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Detecting defects that reduce 
breakdown voltage using machine 
learning and optical profilometry
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Karl D. Hobart 1 & Travis J. Anderson 1

Semiconductor wafer manufacturing relies on the precise control of various performance metrics 
to ensure the quality and reliability of integrated circuits. In particular, GaN has properties that 
are advantageous for high voltage and high frequency power devices; however, defects in the 
substrate growth and manufacturing are preventing vertical devices from performing optimally. This 
paper explores the application of machine learning techniques utilizing data obtained from optical 
profilometry as input variables to predict the probability of a wafer meeting performance metrics, 
specifically the breakdown voltage  (Vbk). By incorporating machine learning techniques, it is possible 
to reliably predict performance metrics that cause devices to fail at low voltage. For diodes that 
fail at a higher (but still below theoretical) breakdown voltage, alternative inspection methods or a 
combination of several experimental techniques may be necessary.
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There has been a growing interest in using machine learning (ML) for semiconductor device design and optimiza-
tion in recent years due to the availability of larger datasets generated by semiconductor  foundries1. However, due 
to the massive amount of data required to train these models, ML’s uses are limited for less mature semiconductor 
material systems. Wide bandgap semiconductors fall into this category. Furthermore, in the GaN and  Ga2O3 
material systems the substrate manufacturing and epitaxial growth processes are yet to be optimized, and the 
defects causing them to behave sub-optimally are often unknown.

Even with the limited datasets available to date, utility in studying wide bandgap semiconducting datasets with 
ML has been reported. Success has been demonstrated using computationally generated datasets from TCAD 
 simulations2,3, which can predict CV and IV behavior of  Ga2O3 Schottky Barrier  Diodes4–6. Some experimental 
ML models have been used to predict transistor current and switching voltage from gate currents and input 
 voltages7. Models have been trained to classify the constituent chemical compounds of a semiconductor by using 
 photoluminescence8. ML has also been used to predict the quality of GaN Ohmic contacts from the fabrication 
 recipe9. Previous work has shown that we can predict low voltage properties of vertical GaN diodes with over 
75% accuracy from optical profilometry data using both convolutional neural  networks10 and simpler  models11 
(logistic  regression12, decision  tree13, and K nearest  neighbor14 (KNN)). This work expands on this by using high 
voltage breakdown as the quality metric and discusses the possible defects causing reduced diode performance.

Different defects do not have an equal effect on the semiconducting properties and devices’ performance. In 
SiC, for example, it was found that basal plane dislocations significantly impact vertical devices while threading 
edge dislocations are  benign15. For GaN devices, the cause of electrical performance drop is not always known, 
though there has been some successful research in identifying degradation and failure mechanisms. It has been 
shown that non-homogeneous conductivity can degrade performance of vertical GaN  devices16, the diffusion 
of Mg and H into the active region of GaN LEDs can degrade  performance17, and threading dislocations have 
been shown to increase leakage current, reduce breakdown, increase ON resistance, and reduce the switching 
 frequency18. Many types of defects affect the crystal structure in GaN, with a significant proportion discernable 
via observable morphological defects on the surface and small defects in the substrate that often extend through 
the epitaxial layers during growth. Hence, optical profilometry provides a data-rich input for developing ML 
models for wafer  screening11,19–22. This study involved the collection of optical profilometry data from seven 
GaN PiN diode wafers by employing a combination of data pre-processing and supervised machine learning 
algorithms to develop predictive models for different targeted performance metrics.
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Experimental details
GaN was grown homoepitaxially using MOCVD in a Taiyo Nippon Sanso SR4000HT reactor at atmospheric 
pressure. The epitaxial structure consisted of the following layers: 8 µm Si-doped (n ~  1016  cm−3) layer, 500 nm 
p-GaN layer ([Mg] ~  1018–1019  cm−3), and 15 nm capping layer ([Mg] >  1020  cm−3) (see Fig. 1 for diagram). The 
sample was annealed to remove hydrogen, as hydrogen complexes with magnesium are known to prevent p-layer 
conductivity.

To obtain input data for the model, optical profilometry was used to create a 3D image of the surface of the 
wafer before any lithography steps were performed. Measurements were taken on a 2-inch wafer using a Zygo™ 
NewView 7300 optical profilometer with a 2.5 × magnification, giving an x–y resolution of 4.4 µm/pixel. Several 
images were stitched together to map the full wafer, using Zygo’s stitching algorithm in their MetroPro software 
with 25% image overlap to minimize stitching artifacts.

