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Research on factor analysis 
and method for evaluating 
grouting effects using machine 
learning
Wenxin Li 1, Juntao Chen 1*, Jun Zhu 1, Xinbo Ji 2 & Ziqun Fu 1

The evaluation of grouting effects constitutes a critical aspect of grouting engineering. With the 
maturity of the grouting project, the workload and empirical characteristics of grouting effect 
evaluation are gradually revealed. In the context of the Qiuji coal mine’s directional drilling and 
grouting to limestone aquifer reformation, this study thoroughly analyzes the influencing factors 
of grouting effects from geological and engineering perspectives, comparing these with various 
engineering indices associated with drilling and grouting. This led to the establishment of a “dual-
process, multi-parameter, and multi-factor” system, employing correlation analysis to validate 
the selected indices’ reasonableness and scientific merit. Utilizing the chosen indices, eight high-
performing machine learning models and three parameter optimization algorithms were employed 
to develop a model for assessing the effectiveness of directional grouting in limestone aquifers. The 
model’s efficacy was evaluated based on accuracy, recall, precision, and F-score metrics, followed 
by practical engineering validation. Results indicate that the “dual-process, multi-parameter, multi-
factor” system elucidates the relationship between influencing factors and engineering parameters, 
demonstrating the intricacy of evaluating grouting effects. Analysis revealed that the correlation 
among the eight selected indicators—including the proportion of boreholes in the target rock strata, 
drilling length, leakage, water level, pressure of grouting, mass of slurry injected, permeability 
properties of limestone aquifers before being grouted, permeability properties of limestone aquifers 
after being grouted—is not substantial, underscoring their viability as independent indicators for 
grouting effect evaluation. Comparative analysis showed that the Adaboost machine learning model, 
optimized via a genetic algorithm, demonstrated superior performance and more accurate evaluation 
results. Engineering validation confirmed that this model provides a more precise and realistic 
assessment of grouting effects compared to traditional methods.
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The geological conditions of China’s coal mines are notably complex, making it one of the countries most afflicted 
by mine water damage globally. Aquifer modification through grouting represents a commonly utilized tech-
nique in the realm of mine water damage prevention and control, and evaluating the effects of such grouting is 
an indispensable and crucial component of these projects.

The broad application of grouting technology in mining has increasingly drawn the attention of scholars and 
engineers to the detection and evaluation of its effects. Currently, the most direct and effective methods for detect-
ing and evaluating grouting effects include inspection hole, compression test, and direct pumping test methods 
in  mines1. Xue et al.2 employed a combination of P-Q-t control, physical exploration, inspection hole, and digital 
drilling camera methods to thoroughly assess the grouting effects on the F4-4 gushing fault in Qingdao Jiaozhou 
Bay undersea tunnel. Ren et al.3 applied permeability detection methods to effectively evaluate karst foundation 
grouting effects, recommending 47 Lu (a permeability unit defined as 1 L of water injected per minute per meter 
of test section at 1 MPa water pressure) as the critical permeability threshold for potential erosion and collapse. 
Liu et al.4 achieved visualization of residual water influx data post-grouting via mapping, thereby optimizing 
evaluation criteria and visually representing grouting effects. Zhang et al.5 analyzed temporal changes in grouting 
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pressure and volume to assess grouting effects. These studies predominantly focus on utilizing one or several of 
the aforementioned testing methods for grouting effect evaluation. They often involve single-factor assessments, 
are labor-intensive and costly, and typically yield only preliminary qualitative analyses, thereby making it chal-
lenging to obtain accurate and comprehensive evaluation results.

