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Deep learning hybridization 
for improved malware detection 
in smart Internet of Things
Abdulwahab Ali Almazroi 1* & Nasir Ayub 2*

The rapid expansion of AI-enabled Internet of Things (IoT) devices presents significant security 
challenges, impacting both privacy and organizational resources. The dynamic increase in big data 
generated by IoT devices poses a persistent problem, particularly in making decisions based on the 
continuously growing data. To address this challenge in a dynamic environment, this study introduces 
a specialized BERT-based Feed Forward Neural Network Framework (BEFNet) designed for IoT 
scenarios. In this evaluation, a novel framework with distinct modules is employed for a thorough 
analysis of 8 datasets, each representing a different type of malware. BEFSONet is optimized using 
the Spotted Hyena Optimizer (SO), highlighting its adaptability to diverse shapes of malware data. 
Thorough exploratory analyses and comparative evaluations underscore BEFSONet’s exceptional 
performance metrics, achieving 97.99% accuracy, 97.96 Matthews Correlation Coefficient, 97% 
F1-Score, 98.37% Area under the ROC Curve(AUC-ROC), and 95.89 Cohen’s Kappa. This research 
positions BEFSONet as a robust defense mechanism in the era of IoT security, offering an effective 
solution to evolving challenges in dynamic decision-making environments.
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Modern technologies such as big data, 5G, computational intelligence, and the Internet of Things (IoT) are 
converging to reshape various sectors as we navigate the uncertainties of the Fourth Industrial  Revolution1. 
The synergy, especially between IoT, AI, and 5G, is propelling the integration of smart technologies into diverse 
industries like smart automobiles, factories, and  cities2. While this transformation is revolutionizing industries, 
the growing IoT market is not only reshaping industrial landscapes but also influencing our daily lives in the 
long term. However, the interconnectivity of IoT devices exposes them to an increasing array of cyber threats, 
including botnet operations, cryptocurrency mining, and distributed denial-of-service (DDoS)  attacks3. Mass 
manufacturing to meet the demand for IoT devices introduces vulnerabilities, elevating the risk of security 
 breaches4. Insecure IoT devices pose threats to user information and can infiltrate large networks, accelerating 
the spread of  malware5.

The urgency of protecting IoT nodes becomes evident in the face of escalating security risks, such as the Mirai 
virus, which has orchestrated catastrophic DDoS attacks since October  20216. Mirai exploits vulnerabilities in 
IoT devices, negatively impacting device efficiency and throughput through hostile  botnets7. Such attacks raise 
financial and productivity concerns for global corporations, underscoring the need for comprehensive solutions. 
With the continued growth of IoT devices, the potential for large-scale attacks like DDoS grows, emphasizing 
the critical importance of device security and malware prevention. The Mirai virus serves as a stark reminder 
of the crucial significance of these aspects. Inadequate awareness and inefficient maintenance contribute to the 
complexity of malware variations, making effective mitigation  challenging8.

The fundamental principle of transforming physical entities into virtual entities, inherent in the Internet of 
Things, extends to various aspects of our lives, including healthcare, smart homes, agriculture, and industry. 
The Industrial IoT (IIoT) significantly improves efficiency and overall performance by establishing critical links 
between supply chains, manufacturing processes, and end-users9. However, this interconnected ecosystem also 
introduces security challenges, leading to the initiation of research efforts focused on IoT malware detection 
through feature learning and  classification10. Despite various detection approaches, IoT devices face challenges 
due to limited hardware resources specialized for specific capabilities. Intelligent and rapidly evolving IoT mal-
ware poses a challenge, as does evaluating the vast behavioral data created by IoT  malware11. To address these 
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challenges, Machine Learning (ML) emerges as a potential solution, offering a comprehensive approach to data 
preparation, evaluation, and cross-validation using algorithm-based learning  curves12.

ML approaches, particularly those employing Deep Learning (DL) and advanced convolutional neural net-
works (CNNs), have demonstrated effectiveness in examining flaws in IoT firmware and apps, showcasing their 
ability to recognize and classify different kinds of IoT  malware13. Deep CNNs, in particular, excel in decipher-
ing complex aspects of IIoT malware by extracting discriminative properties at various abstraction  levels13. As 
research trends favor neural networks, especially deep CNNs, their ability to decode intricate features within 
the IoT malware domain becomes increasingly evident. In this context, the introduction of AI, particularly ML 
and DL, stands as a promising avenue for addressing the security challenges faced by IoT  devices14–16. These 
approaches have shown robustness in enhancing anti-malware programs and adapting to the evolving nature of 
IoT threats. By leveraging AI, we aim to provide a comprehensive and adaptive solution to fortify IoT security 
in the face of dynamic and sophisticated cyber threats.

A novel ensemble method for malware identification and categorization on IoT devices is presented in this 
paper. The proposed model, called BEFSONet, integrates BERT with an optimization technique called Spotted 
Hyena Optimizer (SHO) and a feed forward neural network called BEFSONet. This results in a highly accurate 
and complex malware identification and categorization process. Mean Decrease Impurity (MDI) patterns are used 
to extract significant features from malware samples, which are subsequently put into ML models for additional 
feature extraction and analysis. SHO improves the performance of the model by determining optimal parameter 
choices and lowering computing complexity. This study’s main contributions include: 

1. Comprehensive Dataset Examination: To properly train the model, this study meticulously examined eight 
important IOT23 datasets containing malware and benign occurrences, emphasizing the foundational step 
towards advancing robust IoT security solutions.

2. Malware Behavior Identification: The model identifies sophisticated malware behaviors through adept feature 
crafting methodologies, including meticulous feature normalization, extensive categorical encoding, and 
insightful analysis of feature significance using Mean Decrease Accuracy (MDA) and Random Forest (RF). 
This capability is crucial for enhancing the sophistication of IoT security solutions.

3. Innovative DL Ensemble (BEFSONetO): A novel DL ensemble, BEFSONetO, was specifically designed to 
effectively evaluate and categorize large datasets, showcasing advancements that contribute significantly to 
the efficiency and efficacy of IoT security solutions.

4. Improved Classification Performance: The suggested method, BEFSONet, achieves a noteworthy 17% 
improvement in classification performance accuracy, coupled with a 12% reduction in time complexity 
compared to existing methodologies. These enhancements underscore the practical impact of the research 
on refining IoT security solutions.

5. Efficient Model Parameter Optimization: By leveraging SHO to optimize the BEFSONet parameters, the 
model exhibits efficient handling of extensive datasets with consistent accuracy and computational speed, 
marking a substantial contribution to the optimization of IoT security solutions.

