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An optical system to detect, 
surveil, and kill flying insect vectors 
of human and crop pathogens
Joseph M. Patt 1*, Arty Makagon 2, Bryan Norton 2, Maclen Marvit 2, Phillip Rutschman 2, 
Matt Neligeorge 2 & Jeremy Salesin 2

Sustainable and effective means to control flying insect vectors are critically needed, especially with 
widespread insecticide resistance and global climate change. Understanding and controlling vectors 
requires accurate information about their movement and activity, which is often lacking. The Photonic 
Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, 
and interdict vectors in flight. The PF examines an insect’s outline, flight speed, and other flight 
parameters and if these match those of a targeted vector species, then a low-power, retina-safe 
laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted 
with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid 
which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% 
and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when 
the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The 
system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of 
photonic energy, rather than chemicals, to control flying vectors.

Flying insects that transmit human, animal, and plant pathogens have global impacts on human health, agricul-
ture, and ecological  stability1,2. Eighty percent of the world’s population is vulnerable to vector-borne diseases, 
which account for ca.17% of all infectious diseases and kill over 700,000 people per year, primarily  children2. 
For example, malaria, a parasitic infection transmitted by Anopheles mosquitoes, infected 249 million people 
worldwide in 2016 and caused over 600,000 deaths, mostly young  children2,3. Dengue, which causes 40,000 deaths 
per  year2, is transmitted by Aedes mosquitoes as are other arboviruses, such as chikungunya fever, Zika Virus, 
West Nile Virus, and yellow  fever2,4. The parasite that causes leishmaniasis is transmitted by female phleboto-
mine sandflies, which like mosquitoes, feed on blood to produce  eggs5. It is estimated that 700,000 to 1 million 
new cases of leishmaniasis occur annually, primarily among the world’s poorest  people6. The health of livestock, 
domestic animals and wildlife is also seriously affected by vector borne diseases, such as trypanosomiasis, Rift 
Valley Fever, and blue tongue  virus7–10. With rapid globalization, ecological links within a native pathosystem can 
be replaced in a naïve area with new vectors and hosts, exacerbating efforts to limit disease  spread11–13. Likewise, 
crop production suffers worldwide from plant diseases spread by flying insect vectors such as aphids, whiteflies, 
planthoppers, and  psyllids14–21.

Control of insect vectors relies primarily on chemical insecticides, which are often the only practical control 
 solution22–24. However, reliance on insecticides is costly and it negatively impacts the health of humans, non-
target organisms, and the  environment22,25–28. Alarmingly, most vector species are already resistant to available 
 insecticides29–37, and insecticide resistance has now been reported in all major malaria vector species and against 
all classes of  insecticide38–40.

Increasing global temperatures increases insect vector abundance and distribution, bringing outbreaks of 
vector-borne diseases to new areas, exacerbating control efforts in at-risk  areas41–56, and promoting more insec-
ticide  use57–59. At higher temperatures and  CO2 levels, insecticides decompose more quickly, and insects detoxify 
them more rapidly, which may decrease their efficacy as the climate  warms60–63. Moreover, synergistic interactions 
between rising temperatures and increasing insecticide applications can aggravate insect pest  outbreaks64,65. As 
the climate warms, the rapid evolution of vector resistance to available insecticides will be promoted by factors 
such as increases in vector activity levels, movement patterns, and generations per  year33,42,51,66–69. There is also 
the troubling occurrence of increased vector resistance to pyrethroids, which are used to treat bed nets, in vector 
populations inhabiting agricultural areas where pyrethrins are used against crop pests, making it more difficult to 
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control them with these materials in inhabited  areas70–74. Developing and managing vector resistance programs to 
extend the life of available insecticides is among the most difficult and important challenges facing global public 
health and food security in the near term, especially as the climate warms and  changes36,75–79.

The capability to accurately monitor the abundance and distribution of flying insect vectors within a target 
area is critical to implementing regional management plans aimed at reducing vector populations, managing 
pesticide resistance, and eliminating pathogen  transmission80,81. Providing accurate estimates of vector abun-
dance and distribution within a given area is contingent on obtaining reliable counts of vectors at light traps, 
 CO2 traps, or other trapping  devices82–85. However, efficiency of traps with respect to delivering reliable captures 
depends on several factors and trapping may not always provide accurate estimates of vector population  size86–88. 
Still, examination of specimens caught in traps is the best, and sometimes only, way to identify and count indi-
viduals of a particular vector species. Retrieval of specimens from traps is required for genetic, morphological 
and biochemical analyses and examination, which are necessary steps for conducting fundamental studies on 
insecticide resistance in vector populations and for developing and implementing insecticide resistance man-
agement  strategies33. Recent advances in sensor and computer vision, machine learning, and the Internet of 
Things technology have greatly improved the functionality and effectiveness of insect traps with respect to their 
capability to identify and classify vectors and to perform these tasks  autonomously89–96. However, most insect 
traps in use today have the drawback of being labor- and time intensive to set-up, retrieve, and analyze, are dif-
ficult to use in unwelcoming terrain or over extensive sampling areas, and are subject to weather conditions and 
 events97,98. This makes it difficult in many scenarios to accurately assess vector populations without incurring 
high  costs84,99,100. In addition, traps sometimes fail to adequately sample important or infected vectors, which 
can lead to errors caused by sampling bias and misinterpretation of the  data101. More effective vector monitoring 
and control approaches are urgently required to address insecticide resistance and prevent vector-borne diseases 
from increasing and  spreading74,102.

An emerging technology for monitoring insect vectors is the use of electromagnetic radiation coupled with 
advanced optical imaging systems, signal processing technology, computer vision, and machine  learning92,103–110. 
Advances in entomological radar and lidar have permitted successful survey and monitoring activities of insect 
fauna at high- to mid-altitudes111–113. This technology has provided important insights into insect migration and 
diurnal and seasonal flight differences as well as revealed the ecological and agricultural importance of insects 
inhabiting different elevational or altitudinal  niches114,115. The introduction of harmonic radar, in which an 
insect is fitted with a transponder energized by the radar, permitted the tracking of individual insects at ground 
 level116–118 or even using UAV drones to enhance tracking  ability119. Near ground lidar tracking is now suffi-
ciently sensitive to perform fine-scale observations such as the recording the anomalous daytime flight activity 
of mosquitoes during solar  eclipses120 and quantifying insect pest abundance above rice paddies under different 
meteorological  conditions121. Recently, a high resolution lidar scanning a 500 m transect outside a rural Afri-
can village was able to quantify the daily dispersal of mosquitoes in a village and revealed that the distribution 
of each gender differed in relation to the  village122. Over the course of that study, a quarter of a million insect 
observations were made, and several insect taxa were identified based on their wingbeat modulation signatures.