To address these issues, experts and scholars have developed more systematic and comprehensive evaluation 
methods, integrating various comprehensive assessment techniques:  Sima6 applied fuzzy comprehensive evalu-
ation theory, coupled with the Analytic Hierarchy Process (AHP), to ascertain parameter weights and establish 
a mathematical model for grouting effect evaluation, successfully applying it to the curtain grouting project in 
Carp Naihu mine. Hou et al.7 proposed a fuzzy comprehensive evaluation method based on gray correlation 
degree, reversed the use of gray correlation degree method to construct the initial matrix, and combined with 
the principle of AHP and fuzzy comprehensive evaluation, and came to the conclusion that the grouting effect 
of Guiyang subway tunnel grouting and plugging project is superior; Bai et al.8 merged topology theory with 
empirical data to develop a model for evaluating the grouting effect on water-rich sand layers, applying this model 
to assess the Qingdao subway grouting project. These methods effectively utilize data from grouting projects, 
integrating statistical analysis and the allocation of index weights to establish mathematical models for the quan-
titative evaluation of grouting effects, thereby yielding enhanced results in practical engineering applications, 
however, their reliance on the AHP method and empirical approaches can compromise the objectivity of these 
evaluations. Furthermore, advancements in grouting technology within the directional drilling sector bring 
about additional challenges in evaluating grouting effects due to increasingly complex geological and engineering 
scenarios. As machine learning algorithms continue to mature, an increasing number of engineering practices 
are incorporating them. Liu et al.9 utilized fuzzy neural networks, support vector machines, and random forest 
algorithms to develop a robust evaluation model for assessing the physical fitness of elderly individuals within 
the community, achieving satisfactory performance. In the evaluation of geologic disaster susceptibility in Li 
County, Sichuan Province, Zhou et al.10 identified 11 influential factors and employed both Random Forest and 
Radial Basis Function Neural Network algorithms to conduct landslide susceptibility assessments. These studies 
demonstrate that machine learning algorithms perform well under complex evaluation conditions and effectively 
address the challenges posed by complex and empirical factors in assessing grouting effects.

This paper focuses on the directional drilling and grouting transformation of gray rock aquifers in the Qiuji 
coal mine as the engineering context. It conducts a comprehensive analysis of the influencing factors affecting 
grouting effectiveness and establishes an evaluation system by integrating engineering parameters. Furthermore, 
it introduces eight machine learning models and three optimization algorithms. Building upon these foundations, 
a novel grouting effectiveness evaluation method tailored to the characteristics of directional drilling and grouting 
transformations in gray rock aquifers is proposed. This approach effectively addresses the challenges associated 
with complex factors, empirical observations, and extensive workload in grouting effectiveness assessments. 
The proposed method holds significant implications for the advancement of grouting evaluation techniques.

Hydrogeologic overview of the study area
The Qiuji Coal Mine, situated in Qihe County, Dezhou City, Shandong Province, represents the inaugural pro-
duction mine in the Northern Yellow River Coalfield. The 11# and 13# coal seams within the mine are under 
threat from limestone aquifers, with Ordovician limestone aquifers present in its deeper sections, and these 
aquifers are hydraulically interconnected, adding to the mine’s hydrogeological complexity, as shown in Fig. 1.

Qiuji Coal Mine initiated the use of directional drilling technology in 2016 (as shown in Fig. 2), segmenting 
the mining area into zones and utilizing near-horizontal branch-hole deployment for the grouting and trans-
formation of limestone aquifers, effectively isolating the hydraulic connections between the aquifers, thereby 
ensuring safe coal resource production, and sustainable development of coal is realized.

Analysis of factors and indicators influencing grouting effectiveness
Main controlling factors of grouting effectiveness
Geological factors

1. Development of Karst fissures in tuffs.

Limestone, a type of carbonate rock, is characterized by its solubility. Karst development in carbonate rocks 
begins with the dissolution of extended fissures, facilitated by erosive water flow, which continuously expands 
the fissure, eventually forming a dissolution pipeline. Once the dissolution pipeline widens to a certain extent, 
the water flow’s energy becomes sufficient to transport silt and sand, intensifying the mechanical erosion of the 
pipeline and thus becoming the primary force behind cavern expansion. When the cavern expands to a certain 
size, it collapses under the action of gravitational forces from the overlying load, making gravity-induced collapse 
the main driver of this transformation. Therefore, the transformation and evolution of the karst water system 
can be summarized as a progression from dissolution to mechanical erosion, followed by gravity-induced col-
lapse, as illustrated in Fig. 3.

Influenced by a range of factors including the lithology of rock strata, tectonic activity, and climate, karst 
development in China displays distinct regional differences between the north and south: the southern karst 
regions show extraordinary development, with widespread occurrences of dissolution, mechanical erosion, and 
gravity collapse, and a prevalent underground river system; whereas in the north, karst development is relatively 
weaker, predominantly characterized by dissolution and mechanical erosion, with dissolution fissures or pipeline-
caves being more common, and underground dark rivers being exceedingly  rare11.
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Karst fissure development influences groundwater storage and flow, as well as the diffusion of grout in the 
medium. Although limestone bedrock is dense and hard, it is characterized by numerous dissolution fissures and 
pipes, leading to the grouting in limestone aquifers predominantly exhibiting characteristics of flowing along 
these fissures. Thus, the development of limestone karst fissures directly impacts the diffusion of slurry and the 
effectiveness of grouting transformation.
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Figure 1.  Stratigraphic Histogram.

Figure 2.  Schematic diagram of directional drilling grouting technology.
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2. Geological structure.

