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Identification of HDAC9 
and ARRDC4 as potential 
biomarkers and targets 
for treatment of type 2 diabetes
Jing Liu 1, Lingzhen Meng 2, Zhihong Liu 1*, Ming Lu 3 & Ruiying Wang 1

We aimed to identify the key potential insulin resistance (IR)-related genes and investigate their 
correlation with immune cell infiltration in type 2 diabetes (T2D). The GSE78721 dataset (68 diabetic 
patients and 62 controls) was downloaded from the Gene Expression Omnibus database and utilized 
for single-sample gene set enrichment analysis. IR-related genes were obtained from the Comparative 
Toxicology Genetics Database, and the final IR-differentially expressed genes (DEGs) were screened 
by intersecting with the DEGs obtained from the GSE78721 datasets. Functional enrichment analysis 
was performed, and the networks of the target gene with microRNA, transcription factor, and drug 
were constructed. Hub genes were identified based on a protein–protein interaction network. Least 
absolute shrinkage and selection operator regression and Random Forest and Boruta analysis were 
combined to screen diagnostic biomarkers in T2D, which were validated using the GSE76894 (19 
diabetic patients and 84 controls) and GSE9006 (12 diabetic patients and 24 controls) datasets. 
Quantitative real-time polymerase chain reaction was performed to validate the biomarker expression 
in IR mice and control mice. In addition, infiltration of immune cells in T2D and their correlation with 
the identified markers were computed using CIBERSORT. We identified differential immune gene set 
regulatory T-cells in the GSE78721 dataset, and T2D samples were assigned into three clusters based 
on immune infiltration. A total of 2094 IR-DEGs were primarily enriched in response to endoplasmic 
reticulum stress. Importantly, HDAC9 and ARRDC4 were identified as markers of T2D and associated 
with different levels of immune cell infiltration. HDAC9 mRNA level were higher in the IR mice than 
in control mice, while ARRDC4 showed the opposite trend. In summary, we discovered potential vital 
biomarkers that contribute to immune cell infiltration associated with IR, which offers a new sight of 
immunotherapy for T2D.
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DO  Disease ontology
miRNA  MicroRNA
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LASSO  Least absolute shrinkage and selection operator
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PPIs  Protein–protein interactions
MCC  Maximal Clique Centrality
UPR  Unfold protein response
AS  Alternative splicing
ANOVA  A one-way analysis of variance

Type 2 diabetes (T2D), namely non-insulin-dependent diabetes, is characterized by insulin resistance (IR) and 
incidence rates are increasing at an alarming  speed1. Insulin resistance is an important pathological feature in 
the development of type 2 diabetes, which mainly refers to the inability of normal levels of insulin to induce the 
subsequent normal chain reaction after binding to insulin receptors on the surface of target tissues of the body 
(liver, fat and skeletal muscle). Many factors are involved in IR, such as  inflammation2, oxidative  stress3, and 
endoplasmic reticulum  stress4, yet others remain largely unknown.

Inflammation is involved in the pathogenesis of insulin resistance. Increased secretion of inflammatory factors 
and massive infiltration of inflammatory cells contribute to the activation of inflammatory signaling pathways 
such as IKKβ/NF-κB and JNK, ultimately leading to insulin resistance and type 2 diabetes mellitus. Moreover, 
increasingly, studies are reporting on immune cells mediating inflammation-induced IR in T2D. A recent study 
indicates that increased levels of galectin-3 secreted from macrophages in obese humans and mice contribute 
to the inhibition of insulin  signaling2. Consequently, regulating immune cell dysfunction may be an effective 
strategy to remit hepatic IR for T2D  therapy5. However, the exact molecular mechanism regarding the activation 
of immune system-induced hepatic IR remains poorly understood.