Infrared laser-based systems coupled with machine learning are now sensitive enough to determine the sex 
of individual mosquitoes in  flight123,124. Because male and female mosquitoes produce different frequencies 
while in flight, the amplitude of the backscattered light received from each gender differs and the signal can be 
used as a basis for gender identification and discrimination. Sufficient image resolution permitted such systems 
to distinguish gravid from non-gravid female  mosquitoes125. An infrared laser-based optical sensor performed 
continuous surveillance of flying insects for 80  days126. The device recorded light backscattered by insects transit-
ing through its laser beam and compiled information about each insect’s wing beat frequency, transit time across 
the beam, and the ratio of its wings to body dimensions to identify the insects to specific taxonomic groups. Data 
from this survey enabled the determination of the aerial densities, circadian rhythms and peak activities of each 
taxonomic cluster of insects. These results demonstrate that optical sensors, coupled with machine learning, are 
a viable methodology for performing non-intrusive, automatic, measurements of insect population dynamics 
over extended periods of time.

Just as innovations in optical and machine learning systems are making tangible progress towards permitting 
real time detection, identification, and tracking of flying insects, combining this technology with photonics is 
providing the means to intercept and kill  them127–137. Studies have demonstrated that lasers pulses can kill insects 
from as large as a roach (Blatella germanica)136 to as small as a whitefly (Bemisia tabaci)137. In lab tests, laser pulses 
were shown to be capable of killing flying mosquitoes (Anopheles stephensi, Culex pipiens), Asian citrus psyllid 
(Diaphorina citri) and, spotted wing drospophila (Drosophila suzukii)127–131. Aphids, which are among the most 
important vectors of plant viruses, are vulnerable to laser pulses while they feed on  plants134,135. In this system, a 
robot bearing the photonic system moves down a row of crop plants, interrogates each plant, and pulses a laser 
to individual aphids attached to the stems and leaves.

Here we report on the first tests of a field-scale sized all-optical system, the Photonic Fence, which is designed 
to identify and intercept small flying insect vectors over a wide  area127–129 (Fig. 1). The Photonic Fence units, 
developed by Global Health Labs (formerly Global Good Fund), are mounted on two towers placed opposite of 
each other (Figs. 1, 2 and 3). Each unit is comprised of three independent modules which function sequentially. 
One module detects insect motion, and the others tracks and identifies the targeted insect. The initial detection 
of an insect is achieved by acquiring a video image of it when it crosses the virtual boundary of the system, which 
is referred to as the ‘active zone’. The active zone consists of a plane of infrared light (Fig. 3) projected by infrared 
lamps mounted on one Photonic Fence tower and reflected from a retroreflector on the other tower which is 
placed opposite of it at a defined distance (Fig. 3). Insects traversing the active zone are back illuminated by the 
infrared light reflected from the retroreflectors and thereby cast silhouettes. The first module, the ‘coarse track-
ing’ system (Fig. 2B), uses a pair of stereoscopic cameras to image the silhouettes and machine vision algorithms 
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to provide real-time reconstruction of each insect’s silhouette and identify its three-dimensional (xyz) location 
within the active zone. If the insect’s size and speed fall within a pre-defined range, it is further interrogated 
by the second module, the ‘fine tracking’ system (Fig. 2B). This module uses a high-speed camera and a fast-
scanning mirror to keep the targeted insect in the middle of the camera’s field of view. By comparing the target’s 
size, speed, and other parameters to those of vector species contained in a database, the system identifies the 
targeted insect. If the insect is a vector, then the third module (Fig. 2B) can direct a very brief pulse of a low-
power, retina-safe laser to kill it. Sophisticated software integrates the module components, providing real-time, 
continuous coverage of the active zone. The laser system is designed so it will not fire if people or other animals 
enter the active  zone127–129.

During development of the Photonic Fence, the capabilities of multiple types of lasers to kill anaesthetized 
mosquitoes (Anopheles stephansi) were evaluated and the primary optical parameters involved in causing thermal 
damage to internal organs and subsequent morbidity or mortality were  identified127. Besides the laser’s wave-
length (nm), these included beam (spot) diameter (mm), pulse duration (ms), and pulse energy (mJ). The tests 
demonstrated that anaesthetized mosquitoes could be killed by laser pulses to the thorax at various wavelengths, 
beam diameters, durations, and power conditions. Green and far-infrared wavelengths were found to be more 
effective in incapacitating mosquitoes than near- and mid-infrared wavelengths.

Follow-up studies were performed with vectors flying in small acrylic enclosures positioned in the active zone 
to evaluate and optimize the Photonic Fence’s tracking system and its integration with the laser  system128,129. 
During tests with flying mosquitoes (A. stephansi), the system successfully derived individual mosquitoes’ veloc-
ity, and linear and angular acceleration before, during, and after the laser pulse from its xyz position, which 
was continuously monitored by the tracking  system128. Spatial positioning of the mosquitoes was obtained by 
assigning each tracked mosquito a coordinate in image space based on its image centroid, from which the actual 
azimuth and elevation relative to the optical center of the camera could be calculated. To evaluate interception 
performance during the laser pulse, the fine tracking system was used to determine how much of the laser’s 
2.5 mm beam diameter overlapped with the mosquito’s thorax and abdomen It was found that a tracking error 
of < 2 pixels for a minimum of 50 ms was required for the system to accurately target and hit the mosquito with 
the directed laser. The initial tests of this laboratory study were performed with the acrylic enclosures positioned 
2 m from the Photonic Fence unit. After further calibration, the Photonic Fence was capable of targeting and 
killing all the mosquitoes (in this case both A. aegypti and C. pipiens) flying in an enclosure placed 30 m from it.

Figure 1.  The screenhouse (40 m L × 3.05 m W × 3.66 m H) built to test the Photonic Fence at the USDA-
Agricultural Research Service citrus grove in Fort Pierce, FL. (A) Exterior view. (B) Wide angle view of the 
interior showing the placement of Photonic Fence towers at both ends of the screenhouse. (C) Interior view 
from one Photonic Fence tower to the other showing the placement of traps for A. aegypti recovery. (D) View 
of yellow 3D traps arranged along recovery side of screenhouse during preliminary recovery tests. Note that the 
observer is located on the vector release side of the screenhouse and that the psyllids must fly across the active 
zone to reach the traps and potted host plants set up on the opposite side. See Fig. 10B for the actual set-up used 
during tests. (E) Screen house set-up for the open-air test to evaluate the Photonic Fence’s capability to track and 
target ambient levels of insects flying during dusk.
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The Photonic Fence installation described in the current study had a large active zone measuring 30 m 
long × 3 m high × 0.3 m wide (Figs. 1 and 3). It was the largest and most complex design of the Photonic Fence 
to date and integrated the sub-systems that were tested and optimized previously with respect to laser control 
and delivery, target tracking, and target  selection127–129 This version of the Photonic Fence was designed to 
maximize performance at the expense of size, weight, cost, and other system variables, with the expectation 
that those variables would be optimized during a later productization stage. The objective of the study was to 
determine if the Photonic Fence could detect, track, and intercept vectors across the entirety of an active zone 
of a size envisioned for deployment in the field.

