the MHA’s input Key and Value from the original size 
to 1/S2 using convolution and pooling operations, thereby reducing the computational cost and storage space 
of the feature maps. In our experiments, the number of heads is set to 8, with each head having a dimension of 
[64, 768]. While keeping the input and output matrices unchanged,  MLP31 uses Dropout, DropPath, and Layer 
Norm to obtain suitable classification data, thereby reducing the risk of overfitting. Unlike the Linear and tanh 
activation function used by Ranftl 17, we employ the Linear and  GELU35 activation function for data transforma-
tion to be compatible with the fine-tuning dataset. It is worth noting that the presence of the MLP block is not 
mandatory and does not impact average pooling or depth estimation.

The above steps can be summarized by the following four formulas:

where zl is the output of the current encoder block and z′l is the output of the multi-head attention mechanism, 
respectively. following the input feature map has been linearly normalized, the dim is adjusted to quadruple and 
supplied to the  GELU35 activation function to recover the categorical data. The matrix is then reset to [197,768] 
following random deactivation and another round of linear normalizing, LN is Layer Normalize, which normal-
izes the input feature map.

where zl−1 is the output of the previous Transformer encoder block and SRA is a multi-headed attention 
mechanism.

where Xclass is the trainable label, XN
P E is N 2D Patches with resolution P × P for either 196 or 576, E is the train-

able projection, and Epos is the positional embedding.

where z0L is the learnable classification embedding, LN is Layer Normalize, which normalizes the input feature 
map, and y is the classification result.

(1)zl = MLP
(

LN
(

z′l
))

+ z′l , l = 1...L

(2)z′l = SRA
(

LN
(

zl−1

))

+ zl−1, 1...L

(3)z0 =
{

Xclass;X
1
PE,X

2
PE; ...X

N
P E

}

+ Xpos ,E ∈ R
(P2·C)×D ,Epos ∈ R

(N+1)×D

(4)y = LN
(

z0L
)

Figure 4.  MHA and Linear SRA.
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Decoder
Following positional embedding, we incorporated the classical residual convolution module from  ResNet24 to 
facilitate the fusion of markers with varying resolutions. Then, at each integration stage, we conducted multiple 
upsampling operations incrementally to achieve a final resolution of 1/S relative to the original resolution. Dif-
ferent S-fold values are employed for depth estimation and semantic segmentation, respectively.

It is noteworthy that within this process, we opted for layer  normalization31 instead of the conventional batch 
normalization utilized in traditional ResNet methodologies. Our research upholds the principle of consistency, 
thereby enhancing the model’s stability when employing  PVT29 as the encoder during training.

We use the convolution operation to map the token from Np + 1 to Np , by discarding the (class) token that 
contains the classification information.

According to the position of the initial patch, it is put into the corresponding position respectively to get the 
corresponding feature expression.

A 1 × 1 convolution is used to change the channel, followed by a 3 × 3 convolution to resize.

S denotes the token that is assembled into a feature map with the spatial resolution of the 1S input image.
In the reorganization and fusion phase of the feature map, we draw on the approach  in17, while the formula 

can be expressed as:

Finally, the feature map is upsampled and the decoding process is completed to obtain the depth map.
We use several methods such as [2,5,8,11], [3,6,9,12] for SPT-base and [5,11,17,23] for SPT-large.

Model training
Loss function
Loss is a crucial parameter to characterize the performance of the models in depth estimation. We employed a 
number of loss functions in the model development to minimize experimental errors brought on by human or 
non-human causes.

The loss function must quantify the “incorrectness”, because the depth map is more “continuous” than “dis-
crete”. Mean Squared Error (MSE) is utilized as the loss function to calculate the loss of the depth map.  SSI22 
Truncation Function is used to provide a smooth depth estimation.

where yi is the predicted value,ŷi is the known target value of the depth map, and MSE is the mean value of the 
sum of squares of the differences between the two.

SSI loss can be viewed as a variant of MSE loss, or can be referred to as Shift and Scale Invariant Mean Square 
Error; they are essentially the same, for SSI loss:

where y and y∗ are the image data and the predicted data now, which refers to the actual depth value of each 
pixel and the predicted depth value. α is calculated as follows:

SSI loss typically comprises two components. Equation (10) of the Scale Invariant Loss Term ensures that 
the model is insensitive to changes in scale. Usually, normalization or standardization operations are applied 
to both the predicted and true values to eliminate the influence of scale. Equation (11) of the Truncation Loss 
Term restricts the predicted values within a reasonable range by truncating them, thus mitigating the impact of 
outliers. Truncation is commonly achieved through trimming operations.

Since segmentation graphs are more "discrete" than “continuous", the loss function needs to be classified 
rather than quantified. For the segmentation objective, ‘Cross  entropy36’ is used as the loss function for semantic 
segmentation.