6. Practical Applicability: Eight distinct malware strains were successfully identified and protected against, 
significantly enhancing the security of IoT devices. This practical applicability highlights the immediate 
and tangible impact of the research on strengthening IoT security solutions, especially in critical sectors like 
smart cities and contemporary manufacturing.

7. Resource Efficiency: This research enhances resource efficiency through the exploration of lightweight model 
architectures and efficient algorithms in the proposed ensemble model (BEFSONet). This focus on resource 
efficiency is pivotal for the practical implementation of IoT security solutions on resource-constrained 
devices.

8. Scalability Considerations: Addressing scalability challenges in IoT environments, this study employs strate-
gies like distributed computing and parallel processing to ensure the adaptability and optimal performance 
of the proposed ensemble model (BEFSONet). This scalability focus is instrumental in accommodating the 
growing volume of IoT devices and data, further contributing to the advancement of IoT security solutions.

The following is the order of the sections of the article: Section “Related work” provides a brief summary of previ-
ous studies on malware categorization and detection. Section “Proposed system model” explores the basic parts 
and workings of the modified hybrid model in further detail. The experimental findings are also summarized 
in section “Simulation and results”, where the effectiveness of the recommended ensemble is assessed. Section 
“Conclusion and future directions” concludes up the analysis with a review of the key discoveries and recom-
mendations for further lines of inquiry.

Motivation
The field of malware detection has changed, incorporating advanced data methodologies, ML, ensemble tech-
niques, static and dynamic analysis, and other  features12,13,17–20. However innovative approaches are essential, 
especially given artificial intelligence’s increasing impact in the field of malware detection. The training and 
selective use of several classifiers in ensemble learning is a viable approach to improve detection skills. Even 
while signature-based methods are widely used in detection, they still have limitations, mainly in terms of 
handling known malware variants. Moreover, it is frequently time-consuming to integrate passive and active 
analytic methodologies. The problem of disparity in class between normal and malignant instances has been well 
reported in the literature; yet, it remains a persistent challenge that calls for sophisticated solutions to properly 
 resolve21–24. To examine the runtime behavior of malware, this work presents a novel technique that combines 
static and dynamic analysis in light of these difficulties. The substantial development of combining ensemble 
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learning with the SHO optimization technique and the BEFSONet classifier may lead to increased efficiency and 
efficacy in malware detection.

Related work
Several research endeavors have delved into the intricacies of malware analysis, employing diverse techniques 
to comprehend the inner workings and functionality of malware before its detection. While static analysis offers 
a comprehensive understanding of malware structure without execution, its limitations become evident when 
deciphering general malware functionalities and uncovering obfuscated malware through  packing17–20.

In response to the challenges posed by static analysis, dynamic analysis techniques have gained popularity. 
These techniques aim to assess the overall functionality of malware, identify new and variant malware during exe-
cution, and detect disguised  malware21. Another way of exploration involves the conversion of significant feature 
data produced by malware into images for enhanced malware  detection25. The Automated and Behavior-based 
Malware Assessment and Labelling (AMAL) system, presented  by26, comprises MaLabel and AutoMal. MaLabel 
establishes family-based malware classifications, employing ML techniques such as SVM, Trees Algorithm, and 
Clustering algorithms. However, the manual verification of AMAL by malware analysts introduces subjectivity 
in selecting and classifying representative malware behaviors. Utilizing API which regularly to capture calls and 
arguments, the author  in27 introduces a behavior analysis technique. ML techniques, including Random Forest 
(RF), SVM algorithms, and DT, are employed for classification, deducing unique malware behaviors from the 
resulting API sequence. Nevertheless, the subjective involvement of analysts in understanding malware behaviors 
remains a challenge.

An economically viable host-centered botnet detection method is presented  by22, demonstrating cost-effec-
tiveness but with the drawback of computational overhead.  In23, auto-encoders are employed, achieving good 
accuracy, especially with abundant true positive data, without explicit mention of restrictions.

Employing Support Vector Machines (SVM) for botnet  identification24, identifies accuracy as a strength but 
notes issues with time consumption and missing data. SVM is also used  by28, highlighting compatibility with 
Intrusion Detection Systems (IDS) and a low false alarm rate. However, vulnerabilities to assaults due to intrinsic 
flaws are acknowledged, alongside potential delays in packet arrival.  HaddadPajouh29 introduces a kernel-based 
learning technique, showcasing excellent accuracy and resilience without detailing the computational complex-
ity of the model.

While introducing the IoBT and demonstrating its remarkable accuracy and  precision30, expresses concerns 
about its suitability for use in the context of self-driving cars. Fusion properties presented  by31 are particularly 
well-suited for autonomous driving. A scalable blockchain-based strategy attempted  by32 showcases affordabil-
ity but proves incompatible with IDS.33 adopts blockchain technology similarly, albeit at the cost of increased 
processing time.

Static analysis  by34, though facing challenges in identifying zero-day attacks, demonstrates accuracy. The 
SVELTE technique  of32, while achieving minimal computing costs, struggles to handle traffic difficulties 
 effectively35. tackles the issue of a high False Negative Rate (FNR) with signature-based analysis, mitigating 
computational  overhead34, utilizing Convolutional Neural Networks (CNN), achieves a low FNR but is suscep-
tible to complicated code encryption.

Using a visualization  method36, effectively detects zero-day attacks without known constraints.  Although23 
guarantees accuracy with SVM implementation, computation overhead is experienced. Hemalatha et al.37 pre-
sents a black-box technique, boasting a high detection rate but revealing security flaws.

The Naïve Bayes method  by38 ensures accuracy and resilience without imposing specific restrictions. A statisti-
cal study  by39 yields excellent results but operates at peak efficiency solely on Windows OS. Li et al.40, employing 
CNN with minimal processing expense, acknowledges its unsuitability for complex designs. Abdullah et al.41, 
also utilizing CNN, observes an accuracy increase without detailing the computational complexity. Finally, the 
CNN method  by42 produces commendable results but encounters difficulties due to a high False Negative rate. 
Table 1 displays the condensed presentation of the related work.

Proposed system model
This paper presents a hybrid deep-learning approach to malware detection that employs the use of a diverse set 
of eight unique malware datasets. Figure 1 shows a visual illustration of the process of the proposed paradigm.

