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Radiomics analysis for distinctive 
identification of COVID‑19 
pulmonary nodules from other 
benign and malignant counterparts
Minmini Selvam 1*, Anupama Chandrasekharan 1, Abjasree Sadanandan 2, Vikas K. Anand 2, 
Sidharth Ramesh 2, Arunan Murali 1 & Ganapathy Krishnamurthi 2

This observational study investigated the potential of radiomics as a non‑invasive adjunct to CT 
in distinguishing COVID‑19 lung nodules from other benign and malignant lung nodules. Lesion 
segmentation, feature extraction, and machine learning algorithms, including decision tree, support 
vector machine, random forest, feed‑forward neural network, and discriminant analysis, were 
employed in the radiomics workflow. Key features such as Idmn, skewness, and long‑run low grey 
level emphasis were identified as crucial in differentiation. The model demonstrated an accuracy of 
83% in distinguishing COVID‑19 from other benign nodules and 88% from malignant nodules. This 
study concludes that radiomics, through machine learning, serves as a valuable tool for non‑invasive 
discrimination between COVID‑19 and other benign and malignant lung nodules. The findings 
suggest the potential complementary role of radiomics in patients with COVID‑19 pneumonia 
exhibiting lung nodules and suspicion of concurrent lung pathologies. The clinical relevance lies in the 
utilization of radiomics analysis for feature extraction and classification, contributing to the enhanced 
differentiation of lung nodules, particularly in the context of COVID‑19.
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Abbreviations
COVID-19  Corona virus disease of 2019
CO-RADS  COVID-19 Reporting and Data System
CT  Computed tomography
HR-CT  High-resolution computed tomography
DICOM  Digital imaging and communications in medicine
GGO  Ground-glass opacities
GLCM  Gray level co-occurrence matrix
GLDM  Gray level dependence matrix
GLRLM  Gray-level run-length matrix
GLSZM  Gray level size zone
HU  Hounsfield units
ITK-SNAP  Insight segmentation and registration toolkit
IDN  Inverse difference normalized
IDMN  Inverse difference moment normalized
LAE  Large area emphasis
LDA  Linear discriminant analysis
L-SVM  Support vector machine with linear kernel
LGLE  Low gray level emphasis
LRLGLE  Long run low gray level emphasis
LGLE  Low gray level emphasis
MD-CT  Multidetector computed tomography
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MLP  Multi-layer perceptron
PACS  Picture archiving and communication system
PET-CT  Positron emission tomography and computed tomography
QDA  Quadratic discriminant analysis
RBF-SVM  Support vector machine with radial basis function kernel
ReLU  Rectified linear unit
RLNN  Run length non-uniformity normalized
RMS  Root mean squared
RT-PCR  Reverse transcription-polymerase chain reaction
SALGLE  Small area low gray level emphasis
SARS-CoV-2  Severe acute respiratory syndrome coronavirus-2
SRE  Short run emphasis
SRLGLE  Short run low gray level emphasis
SVM  Support vector machine
WHO  World Health Organization
ZP  Zone percentage

The corona virus disease of 2019 (COVID-19) is an infection caused by a novel SARS-CoV-2 virus (corona 
virus). Due to the rapid community spread of the virus, on January 30, 2020, the World Health Organization 
(WHO) declared the outbreak a Public Health Emergency of International Concern and on 11 March 2020 
as a  pandemic1. As of 3rd March 2024, there have been 774,834,251 confirmed cases of COVID-19 including 
7,037,007 deaths reported to WHO, and a total of 13.59 billion doses of COVID-19 vaccines have been admin-
istered  globally2. The identification of patients infected by COVID plays a crucial role in controlling the disease 
process and isolation of patients, thereby preventing the further spread of infection. A definitive diagnosis of 
COVID requires a positive reverse transcription-polymerase chain reaction (RT–PCR) test and lateral flow 
immunochromatographic assays which are immunoassay-based techniques that have also been performed in 
detecting SARS-COV-2  antigens3. Chest CT scans in patients with COVID-19 accurately depict the various 
features and extent of involvement, monitor the clinical course, and evaluate the disease severity, progression, 
and  complications4. The primary findings on CT have been reported as ground-glass opacities (GGO), crazy 
paving appearance (GGOs and inter-/intra-lobular septal thickening), air space consolidation, broncho vascular 
thickening, and traction  bronchiectasis5–8. The ground-glass and/or consolidative opacities are usually bilateral, 
peripheral, and basal in  distribution9. Less commonly seen CT findings include mediastinal lymphadenopathy, 
pleural effusions, lung nodules, reverse halo sign, cavitation, pneumothorax, and  pneumomediastinum10.