Figure 2.  Diagrammatic representation of the Photonic Fence system: (A) Front view of the support tower 
showing the position of the tower frame, individual Photonic Fence units, reflector panel, communications 
and control computers, and laser generator. (B) Isometric view of an individual Photonic Fence unit showing 
position of infrared lamps, fine tracking system and laser aperture, and coarse tracking system apertures.

Figure 3.  Diagrammatic representation of showing the placement of the Photonic Fence towers and the 
overlapping photonic fields generated by each of the four Photonic Fence units.
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The yellow fever mosquito, Aedes aegypti (L), was chosen as the representative human pathogen vector for 
this study because it and its congener Aedes albopictus (L), vector dangerous arboviruses, such as yellow fever, 
dengue, chikungunya, and  Zika138–140. Once a forest-dwelling zoophilic mosquito, A. aegypti gradually adapted 
to changing weather and environmental conditions and became an anthropophilic, urban-dwelling  species137–141. 
The females prefer to oviposit in containers holding stagnant water, such as flowerpots, discarded containers, 
tires, etc. and rest in  habitations142. A. aegypti is 4–7 mm long and may fly over 100 m while searching for 
hosts and oviposition  sites143,144. These adaptions have facilitated the spread and establishment of A. aegypti 
in new areas inhabited by immunologically naive human populations and led to a shift in the epidemiology 
of these viral  diseases136–139. A further complication is that these mosquitoes can disseminate multiple viruses 
 simultaneously145,146, which further shows that more effective means to surveil and control Aedes mosquitoes 
are needed, especially when managing arbovirus  outbreaks147.

The Asian citrus psyllid, D. citri (Kuwayama), was chosen as a representative vector of a serious crop pathogen. 
This psyllid is an obligate phloem feeder of Citrus and closely related plants in the Rutaceae family. It vectors 
Candidatus Liberibacter asiaticus, a gram negative, phloem-limited bacterium that is the putative causal agent 
of huanglongbing disease of  citrus148–150. Huanglongbing is the most devastating disease of citrus in the world: 
infected trees initially have mottled, misshaped leaves and green, bitter fruit and they typically die a few years later 
as there is currently no therapeutic treatment available against the  pathogen151,152. Huanglongbing has seriously 
impacted major citrus-producing regions  globally153–156. For example, citrus production in Florida, the largest 
orange juice producing state in the U.S., has decreased by over 70% since 2005, when the disease was first detected 
 there153,156,157. Adult D. citri are typically 2.7–3.3 mm  long158 and can disperse widely across  landscapes159–161. 
Growers rely heavily on insecticides to control D.  citri162, which consequently has resulted in the emergence 
of insecticide-resistant psyllid  populations163–167. Because there are limited therapeutic treatments available for 
infected citrus  trees168,169, new control measures are needed for D. citri. An earlier study demonstrated that the 
laser system of the Photonic Fenced could kill anaesthetized D. citri129. Dosing measurement showed that psyl-
lid mortality occurred at a low energy level of 2 mJ, and that 90% mortality was reached at 15 mJ from pulses 
of a continuous wave 445 nm laser that lasted from 3 to 28 ms. The detection and tracking modules could be 
re-programed to track D. citri flying in a transparent acrylic chamber. Further testing of the integrated system 
demonstrated that it could detect, track and intercept D. citri at close  range128. Other researchers have also shown 
that D. citri could be killed by laser  pulses130.

The orchid bee, Euglossa dilemma (Friese), a Central American euglossine bee species established in southern 
 Florida170,171, were used to test the Photonic Fence’s capability to discriminate between target and non-target 
insects. While they are exotic to Florida, euglossine bees are critical pollinators in many tropical plant communi-
ties in their native  range172 and play a highly beneficial role in those regions. Males of this orchid bee were used 
as a representative non-target species because they don’t sting, making them easy to handle, are ca. 1.3 mm long, 
which is close in size to the honey bee (Apis mellifera L.)171, and are abundant in the test locality. Male orchid 
bees have a strong co-evolutionary relationship with certain orchid species, are highly attracted to certain floral 
 volatiles173–175; and can be readily collected at scent  baits176 (Fig. 4).

Results
Initial mosquito tracking and interception tests
During the first 4 h of an initial mosquito tracking and interception test, the detection, interrogation, and track-
ing modes were active while the laser function was silenced. Following the release of 1000 A. aegypti in the 
screenhouse, with a human ‘agitator’ walking back and forth on the upwind side of the screenhouse exterior, a 
peak of just over 400 mosquitoes per minute were detected in the active space extending along the middle of 
the screenhouse (Fig. 5). At the 45-min point, the agitator took a break and left the vicinity of the screenhouse, 
and the number of mosquitoes detected per minute decreased to around 50 individuals per minute. When the 
agitator returned, the detection level again rose to greater than 300 individuals per minute. The agitator took two 
more breaks over the next 2 h, and each time the number of mosquitoes detected decreased to between 50 and 
100 individuals per minute. The numbers then rebounded to between 200 and 280 individuals when the agitator 
returned. Four hours after the start of the test, the laser mode was engaged. During the final 60 min of the test the 
mosquito population within the screenhouse declined from laser-inflicted mortality and their detection levels 
dropped steadily to 50 or fewer individuals per minute (Fig. 6). A post-hoc analysis of the system’s responses 
showed that the mosquitoes were detected within the entire 180 square meter active space (Fig. 7). The laser 
typically engaged 1–2 mosquitoes per second but could engage up to 7 targets per second (Fig. 8).

Flying vector interception efficiency tests
Aedes aegypti
In a release and recovery test (Fig. 9A) with only the monitoring mode active, 38.3% of the 350 A. aegypti released 
at the beginning of the test on one side of the Photonic Fence were recaptured either on a human subject (61 
total) or in the mosquito traps (73 total) 60 min following their release (Table 1; Fig. 10A). In the subsequent test 
with both the monitoring and laser modes active, only 3 (0.86%) of the 350 released mosquitoes were recaptured 
on the human subject while none were recaptured in the mosquito traps.

Diaphorina citri
In the initial release and recovery test (Fig. 9B) with only the monitoring mode active, 18.7% (112 total) of the 
600 D. citri released at the beginning of the test on one side of the Photonic Fence were recaptured in the 3-D 
yellow traps. In the following two tests with both the monitoring and laser modes active, 3.7% (22) and 2.3% 
(14) of the 600 released psyllids were recaptured in the 3-D yellow traps (Table 1; Fig. 10B).
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Figure 4.  Photo of males of the orchid bee, E. dilemma, which were used as a representative non-target species. 
The males were attracted to a cotton swab which was dipped into a scent bait, p-methoxybenzene. The males 
collect the scent, store it in a specialized organ located on their rear legs, and then use it to produce a courtship 
pheromone. Photo by J. M. Patt.