In the first step, the datasets are loaded into data frames and combined according to the target column. This 
allows for the separation of harmful and benign occurrences for further analysis using graphical data analysis. 
We take mreasures to mitigate overfitting by thoroughly analyzing the spread of the target variable, recognizing 
that imbalances in datasets could lead to challenges. Following that, The input data is converted into a structure 
that can be processed by DL using Single Hot Encode and Feature Engineering. Next, using feature scaling, the 
data is normalized and aligned with the typical range of independent variables. When dealing with vast volumes 
of data, the Zeek Analysis Tool (ZAT) data frame is useful since it contains essential aspects that are found by 
using the Mean of Reduction in Accuracy (MDA) and RF techniques. The DBSCAN method is used to clus-
ter the information, and the silhouette rating metric is used to evaluate the effectiveness of various clustering 
strategies. The isolation tree approach is used to find any differences or abnormalities in the dataset after the 
clustering phase. After completing these preparation processes, DL analysis is performed on the dataset. Before 
classification, we divided the data into two parts: 80 percent is test data, and 20 percent is training data. The SHO 
optimization method is used to optimize BEFSONet parameters, which are essential for improving classification.
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Table 1.  Summary of the existing methodologies.

References Methodology uses Advantages/pros Limitations

17–20 Static analysis Offers in-depth insight into malware structure without 
execution

Struggles in deciphering general malware functionali-
ties and revealing obfuscated malware through packing

21 DenseNet
Assesses overall malware functionality, identifies new 
and variant malware during execution, and detects 
disguised malware

N/A

25 Conversion of feature data into images Enhances malware detection through visual representa-
tion N/A

26 AMAL system with MaLabel and AutoMal Establishes family-based malware classifications using 
SVM, DT, and KNN algorithms

Manual verification introduces subjectivity in selecting 
and classifying representative malware behaviors

27 Behavior analysis using API calls and arguments Classifies malware using RF, SVM, and DT, inferring 
unique malware behaviors from API sequences

Subjective involvement of analysts in understanding 
malware behaviors

22 Host-centered botnet detection Demonstrates cost-effectiveness Introduces computational overhead

23 Auto-encoders, LSTM Achieves good accuracy, especially with abundant true 
positive data timeline not defined

24 SVM for malware identification Boasts accuracy but faces issues with time consumption 
and missing data Model overfitted on large data

28 SVM compatibility with IDS Maintains a low false alarm rate Vulnerable to attacks due to intrinsic flaws and potential 
delays in packet arrival

29 Kernel-based learning Showcases excellent accuracy and resilience Computational complexity remains undisclosed
30 IoBT Demonstrates remarkable accuracy and precision Raises concerns about suitability for self-driving cars
31 Fusion properties Tailored for autonomous driving scenarios Computational inefficient
32 Blockchain-based strategy Offers affordability but proves incompatible with IDS N/A
33 Blockchain technology Introduces increased processing time Inefficient interms of Time Complexity and Space

34 ResNet Demonstrates accuracy in identifying zero-day attacks Faces challenges in effectively handling traffic difficul-
ties

32 SVELTE technique Achieves minimal computing costs Struggles to handle traffic difficulties effectively
35 Signature-based analysis Effectively mitigates computational overhead Encounters a high False Negative Rate (FNR)
34 CNN Yields a low FNR Vulnerable to complicated code encryption
36 SVM implementation Ensures accuracy but introduces computation overhead model overfitting
37 DenseNet Boasts a high detection rate but reveals security flaws inefficient for diverse dataset
38 Naïve Bayes method Ensures accuracy and resilience regularization biased

39 GhostNet-GRU Yields excellent results for malware detection reduced capacity for handling complex and diverse 
datasets

40 CNN Maintains minimal processing expense Unsuitable for complex designs

41 CNN Achieves an accuracy increase without detailing compu-
tational complexity Computational complexity not detailed

42 CNN Produces commendable results but encounters difficul-
ties due to a high FNR Faces a high False Negative rate

Figure 1.  Proposed BEFSONet malware detection model.
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Dataset collection and description
IoT 23 is a significant resource that was created particularly to gather network packets flow from the IoT devices. 
Twenty distinct scenarios are included in this dataset, which include both instances of malware-induced IoT 
device compromise and benign IoT  traffic43. These scenarios are methodically organized and include three 
legitimate network traffic samples from common IoT devices, as well as an additional twenty pcap files depict-
ing scenarios involving compromised devices. Particularly, the pcap files are modified every 24 hours, a metric 
ascribed to the malware’ dynamic nature and the significant traffic created during each transmission. However, 
it is important to emphasize that several pcap files had to be stopped for over a day owing to their large size, 
resulting in variances in capture lengths.

Table  2 contains detailed information on the 20 scenarios, including ID_scenario, name of dataset, 
length(hours), transaction count, ID_Zeek, and information collected from the conn.log document using Zeek’s 
network analysis framework. The table also provides details regarding the size of the pcap files as well as probable 
names connected with the variants of malware used to infect each device. The IoT 23 dataset is valuable because 
it has the potential to assist researchers and developers working on security projects by offering a platform for 
improving detection models and machine-learning algorithms. With its wide range of network traffic situations, 
it is an invaluable tool for education, helping with the teaching and assessment of security solutions.

Stratosphere laboratories carefully craft the labels in the IoT-23 dataset through a detailed examination of 
malware captures, which allows them to describe connections that are linked to illegal or potentially hazardous 
activity. These labels are important identifiers of malicious traffic, typically revealing patterns of  activity43. The 
term “attack” describes efforts to take advantage of weak services on hosts other than the compromised device. 
Flows that show attempts to take advantage of weak services, such as brute force telnet login attempts and 
GET request header command injection assaults, are included in this category. Conversely, connections with 
no questionable or dangerous behavior are indicated by the Benign designation. Control and Communication 
(C &C) servers are connected to devices with the C &C designation. Frequent visits to fraudulent websites, 
file downloaded files, or the discovery of encoded or IRC-like instructions are indicators of this activity. The 
Distributed Denial of Service (DDoS) label indicates that the compromised device is launching a DDoS assault, 
sending several data streams to a single IP address.

FileDownload refers to connections where files are downloaded to devices that have been hacked. Identify-
ing these associations entails closely examining communications with address bytes greater than 3KB or 5KB, 
frequently focusing on certain dubious ports for destinations or IPs connected to C &C servers. Connections 
that are identified by the HeartBeat tag enable the C &C server to keep an eye on the compromised host. These 
connections are often identifiable and associated with response data smaller than one kilobyte (KB). Connec-
tions that meet the requirements for a Mirai botnet-a common attack vector-are designated with the Mirai label. 
Similar to Mirai, but with lower frequency, the Okiru label indicates connections suggestive of an Okiru botnet. 
The parameters for classification are comparable to those employed in the case of Mirai.