(5)Mapping : R(NP+1)×D → R
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where p(x) is the output of the neural network, q(x) is the correct solution label, and only the index of the cor-
rect solution label in q(x) is 1 (may be other values), the rest is 0, so the equation x only calculates the natural 
logarithm of the output of the correct solution label. Each index corresponds to a q(x) and an Hp

(

q
)

.
We employed "supervised training" to lower the cost of labeled training materials, alter the weights, and 

assess the depth map loss. In using SSI loss, we discard the gradient matching link and instead associate it with 
semantic segmentation. The total loss  function37 proposed in this paper:

where α,β are the impact factors, with values of α = 0.5,β = 0.5.
In the joint loss function, depth estimation and semantic segmentation have equal weights. For semantic 

segmentation, the loss can be divided into two parts: cross-entropy loss and segmentation penalty term. The 
segmentation penalty term is the product of the difference between the current epoch’s segmentation loss and 
the lowest segmentation loss, and the penalty factor (loss_seg_penality_factor). In the early stages of training, 
the penalty term can effectively suppress over-segmentation and under-segmentation.

As training progresses, the segmentation loss gradually decreases. At this point, the penalty term can make 
the model pay more attention to the details of the segmentation areas, thereby improving segmentation accu-
racy. The purpose of this is to improve certain aspects of depth estimation performance, such as enhancing the 
accuracy of edge depth estimation and reducing the impact of occlusion.

Ldepth incorporates three loss terms to achieve more accurate and high-quality depth maps by comprehen-
sively considering various error sources. Specifically, SSI  loss22 corrects the global scale of the predicted depth 
map to match the ground truth, the Smoothing loss suppresses noise and promotes smoothness, and the Struc-
tural similarity (SSIM)38 loss preserves structural details by measuring the structural similarity between the 
predicted and ground truth depth maps.

Smoothing loss
Smoothing loss is an optional component designed to help mitigate noise in the depth map. The specific formula 
is as follows:

where, disp represents the predicted disparity image, while i and j denote the pixel position indices in the image. 
N and M correspond to the height and width of the disparity image, respectively. −∇I(x) and −∇I(y) signify the 
gradients of the color image in the horizontal and vertical directions, respectively. This loss function integrates 
the smoothness of the disparity image with the gradient information from the color image, aiming to enhance 
the model’s sensitivity to edge variations while mitigating its sensitivity to scale and offset.

Structural similarity loss
SSIM  loss38 is a crucial metric for assessing the accuracy of the reconstructed image. When compared with the 
mean square error function, SSIM can be used to compute the gray value of the corresponding pixel points in 
the original and reconstructed images, calculate the difference between them, and also structurally determine 
similarity of the two images . The formula is expressed as:

where µx and µy are the mean values of pixels of image x , y , σx and σy are the standard deviation of pixels of 
image x , y , σxy is the pixel covariance of image x , y,C1 and C2 are set to avoid the denominator to be 0. A low 
SSIM loss means that the gap between the original and reconstructed images is small. The two reconstructed 
images are exactly the same, as the original image SSIM loss is 0.

Coarse convergence and fine convergence
The model training is refined into two stages, i.e., coarse convergence and fine convergence.

Coarse convergence
In the coarse convergence stage (epochs < 10), convergence tends to be fast and non-smooth. For the final con-
vergence, two aspects should be ensured.

(1) The weights applied to the loss_in and loss_out formulas (16) must be normalized. SSI loss formulas (10) 
and (11) are used for this purpose.

(2) For the desired segmentation to be accurate and noiseless, sufficient weights must be provided for the 
loss_Segmentation.

(13)Lcom = αLseg + βLdepth

(14)

Lsmooth =
1

N
(

N−1
∑

i=1

M
∑

j=1

∣

∣disp[i, j] − disp[i, j + 1]
∣

∣+

N
∑

i=1

M−1
∑

j=1

∣

∣disp[i, j] − disp[i + 1, j]
∣

∣)× e−∇I(x) × e−∇I(y)

(15)LSSIM =
(

x, y
)

=
2µx2µy + C1

µ2
x + µ2

y + C1
×

2δxy + C2

δ2x + δ2y + C2

(16)Ldepth = γLin + δLout
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“out" is the core of the study for depth estimation tasks, where “out” is the image loss that characterizes the 
depth > 0(foreground) part and “in” is the image loss that characterizes the depth < 0(background) part. Depth > 0 
and depth < 0 will be treated separately because iteration will something produce reversal result. Something obvi-
ous depth > 0 will be interpreted as depth < 0 and vice versa. Therefore, we need to highlight the foreground(> 0) 
and background(< 0).