Figure 5.  Diagrammatic representation of the set-up for the initial 5.5-h long test of the Photonic Fence. A 
human ‘agitator’ walked along the outside of the screenhouse to help stimulate mosquito (A. aegypti) activity. 
Initially, the laser was disengaged, and the system measured the flight activity level of the mosquito population 
when the agitator was next to the screenhouse versus when they tool a rest break and were away from it. 
Towards the end of the test, the laser was engaged to test its effectiveness in reducing the mosquito population in 
the screenhouse.
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Figure 6.  The number of detections of flying A. aegyti over the 5.5 h-long initial test of the Photonic Fence. 
For this test, 1000 A. aegypti were released inside the test area. During the initial 4 honly the monitoring mode 
was active. Note that when the human agitator took a break and walked away from the screen house, mosquito 
activity declined. During the last hour of the test, the lethal laser mode was engaged, and the population of 
mosquitoes declined in the screen house.

Figure 7.  Cumulative tracking events of 1000 A. aegypti over the course of the initial test, showing views from 
the side and top of the active zone. Each red dot was a tracking event and their distribution shows that the 
mosquitoes were successfully tracked throughout the active zone of the Photonic Fence.
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Figure 8.  Lethal laser engagement rate with A. aegypti during the initial test of the Photonic Fence showing that 
the system could intercept up to 7 mosquitoes per second.

Figure 9.  Diagrammatic representation of the set-up for testing the efficiency of the system’s ability to intercept 
flying insect vectors. Comparisons were made of vector recovery while only the monitoring mode was activated 
versus that with both the monitoring mode and laser activated. (A) Tests with mosquitoes, showing relative 
positions of cages for releasing A. aegypti, two pail traps with visual and olfactory attractants, two pan traps 
with seasoned water, and a human subject covered with a bee net and white overalls equipped with a 100  cm2 
opening which exposed the human subject’s skin while seated during the test. (B) Tests with psyllids, showing 
relative positions of cages for releasing D. citri and yellow 3-D traps.
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Target discrimination test with bees
All 10 individual male orchid bees (E. dilemma) released in the screenhouse were recovered alive following a 
60-min test period with both the monitoring mode and laser engaged (Fig. 10C).

Open-air test
The system detected very high numbers (> 1000/min) of ambient flying insects during the peak dusk activity 
period (Fig. 11). The release of 10,000 A. aegypti in the open section of the screen house at the peak dusk flight 
activity period did not produce a pronounced increase in insect detections, most likely due to the very high 

Table 1.  Results of tests comparing the recovery of flying vectors with only the monitoring mode active 
versus with both the monitoring and laser modes active. Each test ran for 60 min. A. Recovery of A. aegypti 
mosquitoes on a human subject and in traps. B. Recovery of Asian citrus psyllid (D. citri) on yellow 3-D traps.

Recovery point: Only monitoring mode active Both monitoring + laser modes active

A. Yellow fever mosquito (Aedes aegypti) (Single test performed in each mode, with 350 mosquitoes released)

Number of mosquitoes settled on skin patch of human 
subject 61 3

Combined numbers of mosquitoes collected in pan and 
pail traps 73 0

% Recovered 38.3 0.86

Test number
Monitoring mode only (Total recovered and % 
recovered)

Both monitoring + laser modes active (Total recovered 
and % recovered)

B. Asian citrus psyllid (Diaphorina citri) (600 psyllids released per test. A single test was performed with only the monitoring mode active and 2 tests were performed with 
both the monitoring and laser modes active.)

1 112 (18.7%) NA

2 NA 22 (3.7%)

3 NA 14 (2.3%)

Figure 10.  Results of the target discrimination tests in which there was a 100% laser pulse triggering when 
the pathogen vectors A. aegypti and Diaphorina citri were detected versus 0% laser pulse triggering when the 
pollinator E. dilemma was detected. Shown are silhouette images captured by the fine tracking system of the 
Photonic Fence of individual: (A) Yellow fever mosquitoes (A. aegypti), (B) Asian citrus psyllid (D. citri) and 
C. orchid bees (E. dilemma) in flight. Images show the last fine tracking frame prior to the target validation 
algorithm correctly setting a do-not-engage status. (D) Photo showing side-by-side comparison of mosquito 
and psyllid intercepted and killed by a laser pulse. Note the overall difference in the dimensions of each vector 
species.
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numbers of native crepuscular insects, that were active during the test period. Engagement of the laser during 
the initial 3 days of the test resulted in a pronounced decline in flying insect incidence relative to the fourth and 
subsequent days, when mosquitoes were released but the laser was not engaged (Fig. 11). When the laser was 
engaged during the first three nights of the test, the ratio of the baseline level of flying insects compared to the 
level of dusk-flying insects was 5% but when it was turned off during the remainder of the test, the ratio was 
13%. The results showed that the system was capable of detecting and tracking enormous numbers of insects 
flying within the active zone.

Flight elevation and speed observations
Each tracked insect trajectory through 3-dimentional space was timestamped and saved, along with the calculated 
size and sample target images from the fine tracking camera. The post-hoc evaluations of these flight data showed 
that the mosquito, A. aegypti, had a mean flight altitude of 1.3 m, which tapered off above 1.5 m. However, some 
individuals also flew near the screenhouse ceiling. (Fig. 12A). Asian citrus psyllids had no discernable flight 
altitude peak, but their flight tapered off at higher altitudes except for a peak close to the ceiling (Fig. 12B). Indi-
vidual A. aegypti were observed flying at a typical velocity of 0.4–1 m/s (Fig. 13A) while individual male orchid 
bees (E. dilemma) were recorded flying at speeds ranging from 0.5 to 2.5 m/s (Fig. 13B).

Discussion
During the initial test with 1000 A. aegypti (Fig. 5), the system registered an increase in mosquito activity when 
the human ‘agitator’ walked along the upwind side of the exterior of the screenhouse and a decrease in flight 
activity when the agitator walked away from the screenhouse (Fig. 6). When the agitator was next to the screen-
house, 300–400 mosquitoes per minute were detected but this number fell to below 100 per minute when the 
agitator walked away from the screenhouse. Because the agitator was located outside and upwind of the mos-
quitoes in the tunnel, and the screening would have obscured their visual appearance, the observed changes in 
mosquito flight responses observed during this test were likely due primarily to the concentration of olfactory 
cues emanating from the agitator which changed as the agitator moved along or away from the  screenhouse177. 
This result demonstrated the system’s sensitivity to detecting and recording changes in localized vector activity. 
Once the laser was engaged, mosquito activity rapidly declined, proving the effectiveness of the lethal mode of 
the system. The results of this test also showed that the system successfully tracked mosquitoes throughout the 
active zone (Fig. 7), showing that there were no areas where detection and tracking was deficient and that up to 
seven individuals per second could be lethally engaged (Fig. 8).