Studies have also shown that at 3 months after acute infection, a subset of patients will have CT abnormali-
ties that include GGO and subpleural bands with concomitant pulmonary function abnormalities. At 6 months 
after acute infection, some patients have persistent CT changes including residual GGOs seen in the early recov-
ery phase and the persistence or development of changes suggestive of fibrosis and reticulation with or with-
out parenchymal  distortion11,12. Broadly speaking, the etiology of lung nodules is varied and includes benign 
non-neoplastic causes like infections (granulomas, round pneumonia, septic emboli), benign non-infectious 
causes (amyloidoma, subpleural lymph nodules, rheumatoid nodules, Wegner’s granulomatosis), benign tumors 
(hamartoma, carcinoid, neurofibroma, etc.) and malignant neoplasms (primary lung carcinoma, lymphoma, and 
metastasis)13. Lung nodules contribute to a small percentage (3−13 %) of CT manifestations of acute coronavirus 
infection and may occasionally be seen along with other pulmonary  findings14.

Radiomics has recently emerged as a promising tool in the field of medical imaging. It uses high-throughput 
extraction of a large number of quantitative features from radiological images and converts these images into 
mineable data that can be analyzed. This data then contributes to clinical decision support for improved diag-
nostic, prognostic, and predictive  accuracy15. The application of radiomics to the thorax has so far been majorly 
focused on lung cancer. Recently studies have been performed on radiomics in COVID-19 which showed that 
the machine learning-based CT radiomics models may accurately classify COVID-19, helping clinicians and 
radiologists to identify COVID-19-positive cases, distinguish COVID-19 pneumonia vs. other pneumonia, and 
distinction the severity of COVID-19  pneumonia16. However, the role of radiomics in COVID-19 pulmonary 
models has not yet been described. We sought to study the radiomics features of COVID-19 lung nodules and to 
compare these findings with radiomics features of other benign non-COVID-19 lung nodules and malignant lung 
nodules. In summary, radiomics can be used as a powerful tool in modern medicine, as an adjunct to CT and/or 
PET–CT images, in further evaluation of lung nodules/mass lesions to help in clinical decision support and to 
improve diagnostic, predictive, and prognostic accuracy. Thus, radiomics has an important role in cancer stag-
ing, and diagnosis and aids in precision oncology. A preliminary account of this work is presented  elsewhere17.

Materials and methods
A cross-sectional observational study was performed in our department after obtaining prior approval from 
the Institute Ethics Committee. We initially reviewed CT thorax scans of 250 patients with RT-PCR-positive 
COVID-19 infection over one year as detailed in Fig. 1a. Lung nodules were present in 24 patients with COVID-
19 infection of which four patients were eliminated from our study as their CT images were not suitable for 
radiomics analysis. Only patients in whom no other synchronous lung pathology was identified were included. 
The imaging features of COVID-19 lung nodules were studied in the remaining 20 patients and were assessed 
for size, type, margins, location, and the lobe and segment involved, Digital imaging and communications in 
medicine (DICOM) images of these 20 patients were thereafter subjected to segmentation analysis and radiom-
ics post-processing.
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We exclusively examined patients with COVID pneumonia who exhibited solid pulmonary nodules only, 
totaling 20 cases, to ensure similarity with benign and malignant nodules. Our study involved individuals who 
underwent chest CT scans between the 3rd and 6th day after the onset of symptoms (1st week of the disease) and 
who tested positive for COVID-19 infection through RT-PCR. Along with these pulmonary nodules, the other 
common CT findings in these patients typically included ground glass opacities, crazy paving, and consolidation. 
However, our focus for radiomics analysis was solely on these pulmonary nodules.