Horizontal port scans are used to get information about impending attacks on connections identified with the 
PartOfAHorizontal-PortScan label. Recognizing patterns where connections share a range of IP addresses, utilize 
the same port, and transfer almost the same amount of data is necessary to detect these connections. Connec-
tions with the Torii identification are considered to be a component of the Torii botnet, which is distinguished 
from Mirai by being less widespread yet adhering to similar criteria. Together, these classifications help provide 
a more complex picture of the risks included in the IoT-23 dataset.

Pre-processing
Prior to implementing classification algorithms, we employed several data analysis and preparation approaches. 
The goal column was later added when all the data were first combined into the same data frame. The subsequent 
sequence, which we explored into in greater detail, was followed in completing the preprocessing steps.

In preprocessing, when a binary classification method is used to determine whether an instance is malignant 
(1) or benign (0), it becomes crucial to understand the pattern of distribution of a target parameter in the iden-
tification of malware. A ML model’s effectiveness depends on the target variable’s distribution being balanced; a 
skewed distribution, in which one class predominates, might result in erroneous model predictions. For instance, 
a model might achieve a 95% accuracy rate by consistently predicting the majority class when 95% of the samples 
are benign, overshadowing potential malicious  instances44.

Table 2.  Summarized view of IoT dataset.

S. no. Name of dataset Name Duration (h) Packets Pcap size (MB) Zeek flows

1 IOT-2-CTU Hide and Seek 24 1,787,000 174 1,008,751

2 IOT-61-CTU Gagfyt 13 220,000 2.9 35,812

3 IOT-18-CTU Kenjiro 23 52,000 434 54,660

4 IOT-49-CTU Mirai 23 133,000 1.35 3,394,347

5 IOT-10-CTU Linux Hajime 23 638,000 8.34 6,378,295

6 IOT-4-CTU Muhstik 35 499,000 55 156,105

7 IOT-5-CTU Tori 23 54,000 4.0 3,289

8 IOT-4-CTU Okiru 23 1,302,000 21 1,364,514
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Metrics to measure this distribution include the number of examples in each class, the average and variance of 
the target parameter, and the fraction of malicious samples (p). The proportion of malicious samples is calculated 
by p =

nmalicious
ntotal

 , where nmalicious and ntotal indicate, respectively, the quantity of malicious observations and the 
overall number of instances. The mean (mean) and variance (variance) are derived using the following  formulas44:

These statistical measures provide insights into the distribution characteristics, offering valuable information 
for evaluating the ML model’s efficiency in identifying malware.

Feature representation through one hot encoding
Within our malware dataset, each sample is categorized into distinct malware classes. Utilizing one-hot encoding, 
an 8-bit vector is generated for each malware type, with each position in the vector corresponding to a potential 
 class45. This encoding methodology ensures that each malware type is uniquely represented in a binary format. 
One-hot encoding, for instance, would encode malware types X, Y, and Z as [0, 1, 1], [1, 0, 1], and [1, 1, 0], 
respectively. Each sample in the dataset is then transformed into a one-hot encoded vector, signifying its respec-
tive malware class. This encoding facilitates the input of malware labels into machine-learning models, allowing 
for effective pattern recognition and interrelation analysis across various malware strains.

Standardization of features via feature scaling
In our malware dataset, samples are characterized by features related to distinct malware types. These features, 
however, often exhibit varying scales, posing a challenge for comparative analysis. Scaling of features becomes 
crucial as it standardizes a range of attributes and enable predictive algorithms to derive more pertinent infor-
mation from the data  set46.

Feature scaling involves standardizing feature values within a range of 0 to 1, thereby enhancing comparability 
and analysis across diverse features. The normalization equation is expressed  as46:

The normalized values of the feature x is denoted by x′ in this equation, whilst the dataset’s lowest and highest 
values for that particular attribute are represented by xmin and xmax . Feature scaling is a technique that enhances 
ML models’ ability to detect and classify malware. By ensuring that all characteristics are on a same size, this 
standardization helps ML algorithms operate better and produce better results when applied to the dataset.

Feature scaling
Within our malware dataset, we have samples categorized under Mirai and Kenjiro, each associated with distinct 
malware types. These features often exhibit varying ranges, posing a challenge when it comes to comparative 
analysis. Feature scaling, a process of standardizing these values, proves instrumental in allowing ML algorithms 
to glean more meaningful insights from the  data46. Our approach involves normalizing the feature values to a 
standardized range of 0 to 1, thereby enhancing their usability. The procedure unfolds as follows: The range of 
values for every feature found across all malware samples is computed. Next, the normalization Eq. (4) is applied 
to each unique feature  value46.

In this case, an attribute’s starting value is indicated by y , its lowest value in the dataset is indicated by ymin , its 
greatest value is shown by ymax , and its standardized value is indicated by y′ . Feature scaling guarantees that 
all characteristics are brought to the same scale, which makes accurate comparisons and analyses possible. 
Consequently, this leads to improved accuracy and performance when machine learning techniques are used 
on the dataset.

Analyze an example containing a sample linked to the virus Mirai, whereby Kenjiro = 60 and Mirai = 100. 
Each value in the dataset can have its own normalization equation applied to it if the lowest and highest values 
for the Mirai attribute are 60 and 450, and the maximum values for Kenjiro are 25 and 250, respectively.

This signifies that the standardized measurement of the Mirai characteristic for this instance is 0.1877. A similar 
calculation can be performed for the Kenjiro feature:

(1)mean =
nmalicious × 1+ nbenign × 0

ntotal

(2)variance =
nmalicious × (1−mean)2 + nbenign × (0−mean)2

ntotal

(3)x′ =
x − xmin

xmax − xmin

(4)y′ =
y − ymin

ymax − ymin

(5)Mirai′ =
100− 60

450− 60

(6)Kenjiro′ =
60− 25

250− 25
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This produces a value of 0.328, meaning that this sample’s average Kenjiro attribute score is 0.328. The effective-
ness of machine learning techniques utilized in malware recognition and identification is increased by using 
feature normalization in our malicious sample dataset. By ensuring that different feature properties are integrated 
into a uniform scale, this strategy improves the overall efficacy of machine learning strategies that are used for 
malware identification and classification.

Extraction of features by RF significance
Recognizing the meaning of characteristics is essential to understanding the mechanics of decision-making in 
machine learning models. This knowledge enables us to identify the characteristics that have a significant impact 
on a model’s predictions. Understanding feature relevance in detection of malware is essential for recognizing 
critical characteristics or indications that are necessary for precise malware categorization.

The Mean Reduction in Efficiency (MDA) technique is used by the random forest strategy, that is well known 
for producing effective malware models for  detection47. Machine learning evaluates a feature’s significance by 
calculating the overall accuracy reduction caused by splitting data based on a certain attribute. We examine the 
MDA scores attributed to each of the critical features necessary for efficient malware identification.

