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A redescending M‑estimator 
approach for outlier‑resilient 
modeling
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The OLS model is built on the assumption of normality in the distribution of error terms. However, 
this assumption can be easily violated, especially when there are outliers in the data. A single 
outlier can disrupt the normality assumption of error terms, making the OLS model less effective. 
In such situations, M‑estimators (MEs) come into play to obtain reliable estimates. We introduce a 
redescending M‑estimators (RME) for robust regression to handle datasets with outliers. The proposed 
RME produces more robust estimates by effectively managing the influence of outliers, even at lower 
values of the tuning constant. We compared the performance of this estimator with existing RMEs 
using real‑life data examples and an extensive simulation study. The results show that our suggested 
RME is more efficient than the compared ME in various situations.
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The ordinary least square (OLS) method has many useful applications in real life, but sometimes real data do 
not fulfill the conditions of OLS in terms of normality of error terms due to the presence of outliers. Even a 
single value of the outlier can disturb the performance of the least square estimates by producing inefficient and 
unreliable results. To overcome this drawback of OLS, researchers developed a technique called robust regression, 
which modifies the OLS in the presence of outliers. In heavy tailed distributions, the OLS estimates are badly 
influenced by the presence of outliers and MEs provide a possible alternative to the classical OLS estimates to 
compensate the sensitivity of the estimates towards the outliers. A large number of robust estimators are presented 
in the literature: M-estimators  (Huber1), least median square  (Roisseeuw2), least trimmed square  (Roisseeuw3), 
MM estimators  (Yohai4) and S-estimators (Sakata and  White5) are very famous robust estimators.

Huber1 introduced the procedure of the ME to deal with the data having outliers. This estimator provided 
weights approximately equal to one for the central observations and zero weights for outliers. The maximum 
likelihood formulation is used in ME when the condition of normality in error terms is violated in OLS. In robust 
MEs, the symmetric loss function is used in place of the square error term in OLS, i.e.

where ρ(.) provides the role of error terms in the objective function. The technique of the ME is usually based on 
the iterative reweighted least squares technique (IRLS) to obtain the optimum estimates of objective function, 
 Birch6. The objective function is chosen in such a way that it reduces the weight of outliers and hence produces 
maximum efficiency.

The psi function is obtained by differentiating Eq. (1) w.r.t. residual, the ψ(rk) function is given as.

Weight function w(rk) is obtained by dividing ψ(rk) function by “r” residuals, given as

(1)Minimize
β̂

n
∑

k=1

ρ(rk)

(2)
n

∑

k=1

ψ(rk)Xk = 0
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If the deviation of ρ(.) is redescended, the ME is known as the RME. Many researchers have done useful 
work on ME; well-known names are Hample (1986),  Andrew7,  Tukey8,  Qadir9, Ali (2005),  Insha10, Alamgir 
(2015), Khalil (2016), Noor-ul-Amin11,  Anekwe12,  Luo13, and  Mukhtar14. These RME perform well to reduce 
the effects of outliers. We have also proposed a RME to deal with the data having outliers given in Eq. (13). The 
proposed estimator is a generalized RME, as the weights of outliers can be controlled by changing the value of 
the generalized tuning constant ‘a’.

The design of the upcoming sections is as follows: Section “Redescending M-estimator” describes the existing 
RME; Section “Redescending M-estimator” discusses the proposed RME with its graphical presentations. In 
Section “Proposed redescending M-estimator”, the performance of the proposed ME relative to existing ME is 
presented. In Section “Graphical comparison of the proposed RME with existing RME”, practical applications 
and a simulation study of the proposed RME are discussed in Session 6. The concluding remarks of the proposed 
ME are cited in Section “Simulation study”.

Redescending M‑estimator
A detailed discussion about the existing ME is necessary to highlight the superiority of the proposed estimator. 
So we have done a detailed study on the existing ME in this section. The known MEs are given below.

Huber1 proposed well known ME with ψ function defined as

where k is the tuning constant and r is the residual obtained using the OLS. The value of k is 1.345 to obtain 95% 
efficient result for the data having Gaussian distribution. The efficiency of Huber proposed model is found to be 
low when data contain larger residuals as its ME has not redescending characteristics.

Hampel (1986) introduced a piece wise ME with-function given by

where k, l and m are constant and 0 < k ≤ l < m < ∞ . Differentiability of ψ(r) is not ideal here and a smooth 
ψ(r) function should be preferred. This suggested robust estimator performed well for the Princeton Robustness 
Study. The Hampel psi function has lack of differentiability, and it uses three tuning constants, which are 
undesirable.