Diabetes, as a chronic disease, may not have obvious early symptoms, but once diagnosed, it may have pro-
gressed to a more serious stage. The discovery and application of biomarkers can help provide effective interven-
tions in the early stages of disease, thereby improving treatment outcomes and quality of life. By gaining a deeper 
understanding of these markers, we hope to not only better understand the pathogenesis of diabetes, but also be 
able to provide more targeted treatment options for individual patients. A better understanding of the immune 
mechanisms behind insulin resistance is critical for improving clinical outcomes in patients with T2D. Notably, 
there is limited information on the transcriptional profiles of T2D patients, which hampers the study of T2D 
pathogenesis and potential biomarkers. Therefore, identifying and characterising these potential T2D markers 
may improve clinical recovery rates. Recently, bioinformatics analyses have been important tools for diabetic 
 research6,7. However, multi-platform analyses, different statistical methods, and a lack of important variables 
(e.g., different courses of disease) in the raw data have resulted in discordant findings. Further, few studies have 
used bioinformatics analysis to investigate the potential molecular mechanisms underlying immune infiltration 
characteristics in hepatic IR for  T2D8,9. Accordingly, we have made a further comprehensive analysis.

Epigenetics is playing an increasingly important role in the study of type 2 diabetes, particularly in relation 
to HDAC (histone deacetylase). HDAC9, as a member of this group, is involved in the regulation of cellular gene 
expression, which is closely linked to the development of diabetes mellitus.

This investigation aimed to meet a pressing need to identify type 2 diabetes specific biomarkers. The preva-
lence of diabetes is increasing globally, there are substantial gaps in our understanding of the molecular mecha-
nisms underlying insulin resistance and immune cell infiltration. We focussed on the analysis of gene expression 
data from microarrays of type 2 diabetes to elucidate genetic factors contribute to disease pathogenesis. The 
motivation to conduct this study originated from revealing potential impact of novel prognostic biomarkers, 
motivating our development of diagnostic and treatment strategies of type 2 diabetes. We believe that our study 
will offer new insights on the mechanisms of T2D for the development of therapeutic interventions.

Materials and methods
Data preprocessing
We employed the “GEOquery”  package10 to retrieve three T2D microarray datasets —GSE7872111,  GSE7689412, 
and  GSE900613—from the Gene Expression Omnibus (GEO) (https:// www. ncbi. nlm. nih. gov/ geo/) database. 
GEOquery is a toolkit for downloading and analysing gene expression data from the NCBI GEO database in R. 
It facilitates biologists and bioinformaticians to access and process gene expression data. Three GEO datasets 
were selected according to the species of the dataset, the number of samples, the chip platform, the source of 
the organization, and the quality of the dataset. Each dataset was grouped into either the T2D or normal group 
(Supplementary Table 1). The batch effects of the GSE78721 dataset were removed using the “sva”  package14 
(Supplementary Fig. 1). The sva package is an R package for detecting and adjusting for potential batch effects 
and other technical variations in high-dimensional gene expression data to improve the accuracy and reliability 
of expression data.

https://www.ncbi.nlm.nih.gov/geo/
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Immune cell infiltration analysis based on the immune-related gene sets
Twenty-nine immune-related gene sets representing tumor immunity were identified via a published litera-
ture  search15. We employed the gene set variation analysis “GSVA”  package16 to obtain single-sample gene set 
enrichment analysis (ssGSEA) scores for the 29 immune-related gene sets associated with infiltration in the T2D 
samples in GSE78721. Differential expression analyses of ssGSEA enrichment scores were performed using the 
“limma”  package17. Additionally, we used the “GOSemSim”18 package to compute their semantic similarity in 
biological processes.

Identification of T2D subtypes based on immune cell gene sets
Consensus clustering and molecular subtype screening of the ssGSEA score were performed using 
 ConsensusClusterPlus19. Consistent clustering, which is used to determine the optimal number of K-means 
clusters, is an algorithm that can be used to identify cluster members and their numbers in datasets such as 
microarray gene expression. Consistent clustering verifies the rationality of clustering by a resampling approach 
with the main purpose is to evaluate the stability of clustering. Consistent clustering methods involve sub-
sampling from a set of items, such as a microarray, and identifying clusters with a specific cluster number (K). 
Then, for the consensus values, two items accounting for the same cluster in the number of occurrences in the 
same subsample are calculated and stored in a symmetric congruent matrix for each K. K is the specific cluster 
number. The optimal number of clusters was determined using the area under cumulative distribution function 
(CDF) curve. Two-dimensional principal component analysis (PCA) plots were used to assess the reliability of 
the consensus cluster.