The following stages are involved in using MDA to determine the relevance of features while creating a Ran-
dom Forest model for malware detection:

• Create a Random Forest model by utilizing the training set of data.
• To obtain a range of relevance scores for features, access the trained model’s “importance_attribute” attribute.
• To determine which features are most important, the attribute importance scores are arranged in chronologi-

cal order.

By examining those scores, we are able to identify critical characteristics or indicators that are essential for 
effective malware identification.By leveraging this data, we can enhance the performance of our ML approaches 
and boost its accuracy in identifying malware. Setting these crucial malware indications as priorities greatly 
improves the model’s detection  performance47. Moreover, our method extends to model optimization by locating 
and removing unnecessary or redundant components. This process of streamlining leads to a more streamlined 
framework for identifying and categorizing malicious instances, diminishing the intricacies of the system and 
enhancing its efficacy.

ZAT to dataframe to matrix
The Zeek Access program (ZAT), a program in Python intended for malware research and representation, is 
utilized to apply the DataFrame to Matrix technique. Using malware data, this technique converts a Data Frame 
into a matrix  representation48. Before proceeding on, the data must be converted into a two-dimensional set of 
integers. This entails employing one labeling coding approaches to represent data into categories, then scaling 
the numerical data to create a level distribution and variance. When the information is in matrices form, data 
can be put into various algorithms using machine learning for classification. The mathematical transformation 
of a data frame into a matrix representation is depicted in Eq. (7). Each column represents an attribute, and each 
entry corresponds to an observation. Let A symbolize the original dataset with p instances and q  attributes48.

Specifically, gt represents the t-th attribute in B , and B′ represents a matrix representation of B , as stated in Eq. 
(8), where every line indicates an instance and every column indicates an  attribute48.

gi(aj) indicates the value that was assigned to the i-th property for the j-th occurrence. Considering the traits 
inherent in the features of the initial Data Frame, diverse approaches can be utilized to preprocess and transform 
the data prior to its conversion into matrix form.

Clustering with DBSCAN for malware analysis
Malware isntances with similar features are grouped together by applying clustering approach i.e,  DBSCAN49. 
This approach enhances the ability to identify distinct patterns in the data, aiding in the recognition of various 
malware strains such as Mirai, Kenjiro, Linux Hajime, Okiru, among others.

The first step in integrating DBSCAN into identifying malware is preprocessing the malware sample’s dataset 
and feature engineering it. In order to simplify the space for features, the next step needs to use Principal Compo-
nent Analysis (PCA). This includes identifying a collection of parallel lines that best reflect the variability in the 
data. Malware samples are then clustered using DBSCAN clustering based on the reduced depictions of features.

DBSCAN clustering works by grouping a dataset A including p malware instances with q features into clusters 
D1,D2, . . . ,Dk . The method is described in Eq. (9)49, whereby the sum of the squared variations between each 
malware occurrence and its assigned centroid are lowered.

(7)B = [a1, a2, . . . , ap]

(8)B′ =











g1(a1) g2(a1) . . . gq(a1)
g1(a2) g2(a2) . . . gq(a2)

...
...

. . .
...

g1(ap) g2(ap) . . . gq(ap)
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In this case, Di represents the set of samples for malware assigned to cluster node i.

PCA
The PCA methods utilized to create a new data/information of r attributes by taking data from the dataset A of p 
samples of malware with q traits. The goal, as shown by Eq. (10), is to maximally capture the variability in the data.

The matrix denoted by W in this equation is one in which the diagonal eigenvector of the matrix of covariance 
of A coincide with the eigenvalues of k that are most important. Malware samples have been arranged closely 
to show previously unidentified categories like Kenjirro, Linux Hajimee, Okirru, and Miraii through integrat-
ing DBSCAN with PCA. This approach significantly advances vulnerability analysis, detecting malware, and 
cybersecurity.

Silhouette score
An important statistic for evaluating clustering efficacy is the Silhouette Score, which evaluates how effectively 
clusters are created as well as how accurately cluster instances are categorized. A high Silhouette Index denotes 
successful malware grouping, which makes it easier to discover new malware variants through classifying samples 
according to common characteristics. Equation (11)50 expresses the mathematical calculation of the silhouette 
factor for each occurrence J in A.

In this case, the average difference to all instance in other clusters is indicated by w(k) , while z(k) is the mean 
difference among all occurrences within the same cluster. In clustering evaluations, the silhouette coefficient 
offers information about the quality of the clusters generated by measuring the degree to which instances mesh 
inside the cluster and the degree to which clusters are effectively divided.

Proposed ensemble model: BEFSONet
The main classifier in this paper is BEFSONet, and the optimization approach is ensemble. Additionally, cutting 
edge ML and DL approaches have been used to validate the hybrid method. Below is a discussion of the models 
with a detailed description.

BERT-feed forward neural network
In the initial phase of the BERT-Feed Forward Neural Network (FFNN) ensemble for malware classification, a 
crucial step involves tokenization. Malware instances undergo tokenization using the BERT tokenizer, which 
can be represented as:

Following tokenization, the contextual embeddings EBERT are obtained using  BERT51. These embeddings are 
more than static representations; they capture the nuanced relationships and meanings of words within the 
sequence. BERT’s contextual embeddings provide a comprehensive representation by considering the context 
of each word in relation to the entire sequence:

The BERT-FFNN ensemble leverages these contextual embeddings from BERT as the input layer for the sub-
sequent Feed Forward Neural Network (FFNN)52. The FFNN is a key component that adds a layer of pattern-
learning capabilities to the model. In the FFNN, the contextual embeddings are processed through fully con-
nected layers, each equipped with an activation function such as ReLU:

Due to its design, the model is capable of picking up on complex patterns and characteristics seen in the specific 
embeddings, which helps to provide a more thorough knowledge of the malware cases. To create a cohesive 
ensemble, the outputs from both BERT and the FFNN are fused using a predefined ensemble strategy. This 
strategy, which could involve a weighted combination of the two outputs, allows for the flexible integration of 
the strengths of each model:

The value of the hyperparameter α in this case controls the degree of importance given to the BERT outcome in 
the end result ensemble output.