Andrew7 developed a very popular and commonly used robust ME called the Andrew sine function,ψ
-function for Princeton Robustness Study is written as

where k is a tuning constant and the value of k = 3.2 to obtain maximum efficiency. This function is smooth and 
differentiable.

Another very useful and popular redescending robust estimator is given by  Tukey8 with ψ-function defined as

where k is the tuning constant. For Tukey’s ME, value of k = 4.865 to obtain 95% efficiency for the data have 
Gaussian distribution. Tukey’s bi-weighted and Andrew’s sine functions covers the drawbacks of Hampel  ψ 
function to some extent, but they give less weight to some good observations.

Qadir9 developed another RME known as the Qadir Beta function. The ψ-function is given as

where k is an arbitrary constant called the tuning constant, the value of k is 4.0 to attain maximum efficiency.
Ali (2005) also derived a modified Tukey’s RME with the psi function.

This ME gives most efficient results if k = 4.
Insha10 developed a RME for the detection of outliers, whose ψ-function is given as

(3)
n

∑

k=1

w(rk)Xk = 0

(4)ψ(r) =

{{

r |r| < k
k |r| ≥ k

}

(5)ψ(r) =
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Tuning constant k = 4 provides the most efficient results for Insha’s robust estimator.
Alamgir (2015) suggested another RME for robust regression; his proposed psi-function is given as

Alamgir suggested k=3 to obtain 95% efficient estimates for the data having a normal distribution. In the 
series of RME developments, Khalil (2016) also suggested his RME, whose psi-function is given as

where k is the tuning constant, and a value of k = 4 is suggested by Khalil to obtain 95% efficiency in the normal 
case. The ME proposed by Ali, Alamgir, and Khalil rejected the observations completely with a larger residual. 
Insha provided an estimator that covers this drawback, but it lacks generalization. We have produced a RME that 
covers the drawbacks of previously proposed estimators and has redescending characteristics. If the outliers are 
completely rejected by the ME, then it is called a RME. Hence, a ME is redescending if the derivative of the 
objective function, i.e.ρ(rk) is redescending that satisfies ρ′(rk)

rk→±∞
= 0.

Proposed redescending M‑estimator
We proposed a new RME called Aamir’s RME, which contains the properties of a redescending estimator for the 
detection of outliers in robust regression. The proposed RME is more robust even at low value of tuning constant, 
it produces more efficient and reliable estimate even at small sample sizes, the mathematical formulation of the 
suggested RME is simple and easy to apply in real life situations, the proposed RME is generalized ME as we can 
adjust the weights of extreme values of residuals by changing the value of the generalized tuning constant ‘a’. 
The psi function of proposed estimator is more linear than the existing RMEs. The proposed estimator is more 
flexible to control the weights of outliers. The validity and usefulness of the proposed estimator are confirmed 
by extensive simulation analysis. The characteristics and shape of ρ(ri) function, ψ(ri) and w(ri) weight function 
of proposed RME are discussed below.

The objective function of proposed ME is given as

where k is any arbitrary tuning constant and ‘a’ is a generalized tuning constant, and we have taken values of 
‘a’ is 6 and 8 for our present study, and ’r’ is the residual associated with  ith observation. The proposed objective 
function fulfills the following properties of ρ(.) function.

(i) ρ(ri) ≥ 0

(ii) ρ(0) = 0

(iii) ρ(−ri) = ρ(ri)
(iv) ρ(ri) ≥ ρ

(

rj
)

for |ri| ≥
∣

∣rj
∣

∣ , i.e. ρ(.) is an increasing function
(v) ρ(.) is continuous and differentiable

To demonstrate the performance of the proposed objective function, a sequence of residuals is generated using 
the R program. Unitizing the generated data, the graph of the objective function given in Eq. (13) is constructed 
and presented in Fig. 1.

Figure 1, shows that the proposed function is a positive, symmetrical, differentiable, and increasing function 
which satisfies the conditions of the objection function for robust regression.

Differentiating ρ(.) function with respect to residual, we obtained ψ - function, which is given below

Data used in Fig. 1, the graph of psi function is constructed and shown in Fig. 2.
Figure 2 shows that the proposed function is differentiable and more linear at the center than the other 

existing ψ-function of robust estimators. The proposed ψ-function follows the pattern needed to construct the 
RME. Moreover, the proposed ψ-function provides more weightage to the central values and vice versa.