We reviewed CT thorax of 1200 non-COVID-19 patients as shown in Fig. 1b. Lung nodules of compatible size 
were present in 133 cases. The final diagnosis was available in 97 patients, of whom 44 were benign and 53 were 
malignant nodules. The benign lesions were diagnosed based on histopathological diagnosis or correlation with 
clinical features and follow-up as per the Fleisher’s Society  guidelines18. The final diagnosis in primary malignant 
lesions was arrived at based on histopathological diagnosis, and in metastasis based on the histopathological 
diagnosis of the lung nodule or primary tumor. The DICOM images of 40 benign nodules and 50 malignant 
nodules were subjected to segmentation analysis. Radiomics post-processing was done in 39 benign nodules 
and 49 malignant nodules. Radiomics analysis was not feasible in two patients. Subsequently, the radiomics 
texture analysis of COVID-19 lung nodules was compared separately with each radiomics analysis of benign 
non-COVID-19 benign lung nodules and malignant lung nodules.

The distribution of cases included in the final radiomics analysis included, n = 24 (22%) metastatic pulmo-
nary nodules, n = 25 (23%) primary malignancies, n = 39 (36%) non-COVID benign nodules, and n = 20 (19%) 
COVID-related nodules (Fig. 2). The final diagnosis was available in all these nodules. n = 39 of the pulmonary 
nodules were found to be other benign, while n = 49 were malignant. The benign lesions were diagnosed based 
on histopathological diagnosis or correlation with clinical features and follow-up as per the Fleisher’s Society 
guidelines. The final diagnosis in primary malignant lesions was arrived at based on histopathological diagnosis, 
and metastasis was based on the histopathological diagnosis of the lung nodule or primary tumor. Only patients 
in whom no other synchronous lung pathology was identified were included to prevent overlap of pathologies. 
Patients with subsolid pulmonary nodules and Nodules with calcification were excluded from the study to com-
pare purely solid pulmonary nodules. Of the other benign lesions (n = 39) analyzed using radiomics, 36% were 
septic emboli, 28%were benign lesions monitored long-term per Fleishner society guidelines, and the remain-
der comprised sarcoidosis, inflammatory conditions, pulmonary tuberculosis, benign carcinoid, hematoma, 
hydatid disease, Sjogren’s syndrome, and Wegner’s granulomatosis cases, as shown in Supplementary Informa-
tion (Fig. S1). Among the malignant nodules (n = 49), there were 25 cases of primary lung malignancies and 24 
cases of metastases. Primary lung malignancies consisted of adenocarcinoma (52%), squamous cell carcinoma 
(40%), and other types, as depicted in Supplementary Information (Fig. S2). The predominant source of metas-
tases was breast carcinoma, with the remainder originating from various other primary organs, as depicted in 
Supplementary Information (Fig. S3).

(a)

(b)

n = 250 CT Thorax (RT-PCR confirmed COVID infec�on)

24 cases - Lung nodules

4 excluded (not 
appropriate

for radiomics analysis)

Total number of cases - 
20

n = 1200 (Non-COVID) CT 
thorax
Total cases with comparable size 

nodules = 133

Total cases with Final diagnosis = 97

BENIGN; n = 44 MALIGNANT; n = 53

Total cases Segmented; n = 40 Total cases Segmented; n = 50

Radiomics analysis 
done; n = 39

Radiomics analysis
done; n 

= 49

Figure 1.  (a) Flow diagram of the study of COVID-19-infected cases. (b) Flow diagram of the study of non-
COVID-19-infected cases.
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CT acquisition
HRCT examinations were performed using one of the following multidetector computed tomography (MDCT) 
scanners: Phillips-brilliance 16 (Philips medical systems, Cleveland); GE EVO evolution 128 slices (GE health-
care, Princeton); and Siemens biograph horizon (Siemens AG, Munich). HR-CT images were obtained during 
breath-holding with the following parameters: 120 kV, 200 mA. The section thickness and reconstruction inter-
vals were 0.65–0.80 mm. The CT images were sent to a picture archiving and communication system (PACS) to 
be interpreted at workstations.