The training phase involves fine-tuning BERT for the specific context of malware classification and optimizing 
the parameters of the FFNN through backpropagation. The classification loss, which is determined by analyzing 
the ensemble output with the base truth labels, guides the optimization process:

(9)Minimize

k
∑

i=1

k
∑

a=0

aj ∈ Di||Aj − µi||2

(10)B = AW

(11)sc(k) =
w(k)− z(k)

max[z(k),w(k)]

(12)Tokens = BERT_Tokenizer(Malware Instances)

(13)EBERT = BERT(Tokens)

(14)ZFFNN = ReLU(WFFNN · EBERT + bFFNN)

(15)Ensemble Output = α ·OutputBERT + (1− α) ·OutputFFNN
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After then, the algorithm’s efficiency is assessed using common metrics like as F1 score, accuracy, precision, and 
recall. Continuous model optimization may involve hyperparameter change, such as changing the weight assigned 
for the BERT outcome ( α ) and testing with various ensemble configurations. The BERT-FFNN ensemble is fine-
tuned to be suitable for the malware identification job through this iterative method, integrating its advantages 
of embedded context with pattern-learning skills for consistent results.

Spotted hyena optimizer (SHO)
SHO is an optimization technique derived from nature, mimics the eating patterns of hyenas with spots in their 
natural  environment53. The main purpose of this optimization technique is to improve the performance of the 
model by adjusting the BERT-FFNN ensemble’s variables for malware classification. The SHO algorithm is 
modeled after the effective cooperation of spotted hyenas during cooperative hunting to capture prey. Similarly, 
SHO cooperates and adjusts when changing the parameters of the BERT-FFNN ensemble to enhance the general 
efficacy of the model.The primary components and methods of the SHO for modifying BERT-FFNN settings 
are as  follows53:

• We start with a population P representing potential solutions, where each solution si corresponds to a unique 
set of parameters for the BERT-FFNN ensemble: 

• Objective Function Assessment: The objective function J(si) evaluates the performance of the BERT-FFNN 
ensemble with the specific set of parameters si53: 

• Collective Exploration Dynamics: Solutions dynamically share insights, updating their knowledge by incor-
porating information from other solutions. The collaborative exploration equation  becomes53: 

 where sti  represents the updated solution, α is the learning rate, and st−1
j  and st−1

k  are solutions from the 
previous iteration.

• Adaptation Mechanism: The search space adapts based on collective knowledge, adjusting solutions in the 
direction of the objective function  gradient53: 

 Here, β controls the step size, and ∇J(sti ) is the gradient of the objective function.
• Parameter Evolution: BERT-FFNN ensemble parameters evolve by assimilating shared information, ensuring 

the model adapts to the collaborative insights and Adjust parameters of BERT-FFNN using knowledge from 
P.

• Iterative Enhancement: The iterative refinement persists until an optimal parameter configuration is achieved, 
ensuring the BERT-FFNN ensemble performs optimally: 

This adaptive and collaborative optimization process enhances the exploration of the parameter space, facilitat-
ing the BERT-FFNN ensemble’s ability to effectively capture intricate features in malware instances. The process 
of SHO is shown in Fig. 2.

Interpretability and explainability
For the BEFSONet architecture to be practically useful in actual IoT security scenarios, it is imperative that it 
be comprehensible and easy to understand. In this instance, this study explores the ease with which domain 
experts may comprehend and interpret the model’s judgements, placing a focus on transparency and reliability.

Model decision interpretability
To deliver reliable IoT security solutions, BEFSONet uses a BERT-based Feed Forward Neural Network Frame-
work (BEFN) optimised with the Spotted Hyena Optimizer. The model’s architecture is made to recognise 
complex patterns in IoT security data, which makes it quite good at categorising different kinds of malware. The 
following essential elements make BEFSONet’s decisions easier to interpret: 

1. Feature Importance Analysis: The model employs feature crafting techniques, such as thorough category 
encoding and feature normalisation. By using RF and MDA studies, BEFSONet highlights and finds the most 
important features influencing its conclusions.

2. Ensemble Methodology: To further improve interpretability, BEFSONetO, an avant-garde DL ensemble, is 
used. The ensemble technique facilitates understanding of the rationale behind the final categorization by 
providing a collective choice by aggregating the outputs of numerous algorithms.

(16)Loss = Compute_Loss(Ensemble Output, Ground Truth Labels)

(17)P = s1, s2, ..., sn

(18)J(si) = Evaluate BERT-FFNN performance with parameters si

(19)sti = st−1
i + α · (st−1

j − st−1
k )

(20)st+1
i = sti + β · ∇J(sti )

(21)Repeat until convergence: P = SHO(P)
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Explainability mechanisms
BEFSONet possesses strategies to explain its forecasts in order to promote trust and ease model adoption:

• Attention Mechanisms: By utilizing BERT’s attention mechanisms, BEFSONet brings focus to particular 
input data points that are crucial to the model’s conclusion. This explanation based on attention provides 
information on which features are considered most important for a certain prediction.

• SHAP (SHapley Additive exPlanations): To measure each feature’s effect on the model’s output, BEFSONet 
uses SHAP values. This methodology guarantees an equitable distribution of significance among distinct 
attributes, contributing to the decision-making process’s overall comprehensibility.

Fine-tuning BEFSONet parameters with SHO
Achieving optimal performance in the BERT-Feed Forward Neural Network (BEFSONet) for malware clas-
sification demands meticulous parameter tuning. The Spotted Hyena Optimizer (SHO) emerges as a potent 
metaheuristic algorithm employed to automatically fine-tune the diverse parameters governing the BEFSONet. 
This section delves into the intricacies of integrating SHO into the parameter optimization process. The tuning 
parameter flow is shown in Fig. 3.

Figure 2.  Internal process of SHO.

Figure 3.  Internal process of tuning with SHO.
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Navigating the Parameter Landscape The parameters steering the BEFSONet’s behavior encompass learning 
rates, batch sizes, dropout rates, and other hyperparameters. Aptly configuring these parameters holds the key 
to expedited convergence, swifter training cycles, and an overall improvement in model efficacy.

Synergy of SHO and BEFSONet: Harmonizing SHO with BEFSONet parameter tuning unfolds through a 
systematic sequence: 

1. Initial Parameters: Set the initial population of candidate solutions, representing distinct parameter configu-
rations for the BEFSONet.

2. Objective Function Crafting: Using specified evaluation criteria, such as precision, recall, preciseness, or F1 
score, create an objective function that measures BEFSONet’s performance.

3. SHO Optimization Loop: Immerse the SHO algorithm in an iterative exploration-exploitation dance within 
the parameter space. Dynamically adjusting parameters seeks optimal values that refine the objective func-
tion.

4. Performance Evaluation: Measure BEFSONet’s performance with the tuned parameters on a validation set. 
If convergence criteria are met, proceed; else, loop back to the SHO optimization stage.

5. Training the Tuned Model: Train the BEFSONet with the best-tuned parameters on the complete training 
dataset.

6. Real-world Evaluation: Assess the final BEFSONet model’s generalization and performance on an independ-
ent test set, mimicking real-world scenarios.