During the training process, we establish several dynamic hyperparameters that play a constructive role. We 
anticipate that these hyperparameters will dynamically influence the entire convergence process, enhancing 
the convergence speed and appropriately improving the model’s adaptability at different training stages. As the 
number of epochs increases, these hyperparameters will gradually decrease and eventually stabilize.

Fx represents the global influence factor acting on the MSE  loss22. Initially, its value is set to 2.5 at the begin-
ning of training, but it gradually decreases as the training epoch progresses. If fx becomes too small, it introduces 
significant noise, thereby impeding the efficiency of model training. Therefore, to maintain training stability, the 
minimum threshold value for the global influence factor fx is set to 0.5. Additionally, when considering losses 
related to depth reduction, the minimum threshold value for fx is adjusted to 0.3 to ensure the preservation 
of finer depth details. Tab. 2 provides the values of these dynamic hyperparameters and their corresponding 
changes in loss.

The loss_coarse_threshold_factor is a factor specific to the coarse convergence stage (epochs < 10), which 
affects the overall joint loss function. Its initial value is set to 5. As training epochs progress, the impact of seg-
mentation loss gradually becomes prominent, but the finer details of the predicted depth map remain relatively 
stable. When the loss_coarse_threshold_factor drops below 2.5, the finer details of the predicted depth map start 
to deteriorate, and when the factor value is 0, all details are lost. To prevent this scenario, we set its minimum 
threshold value to 2.5 as a safeguard.

It’s worth noting that all loss parameters employed during the coarse convergence phase must facilitate pre-
cise and stable back-propagation. To address the challenge of lacking a loss function and associated parameters 
for covariance-invariant loss estimates in absolute depth, a scenario where depth estimates are expected to be 
perfectly accurate, a distinction is made between the validation loss and the training loss.

In cases where training and validation samples lack covariance invariance, loss estimates alone are insufficient 
to support stable and meaningful convergence. Therefore, when predicted values closely align with actual values, 
indicating a lack of covariance invariance in training and validation samples, SSI loss is introduced. This method 
ensures that the mean and standard deviation values across various source datasets are consistent, eliminating 
the need for a sample covariance-invariant processing step. Additionally, it’s worth mentioning that the alpha 
value plays a role in gradient loss, with higher alpha values intensifying the impact of gradient loss on the overall 
loss. Experimental data indicate that the alpha value eventually stabilizes at 0.5.

Fine convergence
After the coarse convergence phase, the model training proceeds into the fine convergence stage (epochs > 10). 
During the coarse convergence stage, the influence of covariance invariance remains significant, allowing us to 
disregard the impact of fine convergence loss on the overall loss. In contrast, during the fine convergence phase, 
we introduce the concept of loss_fine_threshold_factor, which acts upon the joint loss function. Larger values 
of this factor result in more detailed depth maps. However, excessively large values of loss_fine_threshold_factor 
may lead to a reduction in the weight of segmentation loss, resulting in excessively noisy depth maps. Experi-
mental results demonstrate that the optimal value for loss_fine_threshold_factor eventually stabilizes at 0.5.

As training epochs increase, determining the correctness of added details in the depth map becomes challeng-
ing. Correctly added details enhance the quality of the depth map, while incorrect additions diminish its quality. 
Unfortunately, there is no foolproof method at this stage to entirely eliminate incorrect details. The initial value 
for the fine convergence influence factor is set to 2.5, and as training progresses, the number of epochs increases 
while the influence factor gradually decreases. When adjusting fx_min from 0.5 to 0.7, other parameters are 
simultaneously tuned, resulting in improved accuracy of SPT-Depth compared to the ViT series models.

It’s worth noting that ensuring the loss function of the segmentation map monotonically decreases through-
out the entire training process is a challenging task. Any attempt to enforce strict monotonicity may introduce 
excessive damping, causing convergence to stop in fewer than 20 epochs. In this study, instead of strictly pursuing 
monotonicity, a penalty formula named  loss_seg_penalty37 is proposed for the segmentation loss. This formula 
helps mitigate the bias of monotonically decreasing segmentation loss. The loss_seg_penalty_factor introduces 
controlled damping on convergence and must be carefully adjusted to avoid excessive values.