In the tests of interception efficiency, only 0.9% of A. aegypti were recovered on the human subject side of 
the screenhouse at the completion of the laser-enabled test as compared to a 38% recovery in the non-lethal 
monitoring control (Table 1A), demonstrating that the Photonic Fence was capable of effectively interdicting 
large numbers of flying mosquitoes. The system was less effective at interdicting flying Asian citrus psyllid than 
mosquitoes (Table 1B). Because the system was designed to intercept targets the size of mosquitoes, tracking, 
targeting, and hitting the psyllid, which exhibits a significantly smaller detected cross-sectional area, proved to 
be challenging to the system (Fig. 10D). Improved efficiency with respect to intercepting smaller-sized targets 

Figure 11.  Results of 10-day long open-air test with the middle section of screening removed from the screen 
house as shown in Fig. 1E. During the initial 96-h period, three releases were made in the screenhouse of 10,000 
A. aegypti at the dusk, the peak period of daily ambient flying activity at the study site. The laser was engaged 
from the start of the test until 72 h had elapsed. After the laser was disengaged, a control test was conducted at 
dusk on day 5 in which 10,000 mosquitoes were released but the laser continued to be disengaged. During the 
last 4 days of the test, no further releases were conducted while the system continued to monitor the activity of 
ambient insects.
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may be achieved by modifying the system through measures that improve image resolution and the optical 
field-of-view, such as adding more powerful optical lenses, decreasing the area of the active zone, or adjusting 
the spot size of the laser beam. Tests with free-flying orchid bees showed that the system could distinguish target 
from non-target species (Fig. 10C). This is important because in most potential applications, the system must 
eradicate only vectors, not non-target or beneficial insects. The open-air test demonstrated that the system could 
track the high numbers of ambient flying insects that were active at dusk at the study site, with as many as 1500 
insects per minute detected (Fig. 11). When the laser was engaged, decreases were observed in the numbers of 
insects detected by the system, showing that the laser could operate effectively, even when challenged with large 
numbers of potential targets.

This proof-of-concept Photonic Fence hardware architecture comprised several features optimized for per-
formance characteristics and data logging. These attributes will be atrophied during the product design phase 
to optimize the commercial device for cost, size, and power consumption. Each Photonic Fence subsystem has 
been designed with an eye towards off-the-grid operation to enable deployment in locations without reliable 
power. The electrical power budget for the product version of the Photonic Fence is 200 W, making it operable 
with the use of commercially available solar panels or energy storage systems.

The results demonstrated that a field-scale sized Photonic Fence system could reliably and accurately detect, 
track, and identify hundreds of individuals of two different flying insect vector species and then kill them with a 
brief pulse of a low-power laser at a distance of up to 30 m. The Photonic Fence tested here effectively prevented 
flying vectors from infiltrating a 90  m2 active zone; and it was sensitive enough to accurately discriminate targeted 
from non-targeted insect species, intercepting and killing the vector species while leaving the non-targeted insects 
unharmed. The Photonic Fence represents a significant advancement to the overall development of laser-based 
insect vector eradication  technologies131–136. Photonic exposure now represents a new mode of flying vector 
control with a very different mode of action: pin-point thermal damage to tissue in targeted  individuals127–129 
in contrast to insecticides, which work by disrupting neurological  transmissions178. The application of topical 
insecticides to a targeted treatment area results in selection for individuals that can detoxify the active ingredient 
of the insecticide, which, in turn, drives insecticide resistance in that  population32,77,178. The thermal damage 
inflicted by the laser pulse either kills the insect outright or severely incapacitates it, so individuals intercepted by 
the pulsed laser do not further contribute to the genetic composition of the population, leaving no possibility of 
‘laser resistance’ developing in vector populations exposed to laser pulses. The thermal damage inflicted on the 
target affects only the target, and so it does not produce negative effects on people and communities, non-target 

Figure 12.  Flight elevation profiles of the flying insect vectors observed by the Photonic Fence. (A) Mosquitoes 
(A. aegypti); (B) Psyllids (D. citri).
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organisms, and the local environment as does the persistent application of insecticides. Given these capabilities, 
there are many potential applications of the Photonic Fence and similar photonic devices in the interdiction, 
surveillance and investigations of flying insect vectors. These are discussed below.

Applications of the Photonic Fence and similar photonic technologies
Vector interdiction
While the utility of the Photonic Fence specifically is discussed below, other types of optical and photonic sys-
tems, such as those mentioned above, could also potentially be used in these given situations. That the system 
was capable of intercepting large numbers of flying vectors throughout the 90  m2 active zone, demonstrated that 
the Photonic Fence could be used to establish ‘vector interception zones’ along the perimeters of areas in need 
of protection (Table 2). Strategic placement of vector interception zones would provide localized protection and 
help reduce insecticide reliance/resistance in vector populations at those locations. Further testing is needed to 
evaluate the efficacy and feasibility of the Photonic Fence in each of the application examples provided below.

In terms of protecting human health, the Photonic Fence could be used to establish vector interception zones 
in health care facilities and other areas where people congregate, such as schools, places of worship, transit 
stations, or markets. This was the original intent and inspiration for the Photonic  Fence179. As the technology 
improves and matures, Photonic Fences could be deployed outdoors, around the perimeters of buildings, villages 
and neighborhoods that are highly vulnerable to flying vector infiltration or to create a barrier between protected 
areas and high-density vector habitats, such as  wetlands180,181.

Vector interception zones established around the perimeters of open areas will not result in the total exclu-
sion of vectors in that area. However, because many vectors typically fly close to the ground while searching for a 
 host94,182–184, a 3 m high Photonic Fence established around the perimeter of a protected area could be effective in 
reducing vector infiltration into protected areas. Significantly diminishing vector infiltration numbers is helpful 
because decreasing the numbers of resistant individuals in local populations improves the effectiveness of both 
localized treatments and regional insecticide resistance management  programs67,73,185. Reducing vector infiltra-
tion would also help maintain the effectiveness of personal protection measures such as indoor residual spraying 
and insecticide-treated bed  nets186–189. Establishment of vector interception zones around vector refugia, such 
as wetlands, would help reduce the numbers of vectors that disperse to nearby inhabited  areas180,181. Because of 
the overlap in the insecticides used in both agricultural areas and human health protection, insecticide resistant 
vector populations from agricultural production areas threaten nearby human  habitations190,191. Establishing 
vector interception zones in these areas will serve the dual purpose of decreasing vector populations while reduc-
ing the density of resistant individuals in the vector population. Because cattle and other livestock are alternate 

Figure 13.  Speed profiles generated by the Photonic Fence of (A) mosquitoes (A. aegypti), showing a typical 
speed 0.4-1 m/s, and (B) orchid bees (E. dilemma), showing typical speeds of 0.5–2.5 m/s.
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hosts for certain vectors that also feed on human  blood192–195, establishing vector interception zones between 
areas where livestock are kept and human habitations could also be an important protection and control strategy.