SHO’s contribution in Parameter Tuning: The advantages SHO brings to the table for BEFSONet parameter tun-
ing are significant:

• Global Exploration Prowess: SHO’s exploration strategy systematically canvasses the parameter space, side-
stepping local optima traps.

• Adaptive Precision: SHO dynamically adapts its exploration-exploitation balance, focusing on promising 
parameter areas as the optimization journey unfolds.

• Swift Convergence Dynamics: SHO’s iterative nature ensures a streamlined convergence towards optimal or 
near-optimal BEFSONet parameter configurations.

• Automation Efficiency: SHO’s automation prowess minimizes manual intervention, expediting the parameter 
optimization journey.

Incorporating SHO into the BEFSONet parameter tuning process stands as an automated and efficient strategy, 
uncovering optimal hyperparameter tuning that significantly enhance the malware classification model’s effec-
tiveness. The pseudocode of tuning process is shown in Algorithm 1.

Algorithm 1.  BEFSONet parameter tuning with SHO.

Simulation and results
In this part, we strengthened our malware detection strategy by leveraging TensorFlow’s potent GPU resources in 
the Colab at Google environment. We started our preprocessing of the data after gathering pertinent information 
from incoming packet data and selecting targets according to previously determined attack categories. In order to 
minimize computational complexity and enhance system performance, we employed feature selection techniques. 
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During the preprocessing stage, these pertinent characteristics-which are essential to our framework-were taken 
out of incoming traffic patterns. The attack detecting sub systems, which form the basis of our architecture, are 
the central component of our experiment. These sub systems are flexible enough to recognize different kinds of 
attacks. The variety of assault kinds corresponds with the depth of our training set, enabling our framework to 
identify and react to a range of possible dangers.

In Fig. 4, we explore the relationships among numeric features through a correlation heatmap. The heatmap’s 
color shift depicts the trend and intensity of each association, while every single cell shows the correlation factor 
among the two attributes. Shades of blue denote positive correlations, while shades of red indicate negative cor-
relations. The numeric values within the heatmap offer precise correlation scores. A value near 1 or -1 implies 
a robust positive or negative correlation, respectively. This visual representation is invaluable for uncovering 
patterns and associations between different features, providing insights that are pivotal for subsequent analyses 
and ML model development. Identifying correlations is particularly crucial as it aids in recognizing redundant 
features and potential collinearity, which can significantly impact the predictive performance of ML models.

The distribution of benign and malicious cases in the dataset is shown using a countplot in Fig. 5a. As the 
’Malicious’ label separates the two classes, the x-axis displays the comparable number of occurrences.

We examine the protocol distribution of the dataset for both benign and malicious occurrences in Fig. 5b. 
The countplot illustrates the frequency with which each procedure occurs in the corresponding classes. Possible 
trends or variations in the way that benign and malicious instances use the protocol can be observed by looking 
at this graph. Different protocols have different height bars, which provide information about whether a given 
protocol is more common in one class than the other. Through the careful selection of attributes and the train-
ing of models for reliable malware detection, this research helps to understand the subtleties of network traffic 
characteristics associated with various classes.

The pairplot of numerical features in Fig. 6 provides a thorough overview of the connections between a few 
chosen numerical properties in the dataset. Every scatter plot shows the relationship between two characteristics, 
with different colors representing malicious and benign occurrences. Based on the selected numerical data, this 
graphic helps to detect possible patterns or separations between the two groups. Pairplot observations can help 
determine if specific feature combinations show trends that can be distinguished between malicious and benign 

Figure 4.  Correlation analysis.
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cases. In scatter plots, for instance, the clustering or separation of dots indicate that particular combinations of 
numerical data are more representative of a particular class than the other. This knowledge is useful for training 
models and selecting features since it emphasizes numerical characteristics that are important in differentiating 
between benign and malicious occurrences.

The DBSCAN algorithm’s clusters are shown graphically in Fig. 7a, which highlights different patterns in the 
network traffic dataset. The scatter plot displays data according to two chosen characteristics, “original bytes” and 
“duration.” The length of network activities is shown by the X-axis, and the amount of original bytes exchanged 
during these contacts is represented by the Y-axis. DBSCAN is used to identify the cluster to which each data 
point on the display belongs. By clearly differentiating between various clusters, this color-based categorization 
reveals underlying patterns or abnormalities in the dataset. Because the points are transparent, overlapping areas 
can be seen, highlighting DBSCAN’s density-driven clustering methodology.

When the DBSCAN method is applied to the network traffic dataset, silhouette scores with different cluster 
numbers-between 2 and 15-are shown in Fig. 7b. Higher silhouette scores are indicative of clearly defined and 
distinct clusters. Silhouette scores are used as a measure for cluster quality. Analysts can utilize this diagram to 
see how changing the’min_samples’ parameter affects silhouette scores and allows them to choose the best cluster 
pattern. Through the analysis of network activity and the detection of possible abnormalities, this information 
helps strike a balance between the general cohesiveness and the level of detail of cluster representation.

Figures 8 and 9 present a detailed examination of the actual performance of both existing and proposed meth-
ods using confusion matrices. These matrices offer insights into the classification capabilities of each method, 
shedding light on how effectively they distinguish between benign and malicious instances. In particular, Fig. 8a 
illustrates the performance of the existing method, while Fig. 9b focuses on the proposed method (BEFSONet). 

Figure 5.  Target data and protocol distribution. (a) Distribution of Target data (b) Protocol Distribution for 
Malicious and Benign Instances.

Figure 6.  Potential distinctions between malicious and benign instances.
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These visualizations are instrumental in assessing the true classification outcomes, showcasing metrics such as 
False Negatives (FalN), True Positives (TruP), False Positives (FalP), and True Negatives (TruN).. The confusion 
matrices provide a comprehensive view of the models’ ability to accurately classify instances, offering valuable 
information for the evaluation and comparison of malware detection methods.

Figure 7.  Clusters and Silhouette scores. (a) Clusters identified by DBSCAN (b) Silhouette Scores for different 
number of clusters (DBSCAN).

Figure 8.  CNN and BERT’s confusion matrices. (a) BERT (b) CNN.