Segmentation
The segmentation of the DICOM images of the pulmonary nodules, a critical initial step for accurate feature 
extraction, was performed manually by an expert radiologist using Insight Segmentation and Registration Toolkit 
(ITK-SNAP)  software19 and was verified by three radiologists independently. The steps described above are 
shown in Figs. 3 and 4. By relying on the expert radiologist, we could delineate the nodules with a high degree 
of precision, particularly in terms of their shape and texture characteristics, which are crucial for subsequent 
radiomic analysis. Following the segmentation, we extracted radiomic features from the 3D representations of the 
nodules. The extraction process focused on a comprehensive set of features, including but not limited to, shape, 
size, intensity, texture, and wavelet features. The emphasis was on capturing a broad spectrum of information that 
reflects the underlying pathology and can be correlated with clinical outcomes. By combining expert radiological 
input with radiomic feature extraction techniques, we aimed to mitigate some of the challenges associated with 
parametric texture feature extraction.

Radiomics analysis
Segmented lung nodules were used to extract different types of features. These features were classified into three 
categories: shape features (14), first-order features (18 features), and texture-based features (69 features). Texture-
based features were of four types, namely gray level co-occurrence matrix (GLCM) features (24 features)20, 
gray-level run-length matrix (GLRLM) features (16 features)21, gray level size zone (GLSZM) features (16 fea-
tures)15,22,23 and gray level dependence matrix (GLDM) features (13 features). Each radiomics feature was given 
a feature rank based on a random forest classifier. Out of 101, the top 10 features were selected for classification 
algorithms according to Anand et al.24. Figures 5 and 6 show the top 10 selected radiomics features with rank, and 
Tables 1 and 2 summarize their feature importance values. Several classification algorithms, such as SUPPORT 
VECTOR MACHine (SVM)25, multi-layer perceptron (MLP), naive Bayes, discriminant analysis, and decision 
 tree26, were applied to selected feature matrices to classify benign and malignant nodules. SVM with the linear 
kernel (L-SVM) and radial basis function kernel (RBF–SVM) were used as SVM variants. Linear discriminant 
analysis (LDA) and quadratic discriminant analysis (QDA) were used in the category of discriminant analysis. 
We have also experimented with MLP classifiers for different hyperparameters which include activation, layers/
number of neurons, and learning rate. To evaluate the performance of classifiers, confusion matrices were drawn 
on the test set. Accuracy, sensitivity, specificity, precision, and F1-measure were calculated for each classifier.

While many state-of-the-art approaches in medical image analysis today do use deep learning methods, in 
our experiments they showed poor performance with an accuracy of at most 55%. We evaluated models such 
as ResNet, DenseNet, and Vision Transformer for the same but due to the limited data available, the models 
showed poor  performance27. The radiomic features provide a more robust basis for training on limited data as 
compared to the deep learning approaches.

Ethical clearance
The study was performed after obtaining prior approval from the Institutional Research Ethics Committee—Sri 
Ramachandra Institute of Higher Education and Research (CSP–MED/19/SEP/56/122) and all methods were 
performed by relevant guidelines and regulations.

Figure 2.  Case distribution of the lung nodules included in the study.
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Informed consent
Informed consent was obtained from all subjects and/or their legal guardians involved in the study.

Results
From our dataset of 108 cases, 20 were lung nodules in COVID-19 pneumonia, 39 cases were benign non-
COVID-19, and 49 were malignant nodules. The workflow of the experiment is shown in Fig. 5. The data was 
split into the train set and test set in the ratio of 80:20. Classifiers were trained on training sets, and test sets were 
used to check the performance of classifiers on unseen data sets. Data sets were shuffled and split randomly. 
In this fashion, five data sets were created and used for training and testing classifiers. The performance of the 
classifiers was obtained from the confusion matrix. Accuracy, sensitivity, specificity, precision, and F1-score 
have been used as metrics for different classifiers. The mean of different matrices was taken. Confusion matrices 
were obtained on the train and test data set. Earlier, we conducted a similar radiomics-based model aimed at 
distinguishing between benign and malignant pulmonary  nodules28,29.