Because refugees, migrants, and displaced people are very vulnerable to contagious and vector-borne 
 diseases196–200, the Photonic Fence could be used to help reduce the spread of vector borne diseases in areas 
experiencing humanitarian crises due to natural disasters, climate change, or armed conflict. The establishment 
of vector interception zones could provide protection to people in refugee camps and shelters and at forward-
based hospitals, transportation, and logistical centers. Providing flying vector interception zones would help 
prevent the spread of vector borne diseases under these dire circumstances.

Vector-borne diseases are an important problem agriculture, particularly in the care of domesticated 
 animals201 and crop  plants20,202–204. The Photonic Fence could be used to establish vector interception zones 
around or in agricultural production structures that are vulnerable to infiltration by flying vectors, such as 
livestock and poultry housing  facilities205–207,  greenhouses208–210 and produce  packinghouses211,212. The Photonic 
Fence could also be used to provide surveillance in ports-of-entry, packinghouses and similar situations where 
pest detection and eradication is critical to preventing their release or  spread213,214. It could be emplaced on 
conveyances such as truck trailers and railroad cars that transfer livestock and produce to prevent flying vec-
tors from entering or exiting the cargo area. Further development of the Photonic Fence system will permit its 
deployment around open agricultural production areas such as orchards, vineyards, crop fields and pastures to 
reduce the level of flying vector infiltration into these  areas215–217. The ability to establish protective active zones 
will be particularly helpful to combat exotic invasive vectors that have a high capacity to kill crops, such as the 
Asian citrus psyllid transmitting Candidatus Liberibacter species in citrus  groves151,152. A similar situation occurs 
when native insects vector an introduced phytopathogen, such as native spittlebug species transmitting the causal 
agent of Olive Quick Decline Syndrome in southern European olive  groves218,219. While the Photonic Fence will 
not totally exclude vectors from infiltrating the perimeters of outdoor areas, it will none-the-less reduce vector 
populations in the targeted area and can be used in combination with other control measures to provide more 
comprehensive control and reduce insecticide inputs.

The Photonic Fence could also be used to help protect endangered species and maintain biodiversity in tar-
geted areas. For example, vector interception zones could be established around target areas supporting popula-
tions of at-risk species that are vulnerable to vector-borne  diseases220,221, newly revegetated or reintroduction 
 areas222, or reservoirs of vectors that negatively impact vulnerable species in nearby  areas223–227. As with livestock 
protection, flying vector interception zones could be positioned in zoos and rearing facilities for endangered 
 species228–231. Conversely, livestock and domestic animals harbor vector-borne diseases that can be transmitted 
to wildlife and native species, sometimes resulting in catastrophic  consequences232–234. Establishing vector inter-
ception zones between areas where livestock and domesticated animals are reared and adjacent areas supporting 
wildlife could help decrease vector movement between these areas.

As conceived, field deployed units of the Photonic Fence will need about 200W to operate and can utilize 
solar panels or batteries as remote power sources. The Photonic Fence shuts-off if a large object entered the 

Table 2.  Examples of potential applications of the Photonic Fence to establish protective perimeters to detect, 
monitor, and intercept flying insect vectors at critical infection interfaces.

Human health

 High at-risk villages & neighborhoods

 Hospitals & health clinics

 Schools, nurseries and playgrounds

 Bus & train stations, markets, places of worship, and other gathering places

Humanitarian crisis zones

 Refugee and displaced person shelters & camps

 Forward hospitals and other health care facilities

 Camps & housing areas for rescue & aid workers and peacekeeping personnel

 Forward logistical and transportation hubs

Livestock & animal health

 Barns, poultry houses, pens, and other rearing and holding areas

 Truck trailers, railway cars, shipping containers

Crop health & phytosanitation

 Quarantine & inspection stations, high-risk pest introduction areas at ports-of-entry and airports

 Packing houses and distribution centers

 Truck trailers, railway cars, shipping containers

 Greenhouses, nurseries, and indoor growing areas

Conservation & biodiversity

 Habitat fragments supporting endangered species

 Zoos, botanical gardens & rearing facilities for endangered species

 Areas supporting re-establishing endangered species
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active zone, such as a worker or  animal129. Ideally, the system would be set-up such that the field of view is not 
restricted, especially horizontally. This may restrict its use in situations where a clear field of view is not achievable 
across the desired dimensions of the active zone. Further refinements will enable the tracking system to disre-
gard objects such as tree branches or poles in the field of view. To optimize the system for each vector species of 
interest, certain tracking algorithm parameters (e.g. detection threshold) or dosing laser conditions (e.g. power, 
spot size) will need to be  altered127–129. A database with the flight parameters of several targeted vector species 
will need to be devised for a particular area. This would require establishing the flight parameters of each vector 
species expected in the targeted  areas129. The system showed a high level of sensitivity with respect to vector v. 
bee detection and tracking, so it is expected be able to discriminate between target and non-target flying insects 
in applied situations. However, there is a need for further testing to document that the system can differentiate 
between friend and foe under ambient conditions. The Photonic Fence is designed to be autonomous, making 
it vulnerable to theft of its components and housing. To reduce theft and vandalism, efforts must be made to 
obtain the acceptance and participation of residents and stakeholders in implementing a Photonic Fence system 
in their  locality235–237.

Vector surveillance
Access to real-time, accurate vector monitoring information within targeted areas, though often unavailable, 
is a critical component in vector-borne disease prevention and  control24. As such, there is an urgent need for 
improved entomological surveillance capabilities, not only to provide effective routine vector and pathogen 
 monitoring238–241, but to address the mounting challenges to effective vector control from insecticide resistance 
and the effects of climate change on the biology of vector-borne disease  pathosystems48,189,242–245. By itself, the 
tracking system of the Photonic Fence is an effective means of monitoring flying insect vectors, one which has 
a practical operating distance, real-time identification of species of interest, and highly specific targeting and 
interdiction capabilities. Because the tracking modules can provide information about the incidence, movement, 
and distribution of insect species of interest in real time, they could be implemented as a stand-alone, high-quality 
entomological monitoring tool for vector surveillance as well as for fundamental and applied entomological 
research.