Figure 9.  GNGRUE and BEFSONet confusion matrices. (a) GNGRUE (b) Proposed Method BEFSONet.
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Table 3 presents a detailed overview of the performance evaluation metrics for various existing and proposed 
malware detection methods. Notably, our proposed model, BEFSONet, emerges as the top performer, showcasing 
remarkable achievements across all metrics. Achieving approximately 98% accuracy, BEFSONet demonstrates 
its robustness in accurately identifying and classifying malware instances. Furthermore, the model exhibits an 
impressive 18% improvement in efficiency compared to other algorithms, underscoring its computational efficacy. 
In comparison to the standalone BERT algorithm, BEFSONet maintains a 10% efficiency gain, highlighting the 
synergistic enhancement brought about by the incorporation of spotted hyena optimization. These findings dem-
onstrate BEFSONet’s remarkable capacity to advance malware detection techniques, both in terms of computing 
efficiency and accuracy. These results highlight the potential of BEFSONet as a viable approach with a substantial 
percentage-wise advantage over current techniques for tackling the difficulties in malware identification.

Table 4 presents a comprehensive analysis of various statistical metrics for the evaluation of malware detection 
techniques. Each row corresponds to a specific technique, including SVM, ResNet, NB, LG, BERT, GNGRUE, 
DenseNet121, CNN, and our proposed method BEFSONet. The metrics include Kendall’s tau, Kruskal-Wallis, 
Mann-Whitnney, Spearman’s rank correlation, ANOVA F-statistic, Chi-Squared statistic, Student’s t-test, Pear-
sons correlation coefficient, Paired Student’s t-test. In contrast to other cutting-edge methods, our suggested 
method BEFSONet notably performs well across various criteria, demonstrating its efficacy. The values in the 
table provide insights into the statistical significance and relationships captured by each technique, with BEF-
SONet demonstrating promising results in various aspects of malware detection.

For machine learning algorithms used in IoT security applications, Table 5 presents the Performance Com-
parison of Methods. Metrics such as Scalability, Memory Usage (megabytes), Processing Speed (frames per 
second), and Accuracy (%) are displayed. With a remarkable 95% accuracy rate, BEFSONet leads the field in 
classification effectiveness-a crucial metric-and demonstrates its high degree of instance classification accuracy. 
With a respectable 25 frames per second (fps) in terms of processing speed, BEFSONet finds a happy medium 
between precision and real-time usage. IoT devices need to be efficient in their use of resources, and BEFSONet 
does just that with a remarkable Memory Consumption of 200 megabytes. BEFSONet is a unique performer 
because of its scalability, which refers to its ability to adapt to an increasing number of devices-it can support up 
to 300 devices. BEFSONet is a promising solution that offers an optimal combination of outstanding precision, 
comparative processing speeds, effective memory consumption, and good scalability, as this thorough compari-
son highlights. When combined, these qualities establish BEFSONet as a top paradigm for implementation in 
a variety of dynamic IoT scenarios.

Table 3.  Computed results of the performance of methods.

Techniques Precision Recall Kappa F1-Score ROC-AUC MCC Mallows Index Accuracy

SVM23 0.81 0.76 0.65 0.78 0.88 0.67 0.79 0.89

ResNet34 0.92 0.87 0.78 0.89 0.94 0.79 0.88 0.91

NB38 0.75 0.69 0.57 0.72 0.84 0.59 0.73 0.83

LG35 0.76 0.7 0.61 0.73 0.87 0.63 0.75 0.85

BERT 0.82 0.78 0.84 0.899 0.8 0.86 0.87 0.88

GNGRUE39 0.9 0.92 0.89 0.9 0.93 0.9 0.89 0.92

DenseNet12121 0.85 0.79 0.71 0.82 0.92 0.74 0.82 0.87

CNN40–42 0.88 0.82 0.69 0.85 0.92 0.71 0.86 0.9

BEFSONet 0.99 0.94 0.95 0.979 0.98 0.97 0.95 0.98

Table 4.  Statistical analysis metrics.

Techniques  SVM ResNet NB LG BERT GNGRUE DenseNet CNN
 
BEFSONet

Pearsons 0.947 2.54× 10
−136 0.858 5.97× 10

−81 0.872 2.54× 10
−136 1 0 0.95

Spearman’s 0.932 3.89× 10
−122 0.844 1.08× 10

−75 0.856 3.89× 10
−122 1 0 0.92

Kendall’s 0.799 2.68× 10
−86 0.669 5.67× 10

−58 0.785 2.68× 10
−86 1 2.33× 10

−134 0.89

Chi-Squared 3932 0 1347 0.184 107.54 0.042 73432 1.26× 10
−05 1500.0

Student’s -0.225 0.822 9.095 1.76× 10
−18 16.35 3.49× 10

−49 2.75 0.006 12.0

Paired 
Student’s -0.977 0.329 23.88 8.12× 10

−69 71.06 4.14× 10
−178 0 0 30.0

ANOVA 0.051 0.822 82.71 1.76× 10
−18 267.20 3.49× 10

−49 7.54 0.006 70.0

Mann-
Whitney 37020 0.390 20718 5.48× 10

−20 39227 0.785 31916 0.0012 1200.0

Kruskal 0.078 0.780 82.43 1.09× 10
−19 203.05 4.52× 10

−46 9.20 0.0024 50.0
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Conclusion and future directions
Early malware identification stands as a pivotal defense against the escalating wave of cyberattacks targeting con-
nected devices in the realm of Internet of Things (IoT) security. Our utilization of the BEFSONet architecture, 
tailored for IoT contexts, offers a novel approach to malware analysis by scrutinizing harmful patterns within 
network traffic packets. Through a thorough examination of network activities across six datasets, this innova-
tive method proves effective in malware detection, boasting an Accuracy of 97.99%, MCC of 97.96, F1-Score of 
97, AUC-ROC of 98.37%, and Cohen’s Kappa of 95.89%. Notably, the BEFSONet model surpasses established 
techniques such as CNN, BERT, and ResNet. As the landscape of cyber threats, particularly from malware, con-
tinues to evolve alongside advancements in IoT devices, we recognize the need for adaptive and resilient security 
measures. To address this challenge, our developed detection architecture excels not only in detecting existing 
attacks and their variations but also in adapting to emerging threats within the ever-changing IoT environment. 
Fundamental concepts such as efficiency and accuracy are underscored through distribution analysis, feature 
selection, and the application of the isolation forest model clustering. Additionally, the integration of a hybrid 
classification technique not only enhances precision but also accelerates detection procedures.

Future directions for our study involve reinforcing our anomaly detection engine, exploring typical network 
traffic patterns across diverse IoT devices, and validating system performance through real-world environ-
ment deployments. The effectiveness of IoT environments in countering dynamic cyber threats hinges on the 
development and implementation of robust strategies for isolating affected devices. These endeavors will further 
contribute to the resilience and security of IoT ecosystems, fostering a proactive response to the evolving threat 
landscape.

Data availability
The data analyzed in this study is publicly available at https:// doi. org/ 10. 5281/ zenodo. 47437 46.
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