Identification of differentially expressed genes (DEGs)
Based on the GSE78721 grouping information, we applied the “limma” package to screen the difference between 
T2D samples and normal samples. P-value < 0.05 was set to identify significant DEGs. IR-DEGs were selected 
based on the intersection of DEGs and hepatic IR-related genes. Hepatic IR-related genes were gathered from 
the Comparative Toxicology Genetics Database (CTD).

Functional enrichment analysis
The “clusterProfiler”  package20 was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG)analysis. clusterProfiler is an R package for functional enrichment analysis and visualisation of gene sets 
in biological data to help researchers understand the biological meaning of gene sets. P < 0.05 was considered 
statistically significant. To investigate the biological processes enrichment in each sample, GSEA of GSE78721 was 
conducted using the “clusterProfiler”  package20. Meanwhile,  GSVA16 was performed using the “GSVA” package 
with 50 Hallmark gene sets from  MSigDB21.

Bioinformatics based Identification and validation of biomarkers.
A total of 130 samples in the GSE78721 dataset were further divided into training (n = 97) and test sets (n = 33) 
at a 7:3 ratio. First, we applied least absolute shrinkage and selection operator (LASSO) regression and Random 
Forest and Boruta (RFB) analysis to select the features for screening T2D biomarkers in the training sets. We then 
computed the significance scores of each gene via the “glmnet”22, “randomForest”23, and “Boruta”  packages24 to 
acquire relevant characteristics. Next, we selected the expression of IR-DEGs as an input (independent variable), 
and disease state of the sample as an output (binary dependent variable, 0 or 1). In the training set, we assessed 
the appropriateness of the combined LASSO and RFB analysis for selecting characteristics using the receiver 
operating characteristic (ROC) curve and then computed the area under the curve (AUC). Finally, the “Re1071” 
package was used to construct a support vector machine (SVM) model possessing a radial basis function (RBF) 
kernel to verify the optimal feature  genes25. We further validated the performance of the machine learning model 
using GSE76894 and GSE9006 as verification sets.

Twenty male 6-week-old C57BL/6 J mice, weighing around 22 g each, were purchased from Viton Lihua 
Experimental Center (Beijing, China) maintained on a standard 12 h/12 h light/dark cycle. The mice were 
equally divided into two groups: (n = 10 each), the control group and the IR group. The control mice were fed 
a routine diet, while the IR mice were fed a 60% high-fat diet (HFD) for 8 weeks to induce IR. The IR model 
was validated by determining the area under the curve in accordance with the protocol presented in our previ-
ously published  study26. Insulin resistance was estimated using the quantitative insulin sensitivity check index 
(QUICKI).The mice were anesthetized, and their hepatic tissues were removed. Then, total RNA was extracted 
from mouse hepatic tissues using Trizol reagent (TIANGEN, Beijing, China). The RNA was reverse transcribed 
to cDNA according to the manufacturer’s protocol and amplified by real-time PCR using the following prim-
ers: HDAC9, forward 5′- CAA AGA TAG AGG ACG AGA AAGGG-′3, reverse 5′- AGT TGG GCT CTG AGG CAG 
TTTT-′3; ARRDC4, forward 5′- CAC GAG TTT CCC TTT CGC TTTC-′3, reverse 5′- ATA GGA GTC AAT AAG GGC 
GGTGT -′3; β-actin, forward 5′- GGC GCT TTT GAC TCA GGA TT-′3, reverse 5′- GGG ATG TTT GCT CCA ACC 
AA -′3. Relative mRNA expression was calculated by the  2-(ΔΔCt) method.

Protein–protein interaction (PPI) network construction and hub gene identification
A PPI network was constructed using the STRING database (the confidence score cutoff was 0.4) and further 
visualized using “Cytoscape”27. Cytoscape is an open source software for biological network analysis and visualisa-
tion that integrates a wide range of bioinformatics data and graphically displays molecular interaction networks 
and biological pathways to facilitate systems biology research. The degree of each protein node in maximal clique 
centrality (MCC) was computed using cytoHubba and the top 20 MCC genes were selected as hub genes. Biologi-
cal function enrichment analyses of the 20 hub genes were further performed using  ClueGO28 and  CluePedia29.
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Correlation analysis of immune infiltration and immune related genes
The expression of 20 hub genes was obtained from the expression profile. This information was used to further 
analyze the relationship of hub gene expression in immune signatures subtypes as well as the correlation between 
the 20 hub genes and the ssGSEA scores for 29 immune-related gene sets in different subtype samples.