COVID‑19 vs non‑COVID‑19 benign lung nodules
Our study showed that the top 10 features of importance (in decreasing order of importance; Fig. 6a) in differ-
entiating between COVID-19 and other benign non-COVID-19 lung nodules were short run emphasis (SRE), 
inverse difference normalized (IDN), low gray level emphasis (LGLE), elongation, run length non-uniformity 
normalized (RLNN), small area low gray level emphasis (SALGLE), short run low gray level emphasis (SRLGLE), 

Figure 3.  A 57 year-old male patient with RT–PCR has proven COVID-19 pneumonia. (a,b) The axial section 
of the CT thorax in the lung window and soft tissue window shows a subpleural soft tissue nodule in the 
posterior segment of the left lower lobe. (c) Creation of ROI for segmentation. (d) 2D-segmented nodule. (e) 
3D-volumetric rendering of the nodule. (f) Follow-up chest CT after 6 months revealed partial resolution of the 
nodule.
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long run low gray level emphasis (LRLGLE), skewness, and inverse difference moment normalized (IDMN). 
After experimenting with different hyperparameters in MLP Classifier few hyperparameter combinations gave 
the best result. We got an accuracy of 83% on this dataset (Supplementary Information; Table S1). The sensitivity 
and specificity of our model were 83% and 88%, respectively whereas our model’s precision and F1 score were 
83% and 83%, respectively, as shown in Table 1.

COVID‑19 vs malignant lung nodules
We observed that the top 10 features of importance (in decreasing order of importance; Fig. 6a) in differentiating 
between COVID-19 and malignant lung nodules were root mean squared (RMS), mesh volume, zone percent-
age (ZP), low gray level emphasis (LGLE), short run low gray level emphasis (SRLGLE), maximum 2D diameter 
(column), cluster prominence, short run emphasis (SRE), large area emphasis (LAE), and maximum probability. 
We experimented with different models as well as did a hyperparameter search on the MLP Classifier and the 
MLP Classifier with tanh activation with a learning rate of 0.01 gave the best result. We got an accuracy of 86% 
on this dataset. (Supplementary Information; Table S2) The sensitivity and specificity of our model were 86% 
and 90%, respectively, whereas the precision and F1 scores of our model were 86% and 86%, respectively, as 
shown in Table 2.

Figure 4.  A 21 year-old lady with cough and hemoptysis. HPE: benign carcinoid tumor. (a,b) Axial section of 
CT thorax in lung window and soft tissue window showing a mass lesion in the posterior segment of the right 
lower lobe. (c) Creation of ROI for segmentation. (d) 2D segmented mass lesion. (e) 3D volumetric rendering of 
the mass lesion.
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Discussion
We analyzed HR-CT thorax scan findings in 250 patients with RT–PCR proved COVID-19 infection. All CT 
scans were done between the 3rd to 10th day of the onset of symptoms. Lung nodules were identified in 24 of 
these patients (9.6 %), of which, four cases were excluded as radiomics analysis could not be performed on 
them due to technical issues. The age distribution of our study participants ranged from 24–75 years with the 
largest number seen in the 5th decade of life. 55 % of our cases were female patients and the remainder were 
male patients. Solitary nodules were seen in seven cases and multiple nodules in 13 cases. The majority of these 
nodules were subpleural in distribution (n = 17) with the rest being centrilobular (n = 2) or perifissural (n = 
1). All nodules were well-defined and ranged in size from 2 to 13 mm with a mean diameter of 5 mm. They 
were predominantly located in the left lower lobe (35%) followed by the right upper lobe (25 %) left upper lobe 
(20%) and the right middle lobe (20%) (n = 14) cases were solid nodules and the rest (n = 6) were partly solid. In 
addition to nodules, ground-glass opacities were seen in all 20 patients, consolidation in four, and crazy paving 
in two patients. The CT COVID-19 reporting and data system (CO-RADS) score was CORADS-6 (RT–PCR-
proven cases). The radiomics analysis of these lung nodules in COVID-19 cases was compared with the benign 
and malignant lung nodules of similar sizes.