Dividing the ψ-function by residual “r”, we obtain the corresponding weight function, which is given as

Graph of weight function using the data in Fig. 1, is represented in Fig. 3.
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Figure 3, shows that the proposed weight function has the unique property of robustness with a generalized 
tuning constant ’a’. By increasing the value of ‘a’, we can obtain more redescending estimates. We can control the 
weights of outliers by selecting the value of ‘a’. it is analyzed that if the value of the generalized constant is higher, 
the proposed weight function provides lower the weights of the outliers, and vice versa.
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Figure 1.  The Graph of ρ(ri) Function of Proposed RME w.r.t. Residual (r).
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Figure 2.  Graph of ψ-function for proposed RME w.r.t. residual (r).
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Figure 3.  Graph of Weight Function of Proposed RME w.r.t. Residual (r).
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Graphical comparison of the proposed RME with existing RME
The comparison between the existing RME and the proposed estimator is done by using a graphical representation 
of ψ-functions. The proposed function is continuous differentiable at every point, and it’s ψ-function has more 
linearity at the center of the data than the other existing redescending ψ–functions which enhances the efficiency 
of suggested ME. The graphical comparison of existing and proposed -functions is represented in Fig. 4.

Figure 4 indicates that the suggested psi function is much more linear at the center and more continuous than 
all previously suggested RME. For example, psi function given by Asad Ali gives a weight of approximately one to 
the central values, but weighted values rapidly tend to zero for the lager residuals. The process of weighting the 
outliers approaches zero more rapidly for the estimators proposed by Tukey, Insha, and Qadir, respectively, as 
compared to the proposed psi function. Hence, the proposed RME is more useful and efficient than all existing 
ME.

Practical applications
Two real-life data examples and extensive simulation studies are included in this section to demonstrate the 
performance of the proposed ME. The proposed RME is found to be more efficient than considered estimators.

Example‑1: number of phone calls from Belgium 1950–1973
The first example is taken from the article by  Rousseeuw3, which represents the year-wise number of international 
calls (in tens of millions) from Belgium 1950–1973 (Belgium Statistical Survey) given in Table 1. This data has 
some outliers in the response variable. The years represent the independent variable X, and the numbers of annual 
calls represent the dependent variable Y. Some of the authors,  Qadir9, Ali (2005), and Khalil (2016), have used this 
in their research. The performance of the proposed RME with the considered estimators is presented in Table 2.

Table 2 depicts the performance of OLS and other robust estimators along with our proposed robust estimator 
in terms of estimates of regression coefficient and sum of squares of errors (SSE). The OLS estimates are very 
poor and misleading everywhere within the data due to the presence of outliers with the highest SSE, i.e., 659.44. 
All the remaining ME perform efficiently to minimize the effect of outliers, but our proposed robust estimator 

Figure 4.  Graphical Comparison of Proposed ψ-Function with Well-known ψ-Functions w.r.t. Residual (r).

Table 1.  Data Set of Number of International Calls (in tens of millions) from Belgium.

Years Calls Years Calls

1950 0.44 1962 1.61

1951 0.47 1963 2.12

1952 0.47 1964 11.9

1953 0.59 1965 12.4

1954 0.66 1966 14.2

1955 0.73 1967 15.9

1956 0.81 1968 18.2

1957 0.88 1969 21.2

1958 1.06 1970 4.3

1959 1.2 1971 2.4

1960 1.35 1972 2.7

1961 1.49 1973 2.9
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has the least SSE among all except the LMS estimator. So it is analyzed that the suggested estimator outfits the 
model by giving the least SSE, like the LMS method.

Example‑2: annul average price growth rate in China 1940 to 1948
The data used in this example is taken from  Rousseeuw3.  Insha10 also used this data in his research work on 
robust regression. This data consists of nine values of the annual average growth rates of prices from 1940 to 
1948. The response variable is represented by the annual average growth rate, where years represent the predictor. 
The growth rates are 1.62, 1.63, 1.90, 2.64, 2.05, 2.13, 1.94, 15.50, and 364.00. It means growth rates increased 
by 1.62% in 1940 as compared with 1939, 1.63% in 1941 as compared with 1940, and so on. An exponential 
growth in prices was seen in 1948 due to a budget deficit, the war, and massive government expenses. The last 
two values of the response variable are outliers, as they are very different from other values. The performance of 
the proposed RME with considered estimators is presented in Table 3.