In the process of excavating deep roadways, crossing geological structures like fault fragmentation zones, and 
trapped columns is inevitable, as depicted in Fig. 4. These geological formations are characterized by their prone-
ness to deformation, high water permeability, low strength, and poor water resistance, making them susceptible 
to becoming water-conducting channels, potentially leading to water-surge  phenomena12–15. Additionally, these 
features facilitate the spread of slurry. Consequently, various factors, including the spatial spreading pattern and 
characteristics of these geological structures, significantly influence the effectiveness of grouting  transformation16.

3. Water-bearing conditions of the limestone aquifer.

Karst fissures within limestone aquifers typically exhibit water saturation, and grouting modification in lime-
stone aquifers essentially involves the substitution of slurry for water within these karst  fissures17, as illustrated in 
Fig. 5. Consequently, the initial water volume within the karst fissures of a limestone aquifer directly influences 
the extent of grouting required.

Figure 3.  Schematic diagram of Karst fissure development process in limestone.

Figure 4.  Schematic diagram of the construction.
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4. Alterations in aquifer permeability characteristics.

The purpose of aquifer grouting is to reduce mine water surges. According to some scholars, the permeability 
of geological strata is a critical factor in determining the likelihood of water burst  events18. Modifying a lime-
stone aquifer with grouting is expected to significantly change its permeability characteristics, making changes 
in permeability a key indicator of grouting effectiveness.

Factors influencing engineering outcomes

1. Drilling work quality.

For the grouting transformation of limestone aquifers, it is imperative to construct directionally oriented 
down-layer branch holes to investigate the aquifer prior to the grouting process. This step is crucial to maximize 
the exposure of karst fissures and unique geological structures within the limestone aquifer. The primary objec-
tive is to ensure extensive horizontal drilling along the aquifer, followed by the secondary goal of maintaining 
the integrity of the drill holes. This approach aims to prevent issues such as the collapse or blockage of the drill 
holes. Consequently, high-quality drilling is paramount to ensuring the efficacy of the grouting transformation 
 process19.

2. Slurry diffusion and transmission scope.

The limestone aquifer grouting renovation project utilizes horizontal branch hole segmental grouting tech-
nology. The arrangement of grouting holes follows a parallel branch hole pattern in horizontal segments. This 
approach is characterized by extended conveying and grouting sections, predominantly employing high-pressure 
grouting techniques. The transmission of the slurry within the horizontal holes influences its effective dispersion 
range, consequently impacting the overall efficacy of the grouting process. Furthermore, the extent to which the 
slurry’s dispersion encompasses the entire grouting transformation area and the presence of any grouting blind 
zones are indicative of the grouting’s effectiveness, as depicted in Fig. 6.

Karst fissures, pipelines limestone

cement grout

Figure 5.  Schematic of karst water slurry replacement process.

Figure 6.  Slurry diffusion.
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3. Fissure filling processes in Karst environments.

The limestone aquifer contains numerous karst fissures, which are extensively water-filled. Fundamentally, the 
grouting transformation of the limestone aquifer involves replacing the water within these fissures with slurry. 
This replacement significantly reduces the aquifer’s water content and hydraulic conductivity. Consequently, 
the efficacy of grouting transformation is directly contingent upon the effective filling of these karst fissures.

Analysis of grouting effectiveness parameters
Drilling operation parameters

1. The proportion of boreholes in the target rock strata.

The proportion of drill holes reaching the target rock layer directly indicates the effectiveness of horizontal 
layer drilling, thereby reflecting the overall quality of the drilling project. According to the technical quality 
indices for ground drilling construction, in geological exploration, the proportion of drill holes in the target 
rock layer should be no less than 90%.

2. Drilling length.

As the horizontal drilling length increases during the grouting process, the slurry flow encounters resistance 
due to factors such as drilling wall friction and fissure diversion, consequently, the effective grouting pressure 
diminishes progressively with the drilling hole length. Additionally, excessive drilling hole length leads to greater 
head loss of the slurry, resulting in insufficient effective grouting pressure, a limited slurry transfer range, the 
presence of grouting blind zones, and ultimately, a suboptimal grouting renovation effect.

3. Leakage.

During the drilling process, substantial variations are observed in the consumption of drilling fluid when 
exposing water-conducting channels of varying developmental  extents20. Consequently, the volume of drilling 
fluid leakage serves as a crucial indicator of the extent of karst fissure and tectonic development within limestone 
aquifers.