The input data for this program consisted of four parameters: the root mean squared (RMS) roughness, the 
number of bumps and pits, the size of the devices, and the distance from the center of the wafer. The first two 
parameters are extracted from optical profilometry in the same manner as they were in our previous  research11,23. 
The RMS roughness was extracted using the standard RMS =

√

1
N

∑N
i=1

(

Zi − Zavg
)2 , and the number of bumps 

and pits (called outliers in this work) were counted by determining which points fell outside of a Gaussian dis-
tribution using a generalized ESD  function24. On all wafers these calculations were done on 325 µm × 325 µm 
squares with all data within 2 mm of the diode considered in the machine learning models, as discussed later.

Across the seven wafers, 3912 PiN diodes were fabricated using the following process (see Fig. 1 for diagram): 
The p-layer was isolated by N implantation. A guard ring structure was fabricated using the design optimized 
in our previous  research11,25,26. An outer trench isolation layer was produced using  Cl2 etching. Pd (20 nm)/Pt 
(10 nm)/Au (80 nm) metal contact pads were used as a topside contact. Ti (20 nm)/Al (120 nm)/Ni (40 nm)/Au 
(80 nm) was used as a backside contact.

To confirm the diode-like behavior, low voltage (− 10 to 10 V) IV sweeps were performed using a Keithley 
4200-SCS semiconductor parametric analyzer to ensure that the diodes blocked in reverse bias and turned on 
in forward bias. This behavior was observed in > 99% of the diodes. High voltage breakdown measurements 
were taken with the Keithley 237 or 2657A High Power System Source Meter to 1000 V in reverse bias, with the 
distribution of breakdown voltage shown in Fig. 2a. Some of the diodes that did not break down before 1000 V 
were measured at higher voltages in a vacuum system, and avalanching breakdown behavior was verified to 
match the theoretically expected breakdown  voltage25,26.

Results and discussion
For every diode, the breakdown voltage was measured at the datum where the reverse leakage current was about 
1 µA. From the histogram plot showing the distribution of diode data in Fig. 2a, the defects causing a drop in 
breakdown can be classified into four categories: 0th order defects which cause catastrophic failures at low volt-
ages, 1st order defects which greatly diminish the performance, 2nd order defects which mildly diminish the 
performance, and higher order defects which have no noticeable effect on breakdown and will not be discussed 
in this paper, though they may affect other properties of the diodes such as long term reliability. Example curves 
showing the reverse bias behavior with different defect orders are shown in Fig. 2b. Though the boundaries 
between the defect orders may be arbitrary for this study, we will set them as:  VBk < 50 V contains a 0th order 
defect, 50 V ≤  VBk < 600 V contains a 1st order defect, and 600 ≤  VBk < 1000 V contains a 2nd order defect. These 
classifications were selected based on regions with large clusters of these defects. The 0th order defects have a 
clustering close to  VBk = 10 V breakdown. 2nd order defects are clustered around  VBk = 800 V breakdown, with 
1st order defects occurring in the large gap between these numbers, and the “good device” category representing 
the large number of defects with breakdown above 1000 V. For each wafer screening technique, it is important 
to understand the types of defects it can detect and to which category they belong.

To correlate the diode performance with optical profilometry, a 2D cluster plot was constructed for the 
variables extracted from optical profilometry with the breakdown voltage (see Fig. 3). From this cluster plot, 
three regions containing at least 1000 devices are highlighted: Devices in Region 1 have a few outliers and a low 
RMS, Region 2 contains a moderate number of outliers and a higher RMS, while region three is very rough with 
many outlier points. Comparing the breakdown voltage across the three regions (see Table 1), there is a strong 

Figure 1.  A side view (a) and a to-scale top view (b) of the diode design are shown. The displayed figure 
represents a device with anode area of 0.116 ×  10–2  cm−2 though areas ranging from 0.0911 ×  10–2 to 0.560 ×  10–

2  cm−2 are included in this study.
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Figure 2.  (a) A histogram plot showing the distribution of breakdown voltages for all 3912 diodes in this work. 
Using the breakdown voltage, the diodes were divided into four categories related to the type of defects present: 
0th, 1st, 2nd, and only higher order defects (Good Devices). (b) Example curves from the histogram plot in (a).