Hyperparameterization
Our tests were performed using an Ubuntu 22.04 system with an Intel(R) Xeon(R) Silver 4210R CPU at 2.40 GHz, 
8 × 32 GB DDR4 and 8 × TITAN XP with 12 GB of RAM. An NVIDIA TESLA V100 GPU graphics card was 
used to train the model. Python 3.10 and Pytorch 2.0.0 were used to implement the code. We pre-trained the 
model on INRIA Person Dataset (INRIA), NYU Depth V2 and Posetrack datasets. We compared the training 
loss and validation loss of SPT-Depth, fine-tuned ViT  model15, with different parameter settings to obtain the 
optimal model results. Patch size is set to 16 or 32, respectively, while the training resolution was 384. Dropout 
is set to be 0.1 to avoid overfitting and improve model accuracy. Batch size can be 1 or 4, depending on the size 
of the model, the optimizer is Adaptive Moment Estimation (Adam)39 or Stochastic Gradient Descent (SGD)40, 
and the learning rate is uniformly 1e-5 for the backbone phase and 3e-4 for the coding and multi-head phases.
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In this context, n represents the batch size, x is input, µ represents the learning rate, wt denotes the model 
parameter vector after the t-th iteration, and ∇I(x,wt) signifies the gradient of the loss function I with respect 
to the parameter wt . It is evident that, in addition to gradients, these two variables directly influence the weight 
updates of the model, a critical parameter that significantly impacts the model’s convergence. The convergence 
state and generalization performance of the model are intricately linked to both the numerator and denominator, 
with each being directly affected by the learning rate and batch size, respectively.An excessively high learning 
rate can prevent the model from converging, while an overly low learning rate can lead to very slow convergence. 
When the batch size is excessively large, the model may struggle to continue converging as it quickly approaches 
a local optimum, impeding its ability to reach the global optimum. Additionally, beyond a certain threshold, an 
excessively large batch size can adversely affect the model’s generalization ability.Typically, below this threshold, 
changes in batch size have a relatively smaller impact on model performance compared to variations in the 
learning rate.

Table 1 presents a summary of the hyperparameter choices made in our experiments. These choices include 
dataset allocation, embedding dimension, model information extraction layers, optimizer selection, various 
loss functions for depth and segmentation, and the duration of training. To ensure the effective organization of 
the training dataset, we introduce the parameter "num_samples." Its primary purpose is to prevent excessive 
parameter tuning from causing the model to diverge. As "num_samples" increases, both the number of images 
and batches used in training also increase. The table provides an overview of these hyperparameter settings, 
excluding additional details related to hyperparameter configuration, such as Wandb data visualization, pathways, 
graph transformations, and so forth.

Table 2shows the key hyperparameters and training results that affect model convergence and stability. Among 
them, depth_datum acts as a scaling factor responsible for adjusting the output depth map to an appropri-
ate range. The loss_seg_penality_factor serves as a segmentation penalty factor, penalizing the model during 
backpropagation by multiplying the difference between the segmentation loss of each epoch and the current 
lowest segmentation loss by this factor according to hyperparameters, thereby encouraging the model to mini-
mize segmentation loss. During inference, the combined loss function prioritizes depth estimation accuracy by 
assigning it a 50% weight, while the remaining 50% is equally distributed between the cross-entropy loss and 
a segmentation penalty term. This configuration ensures that the model prioritizes accurate depth prediction 
while maintaining consistent segmentation boundaries. We incorporate MSE, SSIM, and Smooth as loss com-
ponents with respective weights of 0.2, 0.5, and 0.5 to guide the optimization direction of the model. Notably, 
the global influence factor, fx, acts on the MSE loss component. For instance, when fx equals 2.5, the weight of 
the MSE loss is 0.5, gradually decaying to 0.1 after 10 epochs. This design aims to initially let the optimization 
process be predominantly governed by MSE; however, as MSE exerts its influence sufficiently, we gradually 
decrease its weight to match SSIM, ensuring that SSIM and Smooth can exert sufficient influence on the loss 
and further reduce the overall loss. The loss_ratio_out_factor serves as a weight attenuation factor for the output 
feature map, with higher values indicating a greater focus on the quality of the output feature map. Similarly, 
the loss_ratio_out_attenuation_factor represents the attenuation coefficient for the output attention map, with 
higher values resulting in smoother attention maps.

(17)wt+1 = wt − µ
1

n

∑

x∈β

∇I(x,wt)

Table 1.  Hyperparameters of SPT-Depth.

Variable Name Explanation Possible values

emb_dim Dimension of the embeddings generated by the decoder
768 for base

1024 for large

hooks Refers to the layers that will be hooked
[2,5,8,11] ,[3,6,9,12] for base

[5,11,17,23] for large

resample_dim Refers to the decoder embeddings dimension 256

optim Optmizer to use SGD or Adam

lr_backbone Learning rate to use for the backbone Any float > 0 and < 1; Recommended: (with Adam) Since 
we use pre-trained weights1e-5

lr_scratch Learning rate to use for the decoder and the multi-head module Any float > 0 and < 1; Recommended: (with Adam)3e-4

loss_depth Loss function to use for training the depth module ssi for SSI loss

loss_segmentation Loss function to use for the segmentation module ce for CrossEntropy loss

epochs Number of epochs for training Any integer > 0 20, 50…

batch_size Batch_size for training Any integer > 0 we use 1, 4, 10…

patch_size Different patch_sizes correspond to different SPT variants
16 for SPT-base

32 for SPT-large

image_size Our processing specifications for the images in the dataset Uniformly organized in 384 × 384 format, with occasional 
use of 224 × 224 image sizes

num_samples Used to prevent direct divergence due to too large a parameter 20, 40, 80, 160, 320, 640



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7037  | https://doi.org/10.1038/s41598-024-57908-z

www.nature.com/scientificreports/

In the latter part of the table, the experiment compared the parameter values and losses when the epoch was 
set to 10 and 45. Based on this, we can draw the following conclusions:

1. During the coarse convergence stage (epoch < 10), the segmentation loss based on segmentation penalty and 
MSE loss (SSI loss) dominate the optimization direction of the model, jointly controlling its optimization.