4. Water level.

During the drilling process, consistent monitoring of the water level at 30-min intervals is mandated prior to 
grouting, until stabilization is confirmed through three successive observations, preceding any further operations. 
Water level elevation refers to the height indicated by the pressurized water within the pressurized aquifer, as it 
rises within the borehole, and this measurement can to a certain extent reflect the water content of the limestone 
aquifer in the vicinity of the borehole.

Grouting engineering parameters

1. Pressure of grouting.

Grouting pressure serves as the primary driving force enabling the slurry to penetrate karst fissures via 
horizontal drilling holes. Consequently, grouting pressure directly influences the slurry’s transportation within 
the horizontal drilling hole and karst fissure, thereby impacting the slurry’s ability to fill these  fissures21. On one 
hand, grouting pressure is transformed into the kinetic energy of the slurry, while on the other, it is gradually 
dissipated due to various factors including friction between the slurry and the borehole wall, directional changes 
as the slurry enters the karst fissures, and the intrinsic properties of the slurry itself.

2. Mass of slurry injected.

The quality of the injected slurry can serve as an indicator to a certain extent for evaluating the grouting 
 effect22, however, the correlation between the quality of injected slurry and the grouting effect remains ambigu-
ous. The quality of injected slurry is significantly influenced by the geological conditions of the grouting area, 
and directly evaluating the grouting effect based solely on the quality of injected slurry proves challenging. Thus, 
it is often necessary to incorporate a range of parameters in the assessment.
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3. Alterations in the permeability characteristics of limestone aquifers pre- and post-grouting.

The principal indicators of rock body permeability are the water absorption rate and the permeability 
 coefficient23. Water absorption rate represents a physical measure of the extent of water absorption under stand-
ard atmospheric pressure. In grouting projects, water pressure tests are conducted both before and after grouting. 
The pre-grouting water pressure test aids in preliminarily assessing the development of karst fissures, potential 
connections between adjacent aquifers, and the presence of geological structures like faults and trap columns. 
Post-grouting water pressure tests are utilized to evaluate the slurry’s filling effectiveness in fissures and structures. 
The permeability coefficient is a measure indicating the difficulty for fluids to traverse the pore skeleton; a lower 
coefficient signifies greater difficulty for fluid passage. Generally, limestone aquifers have a very low permeability 
coefficient; however, the presence of karst fissures results in a relatively higher coefficient at the macroscopic level. 
Grouting modifications can significantly reduce this coefficient. The formulae for both are shown in Eqs. (1)and(2).

where: Q for the pressure into the flow, L/min; H for the role of the test section of the pressure (converted head 
height); L for the injection section length, m.

where: T is the flow rate of pressurized water,  m3/d; r is the radius of the borehole, m.

Relationship between parameters and influencing factors
“Dual‑process, multi‑parameter, and multi‑factor” system
Parameters within distinct processes are indicative of various influencing factors, and frequently, a single influ-
encing factor may be represented by several parameters collectively. Considering the two processes of drilling 
and grouting, four parameters from each process were gathered. This resulted in a total of eight parameters: the 
proportion of boreholes in the target rock strata, drilling length, leakage, water level, pressure of grouting, mass 
of slurry injected, permeability properties of limestone aquifers before being grouted, permeability properties of 
limestone aquifers after being grouted, which collectively cross-referenced the eight factors, thereby establishing 
a multi-parameter system that reflects these multifaceted factors, as illustrated in Fig. 7.

Examination of the interrelation among indicators
Pearson correlation coefficient is used to measure the degree of linear correlation between the data and its 
expression is shown in Eq. (3)24.
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Figure 7.  “Dual-process, multi-parameter, and multi-factor” system.
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where: (Xi, Yi) is the i th value of any two sets X, Y; 
(

X  , Y
)

 is the mean value of the two sets; n is the number of 
set elements.

The analysis results are depicted in Figs. 8, 9, 10 and 11. There is some similarity in the distribution of data 
for individual indicators (see Fig. 9). The permeability performance of the limestone aquifer, both pre- and 
post-grouting, represents varying conditions of the same index, with a correlation of 0.715, indicating moder-
ate correlation (Fig. 10). Concurrently, it was observed that the post-grouting permeability performance has a 
correlation of 0.459 with the length of the grouting section, indicative of a low correlation (Fig. 11). The primary 
reason for this is that the permeability performance is determined through compression testing, where the length 
of the drilled section plays a crucial role as a key physical parameter.

Modeling and evaluation
Model building process
To elucidate the model building and evaluation process, a flowchart (Fig. 12) is employed. The specific steps are 
outlined below:

Step 1: Compile the evaluation model dataset using field-recorded geological and grouting engineering data, 
incorporating indicators with actual evaluation outcomes.