Figure 3.  Cluster plot showing the relationship between the outliers (bumps and pits) and the RMS roughness 
from the optical profilometer related to the breakdown voltage of the diode. Three regions are highlighted on the 
plot: Region 1 contains the highest concentration of devices with correct current–voltage response, and Region 3 
contains the highest concentration of devices with higher order defects. The number of devices containing each 
level of defect in each region is summarized in Table 1.
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correlation between the odds of a 0th or 1st order defect occurring and the roughness of the region, as about 
90% of the devices in this region do not contain a 0th or 1st order defect in Region 1, with the probability of a 
0th or 1st order defect occurring increasing by 4× and 2× respectively in Region 2. In Region three the odds of 
a 0th order defect are the greatest, while the probability of a 1st order defect is consistent with that of Region 2. 
As for 2nd order defects, the results are less conclusive as the correlation is much weaker. There is a small but 
noticeable increase in probability moving from Region 1 to Region 2. Though there appears to be a drop moving 
to Region 3, it should be noted that a 0th or 1st order defect would overshadow a 2nd order defect leading to the 
illusion of a drop. The observed correlation indicates that the outliers detected, and the RMS are good variables 
to include in a machine learning model predicting the quality of diodes. It’s important to note that device size 
and distance from the center are also important variables, with decision trees models frequently split based on 
these parameters at the second level. This probably because smaller diodes are less likely to encounter critical 
defects due to their reduced size, and defects are more commonly found towards the wafer’s edge. However, it 
was rare that decision tree models split on these as the root node and the models would likely still be accurate 
without them as due to the strong correlation between breakdown voltage and optical profilometry parameters 
(RMS and number of outliers) shown in Fig. 3.

The data were analyzed with machine learning using the four aforementioned input variables and  VBk as the 
output variable. Four machine learning models were used: Decision Tree, K-Nearest Neighbors (KNN), Logistic 
Regression, and 2 Layer Neural Network with 2 neurons per layer. The models were optimized using a hyperpa-
rameter  search27. The number of devices used in this study (3912) is too low to do a regression analysis to predict 
the exact breakdown voltage, so a binary pass/fail cutoff point was used instead. To explore the validity of each 
cutoff point, several possible values were tested, and the effectiveness of each model was evaluated using three 
parameters: the accuracy of the model (Fig. 4a), the F1 value (Fig. 4b), and the area under the receiver operating 
characteristic curve (ROC-AUC) (Fig. 4c). These values were extracted by training the four machine learning 
models on 80% of the data chosen randomly. The remaining 20% of the data was used to test the accuracy of 
the models. This was performed over 100 times at each cutoff voltage with new random sorting of the train 
and test data each time. The average values are reported in Fig. 4. The accuracy was determined by measuring 
the probability of a True Positive (TP)  (VBk > Cutoff correctly predicted) or True Negative (TN)  (VBk ≤ Cutoff 
correctly predicted) occurring. To ensure the model could predict both positive and negative values well, the 
Positive Predictive Value ( PPV = TP/(TP + FP) ) and the Negative Predictive Value ( NPV = TN/(TN + FN) ) 
with FP and FN being False Positives  (VBk > Cutoff falsely predicted) and False Negatives  (VBk ≤ Cutoff falsely 
predicted) were plotted along with the accuracy in Fig. 4a. The plot shows that although the accuracy is fairly 
consistent with a chosen cutoff value, there is a high FP rate when the cutoff > 850 V and a high FN rate when 
the cutoff < 150 V. A good cutoff value appears to be around 600 V as the Accuracy, PPV, and NPV are all at least 
80% at that point. This is around the boundary used in this study to classify diodes as having a 0th or 1st order 
defect but not a 2nd order defect. The F1 and the ROC-AUC values are ML metrics for measuring the ability of 
the models to sort values. For F1 values, about 0.7 is often considered good with 1 being perfect prediction and 
0 being no better than random. The ROC-AUC values of 0.8 or higher means the model is excellent at sorting 
in binary prediction methods, with 0.5 being no better than  random28. These values are both excellent at cut-
offs < 700 V, although a substantial decrease begins once a significant percentage of devices with only 2nd order 
defects are classified as passing. At low cutoff voltages, these values are still high despite the low NPV because 
it is compensated by a high PPV.