For this study, we used a dataset of 108 lung nodules of 3–30 mm size of which 20 were lung nodules in 
COVID-19 pneumonia, 39 were benign (non-COVID-19) lung nodules, 49 were malignant lung nodules, and 
the remainder were COVID-19 nodules from RT-PCR proved cases of COVID-19 pneumonia and two differ-
ent experiments were performed. In the first experiment, the radiomics features of COVID-19 lung nodules 
and other non-benign lung nodules were compared and in the second experiment, the Radiomics features of 
COVID-19 lung nodules and malignant lung nodules were compared. In each of these experiments, the data was 
split into the train set and test set in the ratio of 80:20. Classifiers were trained on training sets, and test sets were 
used to check the performance of classifiers on unseen data sets. Data sets were shuffled and split randomly. In 
this fashion, five sets of data were created and used for training and testing classifiers. The performance of the 
classifiers was obtained from the confusion matrices. Accuracy, sensitivity, specificity, precision, and F1-score 
were used as metrics for different classifiers. The mean of different metrics has been taken. Confusion matrices 
were obtained on the train and test data set. These are shown in Figs. 5 and 6. Radiomics analysis was done 
separately for COVID-19 lung nodules and compared with non-COVID-19 benign lung nodules and malignant 
lung nodules.

Our study showed that the top 10 features of importance (in decreasing order of importance) in differenti-
ating between COVID-19 and other benign non-COVID-19 lung nodules were SRE, IDN, LGLE, elongation, 
RLNN, SALGLE, SRLGLE, LRLGLE, skewness, and IDMN. After experimenting with different hyperparam-
eters in MLP Classifier few hyperparameter combinations gave the best result. We got an accuracy of 83% on 
this dataset. The sensitivity and specificity of our model were 83% and 88%, respectively whereas our model’s 
precision and F1 score were 83% and 83%, respectively, as shown in Table 1. A list of important features in 

Raw Dataset (DICOM Images)

Conversion of DICOM to NIFTI

Image intensity normalisa�on (0 - 225)

Crea�on of ROI by mul�plica�on of images and
corresponding mask

Radiomic feature extrac�on and feature selec�on

Machine learning algorithms for classifica�on

Figure 5.  Radiomics workflow.
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Figure 6.  (a) Ten important features used for the classification of COVID-19 and non-COVID-19 benign lung 
nodules. (b) Comparison plot of the most prominent feature.

Table 1.  COVID-19 vs non-COVID-19 Benign lung nodules-different performance metrics for different 
classifiers obtained on the test data set. Significant values are given in bold.

Classifiers Accuracy Sensitivity Specificity Precision F1_score

Nearest neighbours 0.693 0.6 0.750 0.60 0.60

Linear SVM 0.643 0.2 0.889 0.50 0.29

RBF SVM 0.615 0.0 1.000 0.00 0.00

Decision tree 0.692 0.6 0.750 0.60 0.60

Random forest 0.714 0.6 0.778 0.60 0.60

AdaBoost 0.714 0.6 0.778 0.60 0.60

Naive Bayes 0.643 0.8 0.556 0.50 0.62

LDA 0.714 0.4 0.889 0.67 0.50

QDA 0.769 0.6 0.875 0.75 0.67

MLP classifier 0.83 0.83 0.88 0.83 0.83
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distinguishing COVID-19 lung nodules and other benign lung nodules was extracted. Figure 6 shows differ-
ent features according to their ranks. Similarly, a separate comparative radiomics analysis was done separately 
for COVID-19 lung nodules and compared with malignant lung nodules. We observed that the top 10 features 
of importance (in decreasing order of importance) in differentiating between COVID-19 and malignant lung 
nodules were RMS, mesh volume, ZP, LGLE, short run low gray (SRLGLE), column, cluster prominence, SRE, 
LAE, and maximum probability.

We experimented with different models as well as did a hyperparameter search on the MLP classifier and 
the MLP Classifier with tanh activation with a learning rate of 0.01 gave the best result. We got an accuracy of 
86% on this dataset. Our model’s sensitivity, specificity, precision, and F1 score were 86%, 90%, 86%, and 86%, 
respectively, as shown in Table 2. A list of important features in distinguishing COVID-19 lung nodules and 
malignant lung nodules was extracted. Figure 7 shows different features according to their ranks. Figures 3 and 
4 illustrate the representative cases of the data. It is imperative to recognize that the dataset employed in our 
experiments is relatively small since the incidence covid nodules are relatively  rare14. This limitation necessitates 
a cautious interpretation of our results. The restricted dataset size may compromise the statistical robustness of 
our most effective model. However, the methodology and workflow we’ve established remain valuable. They can 
be further validated and possibly refined through application to larger, more diverse datasets and by conducting 
multicentric trials. Such steps would help in assessing the generalizability and reliability of our findings across 
broader contexts.