Step 2: Preprocess the data and partition it into training and testing sets.
Step 3: Train the machine learning models using the training data set.
Step 4: Optimize the machine model parameters to determine the best configuration for each machine learn-

ing algorithm, resulting in 24 grouting effect evaluation models.
Step 5: Compare the performance of the 24 grouting effect evaluation models using the test data set to identify 

the optimal evaluation model.
Step 6: Verify the model through engineering practice.

Machine learning model
We introduced eight machine learning models: Logistic Regression, Extreme Gradient Boosting (XGBoost), Sup-
port Vector Machine (SVM), K-Nearest Neighbor (KNN), Gradient Boosted Decision Tree (GBDT), Extremely 
Randomized Trees (ET), BP Neural Network, and Adaptive Boosting (AdaBoost), all of which demonstrate 
superior performance.

Figure 8.  Correlation analysis.
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Among these, Logistic Regression is a classification algorithm relying on linear regression, primarily utilized 
for binary classification tasks; KNN is an instance-based learning algorithm that predicts by identifying the near-
est point within the training data; SVM classifies by constructing an optimal hyperplane; XGBoost and Adaboost 
are both ensemble learning algorithms that assemble a robust classifier by aggregating multiple weak classifiers 
to enhance model performance; GBDT and ET are both ensemble learning algorithms rooted in decision trees; 
GBDT trains decision trees iteratively, adjusting sample weights based on previous prediction outcomes in each 
iteration to prioritize mispredicted samples in subsequent trees; in contrast, ET trains each tree through random 
feature divisions, enhancing model diversity; BP represents an artificial neural network that adjusts network 
weights and biases by computing the error between predicted and true values and propagating the error backward 
throughout the network, progressively aligning network output with true values.

Enhancing model efficacy through parameter optimization
In machine learning, the configuration of model parameters is a critical factor influencing model performance. To 
ensure the rationality and scientific basis of parameter settings, heuristic optimization algorithms are employed. 
Diverse machine learning models exhibit varying degrees of adaptability to different optimization algorithms. 
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Figure 9.  Distribution of data by indicator.
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Consequently, three distinct algorithms: Genetic Algorithm, Particle Swarm Optimization, and Simulated 
Annealing are utilized. This approach facilitates the optimization of various parameters across different models.

The Genetic Algorithm is an optimization method grounded in evolutionary theory. It perpetuates genetic 
information across generations through a series of operations like replication, mutation, and crossover, employ-
ing the principle of survival of the fittest to retain highly adaptive results, ultimately converging to the optimal 
 solution25. This algorithm’s advantages include robust search capabilities and rapid computation, though it is 
prone to convergence on local optima. The optimization process for each parameter of the machine learning 
model involves several steps: setting the population size based on the number of parameters, evaluating fitness, 
selecting parent individuals based on fitness values, performing crossover operations on selected parents to 
produce offspring, applying mutation operations to offspring by randomly altering their genes, combining parent 
and offspring individuals to create the next generation of the population, and iterating these steps until optimal 
parameter configurations are achieved.

The Particle Swarm Optimization algorithm, an evolutionary computation technique, is inspired by the col-
lective foraging behavior of birds in nature. This approach is extensively utilized in engineering due to its simple 
implementation, efficient search capability, and rapid  convergence26. The fundamental concept of PSO is that each 
particle in the swarm benefits from the collective experience and knowledge accumulated by all members, facili-
tating the search for the optimal solution through collaboration and information sharing among the  particles27. 
PSO algorithms are also susceptible to convergence on local optima. The optimization process involves several 
steps: determining the number of particle swarms based on the number of parameters, initializing velocity and 
position vectors for each particle, assessing particle performance in the problem space, updating particle velocity 
and position based on their historical best positions and the historical best positions of the entire swarm, and 
iterating these steps to attain the optimal solution.

Simulated Annealing algorithms can address complex problems and surmounting local minima in the opti-
mization process. Annealing involves heating a solid to a temperature high enough for molecules to become 
randomly aligned, followed by gradual cooling, resulting in molecules aligning in a low-energy  state28. The 
primary advantage of this algorithm is its exhaustive search capability, reducing the likelihood of settling on a 
local optimum. However, it has the drawbacks of slow convergence and extended execution time. The optimiza-
tion process involves several steps: randomly generating initial parameters, setting the initial temperature and 
cooling rate, perturbing the current parameter configuration to obtain a new candidate solution, evaluating the 
performance of the candidate solution, calculating the acceptance probability based on the performance of the 
current and new solutions, deciding whether to accept the new solution, adjusting the temperature according to 
the cooling rate, and iterating these steps to achieve the optimal solution.Table 1 displays the parameter settings 
for the three optimization algorithms.
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Figure 11.  Correlation analysis between infiltration performance and borehole section length after grouting.
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Figure 12.  Modeling process for evaluating grouting effects using machine learning algorithms.