Differences in infiltrating immune cells in T2D
The abundance of immune cell infiltration based on the T2D gene expression dataset was calculated using the 
 CIBERSORT30. The samples were filtered according to a P-value < 0.05. Next, an immune cell infiltration matrix 
was obtained. The difference in immune cell infiltration was visualized as violin plots. The correlation between 
the identified genes and infiltrating immune cells was analyzed.

Construction of IR-DEGs–microRNA network and IR-DEGs–transcription factor (TF) network 
and identification of potential drugs interacting with IR-DEGs
We obtained miRNA and TF target genes using the NetworkAnalyst Database (https:// www. netwo rkana lyst. 
ca/), which integrates the miRNA Database (miRTarBase and TarBase Database) and TF Database (ENCODE). 
The IR-DEGs–miRNA and IR-DEGs–TF networks were visualized using Cytoscape. The drugs or molecular 
compounds that may interact with IR-DEGs were predicted using DGIdb (https:// www. dgidb. org), and the 
drug–gene interaction networks were visualized using Cytoscape.

Statistical analysis
The R program (https:// www.r- projec t.org/, version 3.6.3) was used for all data and statistical analyses. For com-
parison of continuous variables with two groups, the statistical significance of the normally distributed variables 
was assessed via an independent Student t-test. Differences between non-normally distributed variables were 
compared via the Mann–Whitney U test (i.e., Wilcoxon rank sum test). P-values were two-sided, and data with 
a p-value < 0.05 were regarded as statistically significant.

Ethics approval and consent to participate
All studies were performed in accordance with the approved guidelines of the Research Ethics committee of the 
Second hospital of Hebei Medical University (approval number: 2022-AE211).

Results
A flow diagram of the overall design of this study is presented in Fig. 1.

Figure 1.  Flow chart of this study.

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.dgidb.org
https://www.r-projec
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Correlation Analysis and Identification of Immune Gene Set in T2D
As shown in Fig. 2, the type I interferon (IFN) response positively correlated with major histocompatibility 
complex class I, Treg, and parainflammation. Th1 cells displayed a significant and positive correlation with 
T-cell co-inhibition, intelligent dendritic cells (iDCs), T follicular helper cells (Tfh), plastmacytoid dendritic 
cells (pDCs), and T-cell co-stimulation. Furthermore, the type II IFN response negatively correlated with iDCs, 
Tfh, and Th1 cells, and Tfh negatively correlated with Treg, parainflammation and macrophages (Fig. 2a). We 
identified a differential immune gene set–Treg by comparing ssGSEA scores of T2D samples with those of normal 
samples (Fig. 2b). In addition, we ranked the top 10 genes in the differential immune gene set based on functional 
similarity and found that IL1R2, ICOS, and ACSL4 were the top three genes (Fig. 2c).

T2D immune subtype identification
The molecular classification of T2D was identified using unsupervised consensus clustering of all T2D samples to 
reveal the diverse immune cell population infiltration in T2D. The value of K determined the optimality number 
of clusters. The “ConsensusClusterPlus” package was executed to split T2D samples into k subtypes (k = 2–10). 
According to the relative change in the area under the CDF curve and consensus heatmap, the optimum was 
k = 3, and no apparent augment was displayed in the area under the CDF curve (Fig. 3a–c). In addition, PCA 
indicated that T2D samples could be divided into three subtypes (Fig. 3d).