2. In the fine convergence stage, most losses have decreased to near their minimum values. At this point, the 
weight of the SSI loss decreases, and the loss values become close to SSIM and Smooth. All three jointly 
govern the continued optimization of the model.

3. Comparing Scheme1 and Scheme2, we conclude that further reducing fx_min indirectly increases the weight 
ratio of segmentation loss, aiding in preserving edge detail information, but without significant feedback on 
accuracy.

4. Comparing Scheme3 and Scheme4, we find that increasing the weight of the coarse convergence factor results 
in larger fluctuations in initial training losses. However, excessively low weights may lead the model to easily 
fall into local optima, hence this value should not be lower than 5.0.

5. Comparing Scheme5 and Scheme6, we conclude that the fine convergence factor significantly influences the 
values of segmentation loss and depth estimation loss. Decreasing this value further increases the weight 
of segmentation loss, leading to excessive noise, which is undesirable. Therefore, this value should not be 
lower than 0.5. Additionally, the value of fx is increased to 3.5, meaning that the weight of the SSI loss term 
is further increased during the coarse convergence stage. At this stage, the model primarily learns coarser 
image features, thus having minimal impact on the final outcome.

6. The final two sets of experiments adopt optimal parameter values, with differences only in weight values on 
depth > 0 and depth < 0. This measure enhances model robustness without causing drastic fluctuations in 
model loss and accuracy.

Datasets
In depth estimation, we utilized three datasets: NYU Depth  V241 (640 × 480),  INRIA42 (960 × 540), and  Posetrack43 
(1280 × 720) for model pre-training, as shown in Table 3. The evaluation of model accuracy was performed 
exclusively on the NYU Depth V2 dataset. Feng et al. previously utilized all available samples and employed them 
repeatedly in each epoch. However, this approach led to the reuse of all epoch samples, resulting in overfitting. 

Table 2.  Hyperparameters and Training Outcomes. Significant values are in [bold].

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

variable name

 depth_datum" 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

 loss_seg_penality_factor" 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

 loss_ratio_out_factor" 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

 loss_mse_factor" 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

 loss_ssim_factor" 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

 loss_smooth_factor" 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

 loss_ratio_out_attenuation_factor" 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0

 loss_segmentation_factor" 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

 loss_depth_in_factor" 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6

 loss_depth_out_factor" 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4

 loss_fine_threshold_factor" 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.5

 loss_coarse_threshod_factor" 5.0 5.0 5.0 7.0 5.0 5.0 5.0 5.0

 fx 2.5 2.5 2.5 2.5 3.5 3.5 2.5 2.5

 fx_min 0.5 0.3 0.5 0.5 0.5 0.3 0.5 0.5

Loss Type (epoch = 10)

 loss_seg_penality 0.0742 0.1314 0.1006 0.2111 0.1071 0.1021 0.1512 0.1500

 loss_smoothness 0.0038 0.0035 0.0032 0.0084 0.0031 0.0039 0.0032 0.0031

 loss_ssim 0.0262 0.0149 0.0120 0.0285 0.0151 0.0162 0.0148 0.0150

 loss_mse 0.0757 0.0440 0.0885 0.2643 0.1467 0.1300 0.0771 0.0791

 total loss 0.1800 0.1937 0.2043 0.5123 0.2720 0.2522 0.2463 0.2472

Loss Type (epoch = 45)

 loss_seg_penality 0.0002 0.0012 0.0007 0.0009 0.0005 0.0019 0.0002 0.0003

 loss_smoothness 0.0033 0.0034 0.0034 0.0037 0.0037 0.0032 0.0031 0.0032

 loss_ssim 0.0180 0.0203 0.0159 0.0213 0.0224 0.0215 0.0130 0.0126

 loss_mse 0.0504 0.0576 0.0578 0.0630 0.0651 0.0643 0.0361 0.0374

 total loss 0.0718 0.0825 0.0778 0.0889 0.0918 0.0909 0.0524 0.0535

 accuracy 0.980 0.975 0.983 0.941 0.984 0.979 0.996 0.995
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In order to mitigate overfitting, we adopted a different strategy. Specifically, a predetermined number of samples, 
denoted as num_samples, were randomly selected during each epoch and subsequently shuffled randomly during 
training. To achieve higher accuracy, the value of num_samples was incrementally raised from an initial value 
of 20 to 160. It’s important to note that using an excessively large number of samples would prolong the training 
time without yielding significant accuracy improvements.