Table 1.  Optimization algorithm parameter settings.

Algorithm Parameter Setting Range of values

GA

Population size 100 20–150

Maximum Iterations 300 100–500

Mutation rate 0.01 0.0001–0.1

Crossover rate 0.5 0.4–0.99

PSO

Swarm size 100 20–150

Maximum Iterations 300 100–500

Inertia weight 0.9 0.6–1.2

Cognitive component 2 0–4

Social component 2 0–4

SA

Initial temperature 100 100–200

termination temperature 2 1–5

Cooling rate 0.98 0.95–0.99

Number of iterations 200 100–200
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Evaluation metrics for model performance

1. Confusion matrix.

In predictive and classification models, the confusion matrix serves as a visual representation of the model’s 
 performance29. Assuming a model evaluates M samples with binary classification outcomes denoted as T (True) 
and F (False), the confusion matrix is illustrated in Fig. 13. Here, “a” represents the count of samples predicted 
as T and actual as T, “b” as predicted T but actual F, “c” as predicted F but actual T, and “d” as both predicted and 
actual F, with the total sample count M equal to a + b + c + d.

2. Accuracy.

Accuracy denotes the ratio of correctly predicted samples to the total number of samples in the modeling 
outcomes, with higher accuracy generally indicative of superior model performance. As illustrated in Fig. 14, 
the formula for calculating accuracy is as follows:

3. Recall.

Recall, pertaining to actual outcomes, measures the proportion of samples that are truly classified as T and 
are correctly predicted as T, as depicted in Fig. 15. The formula for its calculation is as follows:

4. Precision.

(4)A =
a+ d

M

(5)R =
a

a+ c

Figure 13.  Confusion matrix.

Figure 14.  Confusion matrix for accuracy.
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Precision, concerning predicted outcomes, quantifies the proportion of samples that are predicted as T and 
are indeed correctly classified as T, as depicted in Fig. 16.

5. F.

The F-score, a harmonizing metric, is introduced to equilibrate recall and  precision30. It is generally computed 
using the following equation:

Evaluation of model performance
To comprehensively measure the performance of the model, indicators including accuracy, recall, precision, 
and F-score were introduced. The evaluation was conducted by investigating the pre-grouting project at Qiuji 
coal mine, where 100 sets of data from grouting projects were collected (As in the supplementary material). The 
model’s predictive performance was assessed using the tenfold cross-validation method. This method, illustrated 
in Fig. 17, involves obtaining 10 mutually exclusive subsets of similar sizes through stratified sampling of the 
dataset. Each subset serves as a test set, while the remaining 9 subsets are utilized as training sets. Subsequently, 
after 10 training iterations, the average of the results from the 10 test sets is computed to evaluate the model’s 
performance, as shown in Eq. (8).

Different heuristic optimization algorithms were employed to optimize the model parameters. The calculated 
accuracy, recall, precision, and F-score of the eight grouting effect evaluation models are summarized in Table 2. 
Additionally, the confusion matrix of the test set for each of the eight evaluation models is depicted in Fig. 18.
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(7)F =
2PR
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Figure 15.  Confusion matrix for recall.

Figure 16.  Confusion matrix for precision.
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Results indicate that parameter optimization via heuristic algorithms enhances the evaluation model’s per-
formance, evidenced by an increase in the average F-score from 0.71 pre-optimization to 0.77 post-optimization. 
Additionally, the selection of heuristic algorithms significantly impacts the model’s final performance, with 
varying optimization effects observed across different algorithms. The model results, using the test set’s F-score 
as a performance metric, reveal that the best performing models include BP Artificial Neural Network (0.80), 
AdaBoost (0.84), Logistic Regression (0.80), KNN (0.82), and SVM (0.81), with the AdaBoost model, optimized 

Table 2.  Results of machine learning.