The OLS method is applied along with other robust estimators, including the proposed robust method, on 
the average growth rate increase in China since 1940–1948 to check the relative performance of the proposed 
method with existing robust methods. We have calculated the regression coefficients and SSEs for all methods 
in Table 3 using R-program. A critical analysis of the results obtained shows that the performance of OLS is very 
poor and goes astray throughout the data. It also depicts the sensitivity of OLS towards the outliers, and the SSE 
is highest for the OLS method, which is 78,532.88. All remaining robust estimators perform well to tackle the 
effects of outliers, but among all methods, our proposed robust estimator has a minimum SSE. This means our 
proposed estimator is superior among all the estimators to deal with the data having outliers. One can also use 
real life data set included by Yasin (2021) from the Economic Survey of Pakistan 2017–18.

Simulation study
The validation and reliability of the proposed ME are done by using an extensive simulation study. The efficiency 
of the proposed RME is compared with well-known RME. We have used the following linear model for simulation

yi = α + βxi + ei

Table 2.  Fitting OLS, Existing M-Robust Methods and Proposed RME on Telephone Call Data.

Method

Coefficients

Constant X Values used SSE

OLS  − 26.01 0.504 24 695.44

LMS  − 5.164 0.108 16 0.1313

Andrew (1.5)  − 4.9072 0.1033 16 0.17308

Tukey (3.8)  − 5.2439 0.1102 16 0.13665

Qadir (1.0)  − 5.505 0.1122 16 0.36726

Ali (3.0)  − 5.2092 0.1094 16 0.13404

Insha (4)  − 5.243 0.1102 16 0.1406

Alamgir (3.0)  − 5.2454 0.1102 16 0.14127

Khalil (4.0)  − 5.2343 0.1099 16 0.13863

Proposed (a = 6, k = 3.5)  − 5.5109 0.1094 16 0.13256

Table 3.  Fitting OLS, Existing M-Robust Methods and Proposed RME on Annul Average Price Growth Rate 
in China 1940–1948.

Method

Coefficients

Constant X Values used SSE

OLS  − 1049 24.85 9 78,532.88

LMS  − 2.47 0.102 7 0.69534

Andrew (0.58)  − 2.7542 0.10898 7 0.616687

Tukey (2)  − 2.7535 0.10896 7 0.616652

Qadir (1.0)  − 2.7779 0.1095 7 0.617785

Ali (3.0)  − 2.7792 0.10956 7 0.617851

Insha (1.5)  − 2.6392 0.10618 7 0.615962

Alamgir (3.0) 2.7853 0.1097 7 0.61815

Khalil (2.0)  − 2.7851 0.1097 7 0.618139

Proposed (a = 8, k = 2)  − 2.6486 0.10656 7 0.611112
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where α = 2,β = 1 , Xi ∼ N(20, 10) and ei ∼ N(0, 1) . We have generated a population of 10,000 values by using 
the above model. A sample of 100 values is chosen from the population using the R-Program, and estimates of 
parameters are obtained using the proposed and considered MEs, results are shown in Table 4.

We have studied two cases; in the first case, we estimated parameters by using data with no outliers. In the 
second case, parameters are estimated for the data having 10% contamination of the observations as outliers 
in the y-direction. The ME unfortunately gives poor results when outliers are in the X direction (Norazan,15). 
The results are obtained by averaging the 50,000 iterations of simulated data using a sample size of 100. This 
table shows that for case 1, all methods performed equally well when the data has no outlier. But for case II, 
the estimates provided by the proposed ME are very close to the values of the parameters from which the 
simulation was carried out. The results obtained from the considered estimator are also efficient, except for 
the OLS method. The OLS method again failed to provide reliable estimates when the data had outliers, which 
validated the results obtained in Section “Graphical comparison of the proposed RME with existing RME”. The 
proposed ME is also efficient for small sample sizes and can be used to save money, which is a major purpose 
of sampling and estimation.

Conclusion
The results obtained in previous sections showed that the proposed RME is more general and efficient than 
the considered RME. The proposed ME showed that its behavior is exactly similar to other well-known RMEs, 
and the ψ-function given by the ME is more continuous before it redescends. The proposed estimator is very 
simple, more general, and flexible, and it converges very quickly as compared to previous MEs. The real-life data 
applications showed that the proposed RME is more efficient and has minimum SSE in the presence of outliers. 
It is also revealed from simulation studies that the values of coefficients obtained from the proposed robust 
estimator are very close to parameters and very similar to those of famous robust estimators such as Huber, 
Hample, Andrew, and Tukey. The proposed estimator can also be used to estimate the population mean using 
different sampling techniques for the data with outliers.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request. Further, no experiments on humans and/or the use of human tissue samples involved in 
this study.
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