Supervised training necessitates a depth map with known true depth to validate and assess the loss. The 
NYU Depth V2 dataset contains ground truth depth estimation  maps44, while the INRIA and Posetrack datasets 
serve to train the DPT-Hybrid model on images and generate depth maps as ground truth representations of 
the images 17.

For training, we allocated 60% of the dataset, while 20% each was reserved for validation and testing purposes. 
The depth map format is jpg, and despite being a grayscale image, the file format remains in 3-color format, 
denoted as (h, w, 3).

Evaluation metrics
The model training was conducted on the INRIA, NYU Depth V2, and Posetrack datasets. Pretraining lasted for 
45 epochs. We compared the training and validation losses of the ViT-32 model 15, ViT-16 model 15, Hybrid model 
17, PVT model 29, and our approach under different parameter settings to achieve the best model performance. 
The patch size was set to 16 or 32, and the training resolution was 384 × 384. A dropout of 0.1 was employed to 
prevent overfitting and improve model accuracy. Depending on the model’s size, a batch size of 4 was used, and 
the optimizer selected was  SGD40. The learning rate was set to 1e-5 during the backbone stage and 3e−4 during 
the decoder stage. We trained different methods for 10, 20, 30, and 45 epochs to observe convergence behavior. 
Table 3 provides a comparison of the training and validation losses for different models, and Fig. 5 offers a visual 
representation of the data from Table 3.

In the experiments, larger models exhibited lower accuracy due to limitations in the dataset. However, as the 
dataset size increased, the accuracy gradually improved. The research findings highlight the significant advantage 
of our approach over other models in terms of training and validation losses. (1) Compared to other methods, 
SPT-Depth adopts a lower learning rate during the fine convergence phase, resulting in a relatively slower 
convergence speed. However, SPT-Depth ultimately achieves lower losses and higher robustness, indicating its 
stronger fitting and generalization capabilities. (2) Our method incorporates various loss functions, including 
Smoothing loss, SSIM loss, and SSI loss, which significantly outperform the baseline (ViT). (3) We define the 
entire training process as consisting of two phases: fine convergence and coarse convergence. We employ differ-
ent training strategies and hyperparameters, resulting in lower training and validation losses starting from the 
fine convergence stage. Further fine-tuning adjustments, including parameters like loss_fine_threshold_factor, 
contribute to improved training accuracy. (4) The training process should not exceed 45 epochs, as training on 
a small dataset can lead to overfitting.

The depth estimate results in this study are assessed using the depth estimation assessment  metrics45, which 
take into account both accuracy and error, with less errors being preferable to bigger accuracy values. The precise 
experimental quantitative assessment metrics are described as follows:

Table 3.  Loss comparison of different models. Significant values are in [bold].

Method Epoch Training loss Validation loss

ViT-32

10 1.79 2.85

20 1.45 2.59

30 1.29 2.41

45 1.20 2.29

ViT-16

10 1.55 2.62

20 1.31 2.36

30 1.20 2.25

45 1.14 2.20

Hybrid

10 1.27 2.34

20 1.17 2.21

30 1.14 2.16

45 1.07 2.12

PVT

10 1.21 2.31

20 1.12 2.16

30 1.10 2.12

45 1.06 2.08

SPT-Depth

10 1.14 2.16

20 1.08 2.07

30 1.06 2.04

45 1.04 2.00
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where di is the predicted depth value of pixel i and d∗i  is the actual depth value,N is the total number of pixels with 
actual values, thr is the threshold value. The threshold accuracy is to calculate the ratio of the predicted depth to 
the actual depth of all pixels in the image, take the maximum value, and finally assign the result to δ . The ratio 
of the pixels whose δ is less than the threshold thr to the total pixels is the correctness accuracy. The closer the 
result to 1, the better the result is. thr is generally taken as 1.25, 1.252 and 1.253.

All models in Table 4, were retrained using the INRIA, NYU Depth V2, and Posetrack datasets, and valida-
tion was conducted on NYU Depth V2. The selected models are all designed for depth estimation tasks, with the 
majority having undergone fine-tuning on NYU Depth V2. We have endeavored to maintain consistency in train-
ing strategies and hyperparameter fine-tuning, building upon this foundation to ensure experimental fairness.