We had taken the random forest classifier, as it was giving pertinent features. These top 10 features are crucial 
for distinguishing between COVID and non-benign pulmonary nodules, as well as between COVID and malig-
nant pulmonary nodules, highlighting predominantly variations in density and texture. Rather than assessing 
individual pixel variations in Hounsfield units (HU), these metrics evaluate the spatial distribution of areas with 
specific densities (as indicated by HU values). This approach offers clinical significance by providing insights into 
the overall tissue organization and characteristics that are not visible to the naked eye. By identifying regions 
with similar densities and analyzing the texture based on the size and intensity of these regions, these features 
offer valuable information about macroscopic tissue patterns, aiding in clinical decision-making, radiological 
diagnosis, and treatment planning.

Conclusion
Lung nodules, though less commonly seen, are one of the imaging manifestations of coronavirus infection. They 
are generally small in size and subpleural in location. We developed a radiomics model that showed potential 
as a noninvasive diagnostic method for accurately differentiating COVID-19 lung nodules from benign non-
COVID-19 lung nodules and malignant lung nodules. Our study showed that the top 10 features of importance 
(in decreasing order of importance) in differentiating between COVID-19 and other benign non-COVID-19 
lung nodules were SRE, IDN, LGLE, elongation, RLNN, SALGLE, SRLGLE, LRLGLE, Skewness, and IDMN. 
Of the various classifiers that were used for machine learning algorithms, after experimenting with different 
hyperparameters in MLP Classifier few hyperparameter combinations gave the best result. We got an accuracy 
of 83% on this dataset. The sensitivity, specificity, precision, and F1 score of our study were 83%, 88%, 83%, and 
83% respectively in differentiating between COVID-19 and other benign non-COVID-19 lung nodules.

We have also observed that the top 10 features of importance (in decreasing order of importance) in differen-
tiating between COVID-19 and malignant lung nodules were RMS, mesh volume, ZP, LGLE, short run low gray 
(SRLGLE), column, cluster prominence, SRE, LAE, and maximum probability. We experimented with different 
models as well as did a hyperparameter search on the MLP classifier and the MLP classifier with tanh activation 
with a learning rate of 0.01 gave the best result. We got an accuracy of 86% on this dataset. Our model’s sensitiv-
ity, specificity, precision, and F1 score were 86%, 90%, 86%, and 86%, respectively, in differentiating between 
COVID-19 and malignant lung nodules.

In summary, radiomics can be used as a powerful tool in modern medicine, as an adjunct to CT and/or 
PET–CT images, in further evaluation of lung nodules, and to help in differentiating between COVID-19 lung 
nodules and other benign non-COVID-19 and malignant nodules. This in turn would help in clinical decision-
making and improve diagnostic, predictive, and prognostic accuracy. Radiomics, unlike biopsies, is non-invasive, 

Table 2.  Experiment 2: COVID-19 vs malignant lung nodules-different performance metrics for different 
classifiers obtained on the test data set. Significant values are given in bold.

Classifiers Accuracy Sensitivity Specificity Precision F1_score

Nearest neighbours 0.688 0.40 0.82 0.50 0.44

Linear SVM 0.733 0.20 1.00 1.00 0.33

RBF SVM 0.650 0.17 0.91 0.50 0.25

Decision tree 0.750 0.60 0.82 0.60 0.60

Random forest 0.688 0.40 0.82 0.50 0.44

AdaBoost 0.650 0.50 0.73 0.50 0.50

Naive Bayes 0.625 0.80 0.55 0.44 0.57

LDA 0.800 0.60 0.90 0.75 0.67

QDA 0.670 0.40 0.80 0.50 0.44

MLP classifier 0.86 0.86 0.90 0.86 0.86
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three-dimensional, and provides information regarding the entire nodule. It also helps in reducing the number 
of benign biopsies. With more multicentric trials and standardization, radiomics shortly will have an important 
complementary role in lung nodule evaluation, and diagnosis which can aid in selecting patients for biopsies 
and guiding treatment options.

Data availability
The datasets generated or analyzed during the study are available from the corresponding author upon reason-
able request.
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Figure 7.  (a) Ten important features used for the classification of COVID-19 and malignant lung nodules. (b) 
Comparison plot of most prominent features.
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