Most of the potential surveillance applications of the Photonic Fence overlap the interdiction scenarios pre-
sented in Table 1. For example, the expansion of global air travel and seaborne trade enables insect vectors to 
move great distances in short periods of  time11,246,247. The Photonic Fence monitoring system could work alone 
or with other sensory systems to enhance vector surveillance and biosanitation in ports-of-entry, packinghouses 
and similar situations where vector detection is critical to preventing their release or  spread214,248. The accurate, 
real time vector surveillance information provided by the Photonic Fence could help advance local and regional 
vector surveillance capabilities by improving early detection of the onset of vector population growth and dis-
persal, and signal that proactive measures need to be initiated or escalated to address impeding  outbreaks224,249. 
It can also be used to augment meteorological, remote sensing, and other geospatial data, including from mobile 
devices, to identify and delineate key vector habitats and refugia, flight corridors, and areas vulnerable to vector 
infiltration within the targeted landscape. In addition to providing data on existing situations on the ground, this 
information can be used to improve predictions about the spatial and temporal distribution patterns of vectors 
in targeted  landscapes241,250–258.

While not addressed in this study, devices that collect vector specimens intercepted by the laser can be 
incorporated into the system; these, in turn, could provide information about the prevalence and distribution 
of insecticide-resistant genotypes within vector populations in the target  location259,260. This information would 
help inform the development and management of area-wide insecticide resistance management  programs244,261,262 
as well as help with epidemiological  forecasting263,264. For example, the Photonic Fence could be used to identify 
where different types of vector resistance to available active ingredients occur and therefore where next-genera-
tion bed nets and insecticides would be most effectively  used244,265. The monitoring capabilities of the Photonic 
Fence could be part of Integrated Vector Surveillance networks that utilize different monitoring approaches to 
provide comprehensive assessments of vector abundance and distribution in targeted areas and identify key 
vector interdiction  points266–268.

The rapid detection system afforded by the Photonic Fence could also help facilitate identifying the different 
climate change drivers that influence vector abundance and distribution, providing improved forecasting of 
vector frequency and distribution under conditions imposed by climate  change45,269–271. The system could also 
provide a variety of monitoring functions that would measure the incidence, movement, and distribution of 
insect species of interest, providing a valuable tool for ecological monitoring and conservation efforts aimed at 
endangered species and other species of  interest272,273.

Flight Behavior
The Photonic Fence provided detailed 3-dimensional information about the flight characteristics of individual 
insects, demonstrating that it can be used as a tool to conduct studies of insect flight behavior. Each tracked insect 
trajectory through 3-dimentional space is timestamped and saved, along with the calculated size and sample 
target images from the fine tracking camera. This data is then available for post-processing by the user. In-depth 
knowledge about vector flight behavior is fundamental to developing a comprehensive understanding of vector 
ecology, behavior, and  epidemiology103,263. The ability to readily conduct 3-dimensional tracking of vector flight 
will facilitate understanding key vector behaviors, such as their responses to living hosts, traps, insecticide-
treated bed nets, and attractant and repellent substances, the behavioral underpinnings of host location as well 
as the efficacy of traps, attract and kill devices and ‘push–pull’ strategies, and, identifying flight entry points 
into dwellings or structures 178,274–277. This information, in turn, will facilitate evaluating and developing other 
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surveillance and control measures such as traps, screening, insecticide-treated bed nets, and spray programs in 
dwellings and residential  areas278–285.

The Photonic Fence presents a new optical means of accurately detecting, monitoring and controlling flying 
insect vectors in real time as well as providing new capabilities to investigate their flight behavior and mechanics. 
In terms of vector interdiction, the Photonic Fence can provide ‘vector interception zones’ to protect sensitive 
areas and augment current vector abatement measures. Further trials are needed to test the efficacy and flexibility 
of the Photonic Fence in the various scenarios described in this paper. Specific identification of vector species and 
gender will require a developing a database using collected vector flight and environmental data. Optimization 
of tracking and interdiction capabilities for each vector or gender will require modification of parameters such 
as tracking algorithms to improve optical resolution capability. However, once configured, the vector detection 
and tracking units of the Photonic Fence can be used alone to provide effective surveillance of sensitive areas. 
This may be extended to monitor beneficial insects and species of interest in a given situation.

Methods and materials
Study site
The study was conducted in a screenhouse (40 mL × 3.05 m W × 3.66 mH) at the USDA-Agricultural Research 
Service citrus grove in Fort Pierce, FL (Fig. 1A, B). The screenhouse was equipped with water lines and a 220v 
electric line to power the Photonic Fence.

Insects
The eggs of the mosquito, A. aegypti, were obtained from colonies maintained by the USDA-ARS Laboratory 
in Gainesville, FL and from the University of Florida/IFAS Florida Medical Entomology Laboratory in Vero 
Beach, FL. The eggs and subsequent larvae were maintained in trays filled with RO water and supplied with 
standard rearing media containing dried liver and brewer’s yeast. Mosquitoes used in each test were from a 
single cohort. The rearing trays were kept in cages in an incubator set at 8 h L:16 h D photoperiod and held at 
25 ± 1 °C temperature.

Adult Asian citrus psyllid (D. citri) were obtained from a research colony reared on orange jasmine (Mur-
raya paniculata) seedlings and maintained in the controlled environment Insectary at the USDA Agricultural 
Research Laboratory in Fort Pierce, FL. The psyllid colonies were housed in screened cages containing a single 
potted orange jasmine seedling. The cages were kept on racks in the Insectary greenhouse and received supple-
mental lighting from an LED plant grow light. Both the immature and adult psyllids feed on the phloem sap of 
the orange jasmine seedlings. Only adults, 1–2-weeks post emergence in age, were used in the tests. Individuals 
for tests were collected 2–4 h prior the start of the tests and kept in ventilated plastic vials for transfer to the 
screenhouse. Both A. aegypti and D. citri are well-established at the test site in south Florida.

Photonic fence set-up
The Photonic Fence was mounted on two aluminum towers that were anchored in the soil and placed 30 m 
apart from one another along the centerline of the screenhouse (Fig. 1A–C). The front-facing side of each tower 
was divided longitudinally into two parts: one half was covered by a reflective screen panel while the other side 
contained two Photonic Fence units, mounted on the top and bottom of the tower, and support equipment 
(communications system, laser generator, computers), mounted mid-tower (Fig. 2A). Each individual Photonic 
Fence unit consisted of four 850 nm illumination projectors, two coarse tracking cameras (100fps frame rate), 
and a single fine tracking camera (1,500fps frame rate) and laser system (Fig. 2B). The towers were mirror images 
of each other, so that the light beams projected from one tower were reflected from the reflector panel on the 
opposite tower. In total, four units were used to create the 30 m long × 3 m high × 0.3 m wide active space of the 
detection, interrogation, and interception system (Fig. 3). The reflector panels consisted of wide-angle, exposed 
retroreflective lenses bonded to a fabric substrate, attached to a metal frame (Fig. 2A).