The bolded part is the best. It is found that both the absolute relative error and root mean square error clearly 
favor SPT-Depth in terms of accuracy. At the corresponding threshold values of δ1 < 1.25, δ2 < 1.252 , δ3 < 1.253 , 
the model accuracy is on par with that of the other models. In comparison to the state-of-the-art method, the 
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Figure 5.  Left: Training loss between methods. During the fine-tuning phase, our method exhibits a 
convergence speed slightly lower than the baseline method (ViT), comparable to the PVT and Hybrid methods, 
reaching the lowest training loss at the 45th epoch of training. Right: Validation loss between methods. The 
validation loss decreases concurrently with the training loss, effectively preventing overfitting. The entire 
training process exhibits a smooth curve, demonstrating high stability.

Table 4.  Performance comparison on V2 dataset. Significant values are in [bold].

Method

Lower is better Higher is better Lower is better

Abs Rel RMSE δ1 δ2 δ3 Params

ViT-B/16  202015 0.115 0.440 0.901 0.985 0.992 1.1G

ViT-L/16  202015 0.120 0.551 0.875 0.977 0.981 1.2G

DPT-Hybrid  202117 0.110 0.357 0.904 0.988 0.988 473M

AdaBins  202146 0.112 0.409 0.891 0.965 0.986 919M

SABV  202319 0.101 0.421 0.894 0.977 0.989 873M

Chen  202247 0.135 0.828 0.828 0.963 0.981 1.1G

Ozay  202148 0.118 0.571 0.857 0.957 0.982 1.6G

Runze  202249 0.132 0.517 0.834 0.961 0.990 1.6G

Lite-mono  202320 0.121 0.520 0.871 0.940 0.981 3.1M

Lite-mono-8M  202320 0.125 0.541 0.867 0.925 0.979 8.0M

LapDepth  202150 0.112 0.445 0.875 0.956 0.971 282M

Ours 0.109 0.351 0.895 0.988 0.996 151M
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RMSE score has decreased by 17% (0.421 vs. 0.351), with only a slight increase in the Abs Rel metric (0.101 vs. 
0.109). Given that lightweighting is not the focus of the experiment, SPT-Depth has a larger parameter scale 
compared to Lite-mono and Lite-mono-8M. However, in comparison to methods of similar types, SPT-Depth 
has a smaller parameter scale, reducing by 86% relative to the baseline (ViT).

We have observed that the depth maps in the NYU Depth V2 dataset contain relatively small errors and 
incomplete image information. If the model is trained solely on the NYU Depth V2 dataset, these errors and 
incompleteness would persist. Therefore, we adopt a training approach that utilizes not only the NYU Depth V2 
dataset but also the INRIA and Posetrack datasets. As shown in Fig. 6, the encouraging results of subsequent tests 
on the NYU Depth V2 dataset indicate the model’s significant generalization capability. It partially compensates 
for errors in real ground information, although this change may not be accurately reflected in terms of precision.

Figure 7 compares the visualizations of all methods in Table 4 on the NYU Depth V2, INRIA, and Posetrack 
datasets. We specifically zoom in on details of some images, especially indoor scenes and portraits, to highlight 
the superior performance of our method. For example, in the first image, our method retains object edge informa-
tion more completely; the fourth image excels in recognizing fine details in outdoor scenes; and the sixth image 
identifies parallel railings more accurately. While SPT-Depth’s estimation may lack in certain details, this is a 
result of the training strategy. In simple terms, if we cannot accurately estimate the depth values of certain farther 
parts, we uniformly set their depth values to 0 (in visualization). For instance, in the first image, Lite-mono20 

Figure 6.  Comparison with the Ground Truth Visualization. In the NYU Depth V2 dataset, certain portions of 
the ground truth depth maps exhibit some discrepancies. For instance, in the first image, windows and flowers 
are not accurately identified, and in the second image, the window in the farthest distance is mistakenly assigned 
a lower depth value. It is noteworthy that our approach, following training on the NYU Depth V2, INRIA, and 
Posetrack datasets, shows a degree of resilience in mitigating the aforementioned issues.
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identifies more details, but it incorrectly estimates the depth information of these details, resulting in the depth 
value of the windows behind being similar to the foreground furniture, which is clearly not what depth estima-
tion aims to achieve. Similar situations also occur in the third image of LapDepth (Laplacian Depth Estimation 
Network)50 and AdaBins (Adaptive Bins Transformer-Based Depth Estimation Network)46, where the images 
identify chandeliers but cannot accurately estimate their depth, resulting in a chaotic representation in the image.

Figure 8 presents the visual results of the methods in Table 4 on the Posetrack dataset. We selected images with 
more people to further demonstrate the outstanding performance of our method in estimating human depth. For 
instance, the depth prediction of two people in the second image is more accurate; the third image prominently 
retains the text details in the lower right corner; and the fifth image demonstrates excellent edge prediction capa-
bilities while accurately identifying the depth information of multiple individuals in the scene. Similar to Fig. 7, 

Figure 7.  Visualization Comparison. As presented in Table 4. The six sets of images are arranged in top-to-
bottom order, sourced respectively from the NYU Depth V2, INRIA, and Posetrack datasets (with every two sets 
originating from the same dataset).