Function and pathway enrichment analysis of IR-DEGs
We employed R software to extract 2239 DEGs from the GSE78721 gene expression data and established the inter-
section of the hepatic IR genes from CTD to obtain 2094 IR-DEGs (Supplementary Table 2). We first performed 
GO functional enrichment analysis on 2094 IR-DEGs, and the results were as follows (Supplementary Table 3): 
IR-DEGs were particularly enriched in regulation of lipid metabolic process, response to endoplasmic reticulum 
stress, and the toll-like receptor signaling pathway in the biological process category. Moreover, IR-DEGs were 
significantly enriched in multiple important KEGG pathways (Supplementary Table 3), including spliceosome, 
MAPK signaling pathway, TNF signaling pathway, and AMPK signaling pathway. GSEA–GO enrichment analysis 
indicated that the cellular macromolecule metabolic process, positive regulation of biological process, and cel-
lular response to stimulus were primarily enriched in the biological process category. GSEA–KEGG enrichment 
analysis indicated that the spliceosome, lysosome, and other pathways were significantly enriched (Supplemen-
tary Table 4). Furthermore, we performed GSVA with the MsigDB gene sets; six hallmarks were differentially 
enriched between normal tissues and T2D tissues (Supplementary Table 5).

Construction of IR-DEGs–miRNA network and IR-DEGs–TF network and identification of 
potential drugs of IR-DEGs
The top three miRNA-target IR-DEGs included NUFIP2, CCND2, and ZNF264, which were targeted by 538 
miRNAs, 363 miRNAs, and 347 miRNAs, respectively. Importantly, hsa-mir-1-3p was identified as the miRNA 
that may control the largest number of IR-DEGs (Supplementary Fig. 2a, d). The top five target IR-DEGs of TF 
were ACBD4, modulated by 149 TFs; BAX, modulated by 126 TFs; CCDC142, modulated by 122 TFs; AKT1S1, 
modulated by 101 TFs; and HES4, modulated by 97 TFs (Supplementary Fig. 2b, e). A total of 36 drugs or mol-
ecules such as melphalan, cabazitaxel, and azathioprine were found to interact with CYP3A4. Moreover, 29 drugs 
or molecules (including everolimus) regulated KRAS, and 21 drugs or molecules (including dexamethasone and 
leflunomide) regulated NFE2L2 (Supplementary Fig. 2c, f. Supplementary Table 6–7).

Selection and validation of biomarkers for T2D using machine learning approaches
LASSO and RFB analyses were combined to identify candidate genes for T2D diagnosis. Seventeen and sixteen 
genes were determined, respectively (Supplementary Fig. 3a–d). Two key genes, HDAC9 and ARRDC4, shared by 
the two feature selection algorithms were identified as diagnostic markers (Supplementary Fig. 3e). To evaluate 
their effectiveness of diagnosing, we used SVM model and “pROC” package. The AUC of the SVM model in the 
GSE78721 training set was 71.0%, demonstrating that the model could accurately distinguish between T2D and 
normal samples (Supplementary Fig. 3f).

Then, the GSE76894 and GSE9006 validation datasets were used to assess the model performance and avoid 
overfitting to the training set. The AUC was 72.7% and 81.9%, respectively (Supplementary Fig. 3g–h). We fur-
ther validated the reliability of the results by measuring the biomarkers expression levels in the hepatic tissues 
of IR mice using qRT-PCR. After 8 weeks different diets, the blood glucose and insulin levels of mice in the IR 
group were higher than those in the control group, while the QUICKI levels were opposite, which confirmed the 
successful establishment of insulin resistance model mice (Supplementary Table 8). HDAC9 mRNA level was 
elevated in HFD-fed mice compared with those in normal mice, ARRDC4 showed the opposite trend (Fig. 4). 
Thus, HDAC9 and ARRDC4 could be considered accurate and efficient biomarkers for T2D diagnosis.