The laser system was comprised of a continuous wave, randomly polarized fiber laser whose output was 
boresight-aligned with the fine tracking camera field of view. Once an insect was approved for engagement by 
the target validation algorithm and the steerable optic had centered on it, the laser was pulsed for a duration 
of 25 ms. The power delivered to the target was 25W, at a wavelength of 1550 nm. To assist with location and 
recovery of insects killed in flight, the gravel floor of the screenhouse was covered with white polyester fabric 
which provided a light background and contrast for locating the insects that had fallen there after interception by 
the laser pulse (Fig. 10D). In addition, clean room adhesive mats were placed on the ground immediately below 
the active zone, which provided both visual contrast and helped secure fallen insects. These areas were visually 
inspected after each test to count the numbers of fallen insects.

Initial mosquito tracking and interception test
A 5.5-h long test was conducted to evaluate the capability of the Photonic Fence to detect, interrogate, and kill 
flying A. aegypti. At the start of the test, 1000 mosquitoes were released from three cages in the screenhouse. 
During the initial 4 h of the test, the detection and interrogation mode of the Photonic Fence was operational, 
but the laser was disengaged. To promote mosquito activity, a human ‘agitator’ walked slowly on the upwind 
side of the screenhouse (Fig. 5). One of the co-authors (AM) served as the agitator. All the methods were in 
accordance with relevant guidelines and regulations. After 30–45 min had passed, the agitator walked away from 
the screenhouse and then returned after a 15–20-min break to determine if the system could detect fluctuations 
in flight activity. During the last hour of the test, the laser was engaged to determine the system’s capability to 
intercept and kill flying mosquitoes while the agitator continued to walk outside. Post-hoc tests were performed 
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to determine the system’s capability to detect flying mosquitoes across the active range of the system and the 
system’s laser engagement rate during the test.

Flying vector interception efficiency tests
To determine the capability of the system to intercept flying mosquitoes and psyllids, tests were conducted in 
which the insects were released from cages on one side of the screenhouse. The cages were placed on the floor and 
were spaced equidistant from each other along the length of the active space of the system. Tests were conducted 
with the laser engaged or silent to compare recovery levels of released insects.

For tests with A. aegypti, 350 mosquitoes were released per test. Mosquitoes that flew across the active area 
of the Photonic Fence were recovered either from: (1) a pair of open pan oviposition traps; (2) a pair of home-
made pail traps; or, (3) a single human subject (Fig. 9A). The human subject sat in a chair in the center of the 
screenhouse on the screenhouse side opposite of the release side (Fig. 9A). A pan trap and bucket trap were 
placed on the floor 5 M on either side of the human subject (Figs. 1C and 9A). This arrangement provided a total 
of three mosquito recovery points for the tests. During the tests, neither the human subject nor traps were in 
the line-of-sight of the Photonic Fence (Figs. 1C and 9A). The oviposition trap consisted of a 10L white plastic 
pan containing 6 L of infused water that had seeped in straw for 48  h286. The pail trap consisted of a 6 L bucket 
and lid and had design features similar to other autocidal gravid  ovitraps287–289. For example, the exterior of the 
pail and lid was painted black, an attractive color to Aedes290. The housing of a miniature CDC trap (BioQuip), 
containing a UV LED lamp and downdraft fan, was inserted into a fitted hole cut into the lid and secured with 
hot glue. Two scent baits were placed inside the pail: a sachet containing a commercial mosquito bait (Sweets-
cent, Biogents AG) and ca. 500 mL of crushed dry ice held in an open thermos  container291. When the fan was 
operating, it suctioned clean air into the bucket, and then air carrying the scent baits was exhausted through two 
screened holes (9  cm2) cut into the lid. Mosquitoes attracted to the trap were suctioned into its interior when 
they became caught in the fan downdraft. The human subject wore white coveralls and a mosquito-proof head 
net. A 100  cm2 patch of fabric was removed from the one leg of the coverall that exposed the subject’s thigh 
while seated. During the 60-min-long test, the subject used a manual aspirator to collect mosquitoes when they 
alighted on the patch of exposed  skin292.

For tests with D. citri, 600 psyllids were released per test. Psyllids were recovered in 3-D yellow traps designed 
especially to attract and trap D. citri by the Florida Department of Plant  Industry293 (Fig. 1D). The traps were 
manufactured with a 3-D printer and were bright yellow in the human visual spectrum, a color that is highly 
attractive to D. citri294,296. In addition, the surface features of the traps helped retain the psyllids and motivate 
them to enter the trap  interior293,297–299. Psyllids that were caught in the trap slid downwards into a vial of soapy 
water. At the conclusion of the tests, the vials were returned to the lab and the psyllids examined under magni-
fication for counting and sexing. Ten yellow 3D psyllid traps were used for each test. The traps were hung from 
a nylon line supported by 99 cm high aluminum fence posts (Tractor Supply Company) inserted into the gravel 
floor of the screenhouse. The traps were placed were positioned in the center of each screenhouse hoop panel 
and ca. 25 cm from the south facing wall of the screenhouse. Because the release cages were placed on the north-
facing side of the screen house, the psyllids, which are  phototrophic297, tended to move to the sun-lit, south-facing 
side of the screenhouse where the traps were positioned. The screen house panels were also examined for the 
presence of psyllids that were not captured by the traps. Psyllids found on the screens were included in the total 
number of recovered psyllids.

Target discrimination test with male orchid bees
Male Euglossa dilemma were attracted to cotton swaps dipped in a scent bait, p-dimethoxybenzene300 (Sigma-
Aldrich). The bees were collected with a net as they hovered near the scent bait (Fig. 4). The collections were 
made in a wooded residential neighborhood in Fort Pierce, FL, USA. The bees were collected in the morning, 
kept in individual plastic vials placed in a cool, dark storage box prior to the tests, and then used in the after-
noon. At the start of the test, ten male E. dilemma were released in the screenhouse and allowed to fly freely for 
60 min with the laser engaged.

Open air test
To test the Photonic Fence’s capability to detect and interrogate ambient numbers of insects flying during the 
peak dusk activity period, a test was conducted with the screen removed from the ten center support hoops of 
the screenhouse (Fig. 1E). This allowed native insects from the surrounding environment to fly across the active 
space of the Photonic Fence. The test was conducted over a 10-day period. The laser was engaged from the start 
of the test until 96 h had elapsed. During the initial 96-h period, three releases were made, 10 m upwind of 
the screenhouse, of 10,000 A. aegypti at the peak period of dusk flying activity (approximately 18:00 h Eastern 
Daylight Time). This test was conducted to determine (a) if a very large number of vectors could be targeted by 
the system when ambient insect levels were also very high, and (b) the natural flight elevation distribution of A. 
aegypti. A control test was conducted at dusk on day 5 in which 10,000 mosquitoes were released but the laser 
remained silenced. For the remaining 4 days, only monitoring and tracking of ambient insect levels was recorded.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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