Figure 8.  Visualization Comparison on Posetrack Dataset. The images contain multiple individuals 
simultaneously, with significant variations in their depth information, thus better reflecting the performance of 
the models in depth estimation.
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in the fifth image, both Lite-mono and LapDepth identify more details behind the people, but these details are 
incorrect, as evidenced by their depth values being similar to the foreground individuals and exhibiting inversion 
(the colors behind are lighter, indicating higher depth values); in the first image of the method proposed by Chen 
et al., more detailed image information is displayed, but similarly, it fails to accurately predict the depth values 
of these details (depth values are close, and depth values are set to 0 in unreasonable locations).

The multi-view image reconstruction is depicted in Fig. 9 The image was captured by horizontally shifting 
the camera by 65 mm, which corresponds to the average human inter-pupillary distance, in front of the screen. 
The two images were fused to simulate the perspectives seen by the left and right eyes,  respectively32. When 
observing the screen, subtle distinctions exist between the images perceived by the left and right eyes, providing 
our brains with a perception of three-dimensionality.

Ablation experiment
We conducted an ablation study using the NYU Depth V2 dataset and provided the quantified results of the PVT 
backbone, Linear SRA, and SSI loss as summarized in Table 5. Initially, we used the ViT-large model as a baseline. 
Subsequently, we replaced the ViT backbone with the PVT backbone while retaining the MHA, leading to the 
second set of experiments. The third set of experiments, based on the second set, replaced the MHA with Linear 
SRA. Finally, the fourth set of experiments, building on the third set, replaced the MSE loss function with SSI loss.

In Table 5, we use bold font to indicate results that achieved the best performance. When we replaced the 
ViT-based backbone with the PVT-based backbone, we observed a 16% decrease in the RMSE metric. This sug-
gests that the PVT backbone can better learn long-range contextual information, thereby improving matching 
accuracy. Furthermore, when Linear SRA replaced the MHA module, the changes in the Abs Rel and RMSE 
metrics were not significant, indicating that Linear SRA has a relatively minor impact on model performance. 
Finally, with the introduction of SSI loss, Abs Rel decreased to 0.109, and RMSE decreased to 0.351. This indicates 
that SSI loss indeed contributes to improving the model’s performance, bringing the model to an optimal state.

Conclusions
Depth estimation plays a crucial role in achieving autostereoscopic displays. We have constructed a dense depth 
estimation network by introducing the Pyramid Transformer as the backbone, leveraging its advantages in dense 
prediction tasks. We reduced the dimension of feature maps through downsampling to decrease the number of 
tokens required, thus reducing computational demands. Simultaneously, by employing embedding, upsampling, 
reassemble, and a series of convolution operations, we restored multi-scale feature maps to the same resolution 
size and fused shallow and deep information to output high-precision depth maps.

The introduction of the SSI loss successfully addresses the issue of the lack of translational invariance in 
Transformers. The structural similarity function and edge-smoothing function reduce noise in the depth map, 

Figure 9.  Left and right eyes see different images.

Table 5.  Ablation study on V2 dataset. Significant values are in [bold].

Components NYU depth V2

PVT backbone Linear SRA SSI loss Abs rel RMSE

0.120 0.551

√ 0.115 0.461

√ √ 0.114 0.459

√ √ √ 0.109 0.351
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enhancing the model’s robustness. The model’s pretraining process is divided into two stages, coarse convergence 
and fine convergence, employing different training strategies, parameters, and hyperparameters, leading to a 
significant reduction in both training and validation losses.

Experiments were conducted on the INRIA, NYU Depth V2, and Posetrack datasets. The results indicate 
that, compared to other methods, our approach exhibits lower training loss. The network architecture and train-
ing methods of SPT-Depth effectively improve the accuracy of depth prediction while preventing overfitting.

However, the model has some limitations. For example, in certain regions of the image where clear and 
blurred sections converge, artifacts may appear, potentially affecting 3D display quality. Additionally, while our 
approach reduces computational demands compared to ViT-based methods, the computational complexity issue 
has not been completely resolved.

SPT-Depth effectively captures object boundaries and contours, aiding in understanding semantic informa-
tion within the scene and providing solutions to the aforementioned issues. We plan to bridge the semantic gap 
between the encoder and decoder using a self-supervised monocular depth network framework, starting from 
the encoder-decoder intermediate. To further improve rendering results and reduce artifacts, we can incorporate 
classic computer vision algorithms or end-to-end techniques. To address computational complexity comprehen-
sively, we plan to introduce strategies from the Swim Transformer to confine attention calculations within each 
window, thereby significantly reducing computational demands.
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