Model

BP Adaboost GBDT ET

Training Test Training Test Training Test Training Test

GA

Accuracy 0.73 0.80 0.87 0.83 0.76 0.63 0.90 0.77

Recall 0.73 0.80 0.87 0.83 0.76 0.63 0.90 0.77

Precision 0.73 0.85 0.88 0.84 0.77 0.69 0.91 0.84

F 0.72 0.78 0.87 0.84 0.73 0.59 0.90 0.74

PSO

Accuracy 0.69 0.73 0.67 0.83 0.99 0.67 1.00 0.73

Recall 0.69 0.73 0.67 0.83 0.99 0.67 1.00 0.73

Precision 0.68 0.73 0.67 0.84 0.99 0.66 1.00 0.74

F 0.68 0.73 0.65 0.82 0.99 0.66 1.00 0.72

SA

Accuracy 0.69 0.80 0.94 0.73 0.89 0.67 0.94 0.73

Recall 0.69 0.80 0.94 0.73 0.89 0.67 0.94 0.73

Precision 0.70 0.82 0.94 0.73 0.90 0.67 0.94 0.76

F 0.69 0.80 0.94 0.73 0.88 0.67 0.94 0.74

/

Accuracy 0.76 0.60 1.00 0.63 0.59 0.67 1.00 0.73

Recall 0.76 0.60 1.00 0.63 0.59 0.67 1.00 0.73

Precision 0.80 0.63 1.00 0.68 0.34 0.44 1.00 0.77

F 0.73 0.52 1.00 0.65 0.43 0.53 1.00 0.71

Model

LR SVM Xgboost KNN

Training Test Training Test Training Test Training Test

GA

Accuracy 0.69 0.80 0.71 0.77 / / 0.67 0.77

Recall 0.69 0.80 0.71 0.77 / / 0.67 0.77

Precision 0.69 0.80 0.72 0.78 / / 0.67 0.76

F 0.66 0.80 0.71 0.77 / / 0.66 0.76

PSO

Accuracy 0.74 0.77 0.71 0.73 1.00 0.73 0.74 0.73

Recall 0.74 0.77 0.71 0.73 1.00 0.73 0.74 0.73

Precision 0.75 0.77 0.71 0.83 1.00 0.73 0.75 0.72

F 0.73 0.76 0.71 0.75 1.00 0.73 0.73 0.72

SA

Accuracy 0.73 0.80 0.76 0.80 0.90 0.80 0.77 0.83

Recall 0.73 0.80 0.76 0.80 0.90 0.80 0.77 0.83

Precision 0.73 0.81 0.76 0.82 0.91 0.85 0.84 0.83

F 0.71 0.79 0.76 0.81 0.90 0.78 0.75 0.82

/

Accuracy 0.71 0.70 0.73 0.67 1.00 0.60 0.79 0.70

Recall 0.71 0.70 0.73 0.67 1.00 0.60 0.79 0.70

Precision 0.71 0.80 0.77 0.60 1.00 0.59 0.80 0.71

F 0.71 0.64 0.71 0.63 1.00 0.59 0.78 0.70

Figure 17.  A sketch map for tenfold cross validation.
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via a genetic algorithm, exhibiting superior performance. Conversely, EXTRA TREE (0.74), GBDT (0.67), and 
XGBoost (0.78) demonstrated relatively lower performance, potentially attributable to the limited dataset size 
impacting model training.

Comparison and validation of actual projects
The 11 1104 and 111105 working faces of Qiuji Coal Mine, situated in mining district 11, feature elevations rang-
ing from − 425 to – 340 m. The 1104 working face spans a width of 100 m, while the 1105 working face extends 
across 120 m. The Xu ash limestone aquifer, located beneath the working face, has an average thickness of 12.85m 
and serves as an indirectly water-filled aquifer for the mining of the 11 coal seams. Borehole pumping test data 
reveal that the Xu ash aquifer’s water influx ranges from 0.286 to 1.658 L/s m, with medium to strong water 
richness. The permeability coefficient varies from 0.0169 to 6.2225 m/d, reducing to 0.2296 m/d after grouting 
modification. The water chemistry is categorized as  SO4-Ca,  SO4-Ca∙Mg,  HCO3∙SO4-Ca∙Mg, with mineralization 
levels of 0.438–3.130 g/L. To ensure safe mining operations, ground area directional grouting technology was 
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employed to treat the Xuhui aquifer. The ground drilling operations near the two working faces involved drilling 
groups D3, D11, and WX9. The arrangement of these ground drilling holes is depicted in Fig. 19. Following the 
grouting transformation, as illustrated in Fig. 19, the grouting effect was evaluated using traditional methods. 
The results of this evaluation are presented in Fig. 20.

Following the grouting treatment, there has been a substantial reduction in the water richness of the Xu 
Lime limestone aquifer. However, mine borehole explorations have verified the presence of areas with significant 
water influx (≥ 10  m3/h), suggesting suboptimal grouting effectiveness in these regions, as illustrated in Fig. 21.