Since the main objective of the ML models is to screen wafers, it is important to test the accuracy of this model 
at predicting the characteristics of a new wafer in the series. To test this, the ML models were trained using 6 of 
the 7 wafers, and the remaining wafer was used as a test. The yield was predicted by averaging the probability of 
a device having  VBk > cutoff. This was tested three times at cutoff voltages of 50 V, 600 V, and 950 V breakdown 
shown in Fig. 5a–c. As an error measurement with the method, the RMS error = 

∑

i

√

(YExp_i − YPred_i)
2/N 

was calculated with YExp_i being the experimental yield, YPred_i being the ML predicted yield, and N being the 
number of wafers = 7. From the results in Table 2, similar errors are shown with a 50 V and 600 V cutoff with the 
choice of ML model having little impact, but the value more than doubles when the cutoff voltage is set to 950 
V. Additionally, when choosing a 50 V cutoff or 600 V cutoff for the breakdown voltage, the four ML models 
usually predict similar yields, which is close to the experimental result in 6 of the 7 wafers. The exception to this 
rule is wafer 1; however, it is possible that errors in the fabrication reduced the experimental yield causing a large 
overprediction in yield. When choosing a 950 V cutoff, only 1 of the 7 wafers is accurately predicted.

The results from this paper provide insights into the types of defects responsible for a reduction in breakdown. 
This study used primarily optical profilometry results as input variables, as it is effective at detecting extended 
defects. Defects that cause a large drop in breakdown voltage likely extend though large portions of the drift layer 
and the p-layer; therefore, the 0th and 1st order defects could be caused by imperfect surface morphologies on 

Table 1.  The number of defects of each order in the regions shown in Fig. 3: 0th order  VBk < 50 V, 1st order  VBk 
50–600 V, 2nd order  VBk 600–1000 V, and good devices with only higher order defects  (VBk ≥ 1000 V).

Defect order Region 1 Region 2 Region 3

0th order 78 5.3% 239 20.5% 311 35.3%

1st order 71 4.8% 134 11.5% 117 13.3%

2nd order 592 40.3% 625 53.7% 364 41.4%

Good device 727 49.5% 166 14.3% 88 10.0%
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the substrate which propagate through the epitaxial layers during MOCVD growth. The 2nd order defects are 
more likely to be point defects or short-range extended defects as they can cause a smaller drop in breakdown 
by reducing electron mobility and creating a non-uniform electric field in the epilayers but won’t likely extend 
through the samples and won’t be detected on the surface. This illustrates why the machine learning models do 
well when detecting 0th and 1st order defects but falter with 2nd order defects. Incorporating input variables 
from spectroscopic and x-ray techniques is anticipated to enhance the model’s capability to detect 2nd order 
defects as well.

Conclusion
In conclusion, GaN PiN wafers were successfully fabricated using MOCVD, and PiN diodes were created follow-
ing an optical profilometry study that was employed to comprehensively map the RMS roughness and identify 
the locations of bumps and pits, which are considered outliers as they deviate from a Gaussian distribution. 
High voltage reverse bias measurements of the breakdown voltage have demonstrated that the diodes can be 

Figure 4.  The three plots depict the prediction accuracy, including the Positive Predictive Value (PPV) and 
Negative Predictive Value (NPV) of the best model at each point (a), F1 value (b), and ROC-AUC Score (c), 
show the quality of the machine learning models vs cutoff voltage. A noticeable drop in quality occurs around a 
700 V cutoff value.
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Figure 5.  The experimental vs ML model yield for all seven wafers in this study is show for pass/fail cutoff of 
50 V (a), 600 V (b), and 950 V (c) representing 0th, 1st, and 2nd order defect detection. The RMS error for all 
four models at all cutoffs is shown in Table 2.
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classified into four distinct categories. These categories encompass the presence of 0th order defects, which may 
lead to catastrophic failures, as well as 1st order defects that result in a significant reduction in breakdown per-
formance. Additionally, the study identified 2nd order defects associated with a milder decrease in breakdown 
and, intriguingly, the possibility of well-functioning devices with potential higher order defects, though these 
extend beyond the scope of this investigation. Correlating the optical profilometry data with breakdown voltage 
revealed a pronounced association between rougher samples featuring more bumps and pits and the formation 
of 0th and 1st order defects, while a potential, albeit weaker, correlation was observed with 2nd order defects.

Furthermore, the integration of machine learning models showcased their efficacy in predicting the prob-
ability of diodes being afflicted by 0th or 1st order defects with a high accuracy exceeding 80%. These models, 
with their ability to forecast wafer yields with a success rate of 6 out of 7 instances, promise to be a valuable asset 
for the industry. However, it is worth noting that their performance exhibited limitations in predicting 2nd order 
defects, suggesting they are likely caused by shorter range defects in the epilayers.

All acronyms and variable names used in this paper are listed in Table 3.

Data availability
The data used to train the machine learning models is available in the supplementary materials. The authors 
affirm the information needed to reproduce this work is available in the published article.
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