Using SPSS PRO software, the engineering data from borehole groups D3, D11, and WX9 were imported into 
the model to assess the grouting effect using a trained AdaBoost machine learning model optimized by genetic 
algorithms. The evaluation results are depicted in Fig. 22. The overall accuracy rate of the model is 72.9%. For 
the attainment case, the model’s recall rate is 76.2%, while the precision rate is only 53.3%, indicating insuf-
ficient training for the attainment case and more misclassification of non-attainment cases as attainment. This 
issue may be attributed to the limited amount of data for the attainment case in the dataset. It is expected that 
increasing the data volume will improve the situation. The F-score is 61.8%, indicating an overall passing grade. 
For the non-attainment case, the model’s recall rate is 61.8%, also a passing grade overall. Additionally, for the 
non-attainment case, the model’s recall rate is 72.9%. In this case, the recall rate is 71.4%, the precision rate is 
87.5%, and the F-score is 78.6%, indicating higher evaluation performance.

Figure 23 displays the boreholes predicted to exhibit substandard grouting effects. These boreholes are pri-
marily situated in areas of higher water influx, suggesting a significant correlation between the prediction results 
and the actual conditions. The boreholes with inaccurate predictions are illustrated in Fig. 24.

A comparative analysis of Figs. 20 and 21 reveals that the Adaboost grouting effect evaluation model, opti-
mized by a genetic algorithm, demonstrates higher accuracy compared to traditional evaluation methods and 
aligns more closely with the actual outcomes of physical exploration, thereby suggesting that the GA-Adaboost 
model serves as a viable reference for evaluating the grouting effectiveness in the limestone aquifer of Qiuji 
Coal Mine.

11 1105 wrorking face

11 1104 working face

39452000

39452200

4037600 4037800 4038000 4038200 4038400 4038600

D11 drilling group WX9 drilling group D3 drilling group

Figure 19.  Arrangement of drill holes.

39452000

39452200

4037600 4037800 4038000 4038200 4038400 4038600

drilled hole Eligible areas Ineligible areas

Figure 20.  Assessment outcomes of traditional grouting effectiveness evaluation techniques.
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Discussion
This paper introduces a grouting effect evaluation model based on machine learning algorithms within the 
framework of engineering practice. This model aims to offer valuable guidance for assessing the effectiveness 
of grouting.

Following actual engineering comparisons, it is evident that the model’s evaluation results exhibit higher 
accuracy compared to traditional grouting effect assessment methods. Moreover, it considers aspects of rapidity 
and operability in evaluation. Furthermore, with ongoing enhancements to the dataset and algorithm optimiza-
tion, its accuracy is expected to progressively improve. It is noteworthy that the method demonstrates excellent 
scalability and can seamlessly integrate with new data and contexts without necessitating a complete system 
redesign. Nonetheless, its limitations are apparent. Being a machine learning algorithm, it heavily relies on data, 

39452000

39452200

4037600 4037800 4038000 4038200 4038400 4038600

Quantity of water surging 10m3·h-1 Quantity of water surging≥10m3·h-1

Figure 21.  Surge zoning.

Figure 22.  Confusion matrix for evaluation results.
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Quantity of water surging 10m3·h-1 Quantity of water surging≥10m3·h-1

Figure 23.  Predicted substandard boreholes.
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and issues such as insufficient data, poor data quality, or data imbalance may diminish the model’s accuracy and 
utility. Additionally, the machine learning algorithm lacks a certain level of interpretability, posing potential 
challenges in certain engineering domains.

Nevertheless, this approach holds significant potential for expansion. Firstly, as researchers increasingly 
focus on engineering data, previously challenging-to-quantify data are being progressively delineated, paving 
the way for the creation of extensive “big data sets” for evaluation purposes. Secondly, various machine learn-
ing algorithms exhibit a high level of adaptability, capable of handling diverse data types such as numerical, 
graphical, among others. This versatility substantially enhances the practicality of machine learning algorithms. 
In the future, it is anticipated that grouting effect evaluation models with enhanced performance and expedited 
evaluation processes will be developed.

Conclusion

1. The analysis indicates that the factors influencing the evaluation of grouting effectiveness are complex. 
Therefore, a system comprising “Dual-process, multi-parameter, and multi-factor” has been established.

2. The parameters of the grouting project were gathered, and an optimization-seeking algorithm and a hybrid 
machine learning model were developed. Following comparative analysis, it was determined that the GA-
Adaboost model exhibited the best performance.

3. Engineering practice has demonstrated that the evaluation results obtained from the GA-Adaboost model are 
closer to the actual scenario compared to those derived from the traditional grouting effect evaluation method. 
This finding offers valuable insights for the development of grouting effect evaluation methodologies.
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