Visualization of PPI and hub genes related to IR-DEGs
We used the PPI information in the STRING database to extract the IR-DEGs related to the PPI network (Fig. 5a), 
and identified 20 hub genes (Fig. 5b). Figure 5c illustrates that hub genes were primarily enriched in spliceosome, 
negative regulation of the mRNA metabolic process, mRNA cis splicing via spliceosome, RNA splicing, and via 
transesterification reactions with bulged adenosine as a nucleophile among others.
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Figure 2.  Correlation Analysis and Identification of Immune Gene Set in T2D. (a) The correlation heatmap 
of 29 immune-related gene sets in the T2D samples. The color of the colored square represents the strength 
of the correlation, with positive correlations in red and negative correlations in blue. The darker the colour, 
the stronger the correlation. (b) Heatmap shows the estimation of 29 immune-related gene sets in all samples. 
Each column indicates a sample, and each row indicates an immune gene set. Red represents high relative 
expression levels, blue represents low relative expression levels, the green annotation bar represents the T2D 
sample, and the red annotation bar represents the normal sample. Among them, Treg indicates the differential 
immune gene set. (c) The cloud and rain map of genes in the differential immune gene set based on functional 
similarity. Semantic similarity of Gene Ontology (GO) terms was calculated using the R package GOSemSim. 
The horizontal axis is the level of similarity, and the vertical axis is genes. Dot size represents the magnitude of 
correlation.
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Figure 3.  Consistent clustering of T2D samples. (a) Consensus clustering cumulative distribution function 
(CDF) for k = 2–10. (b) Relative change in area under CDF curve for K = 2–10. (c) Consensus clustering matrix 
for k = 3. A higher consensus score between two samples indicates that they are more likely to be assigned to the 
same cluster in different iterations. (d) Principal component analysis (PCA) of all samples based on the ssGSEA 
score. The cross represents normal, the dot represents subtype 1, the triangle represents subtype 2, and the 
square represents subtype 3.

Figure 4.  Verification of the biomarkers. Total RNA was extracted from the hepatic tissues of insulin resistance 
mice and control mice for qRT-PCR analysis. The expression of ARRDC4, and HDAC9 in the mice (n = 6 per 
group). P < 0.05 versus the control. The data are presented as the mean ± SD.
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Figure 5.  Visualization of protein–protein interaction (PPI) networks and hub-genes. (a) The PPI network of 
IR-DEGs, the red nodes represent IR-DEGs. Red nodes represent IR-DEGs and blue nodes represent IR-DEGs-
related genes. (b) Hub genes were identified from the PPI network using the maximum group centrality (MCC) 
algorithm, and the nodes represent 20 hub genes. (c)The biological function annotation analysis of the selected 
hub genes were performed by ClueGO and CluePedia.
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Correlation analysis of immune infiltration and immune related genes
Binding of the spliceosome protein Eftud2 to the elongation factor Tu GTP is an AS mechanism that may regulate 
the innate immune response of  macrophages31. SRSF1, SRSF3, SRSF5, and SRSF9 act as common splicing factors 
and are major classical SR  proteins32. SRSF1 involved in transcription activation, regulated AS and mRNA nuclear 
export in the immune  system33. Moreover, SRSF1 interacts with a short sequence within CD46 exon 13 to produce 
the CYT2  isoform34 , which is crucial for regulating T-cell differentiation and homeostasis. Increasing evidence 
has confirmed that SRSF2 regulated splicing variants related to cancer and immune  disorders35,36. The box plot 
in Fig. 6a shows that HNRNPA0, EFTUD2, PRPF19, SRSF2, SRSF7, SF3B1, SNRPE, SNRNP40, SNRPB2, SRSF1, 
HNRNPC, HNRNPA3, SRSF3, CPSF2, HNRNPR, HNRNPK, and PPIL1 had significant differences in the three 
immune characteristic T2D subtypes. The correlation heatmap indicates differences between 20 hub genes and 29 
immune-related gene sets in the three immune characteristic T2D subtype samples (Supplementary Fig. 4b–d). 
In the C1 subtype, SRSF3 and SRSF7 were negatively correlated with the immune gene sets of B cells and T helper 
cells and were positively correlated with immune gene sets of the Type I IFN response (Supplementary Fig. 4b). 
In the C2 subtype, SRSF3 and SRSF7 were positively correlated with the immune gene sets of Th1, NK, and Th2 
cells, and negatively correlated with the immune gene sets of Type II IFN response, macrophages, and T-helper 
cells (Supplementary Fig. 4c). In the C3 subtype, SRSF3, SRSF7 and other hub genes were negatively correlated 
to the immune gene sets of Tfh, HLAs, and pDCs. SRSF3 and SRSF7 were positively correlated with the immune 
gene sets of type I IFN response and parainflammation (Supplementary Fig. 4d).

Immune cell infiltration analysis
The violin plots of the 22 immune cell infiltrations from CIBERSORT analysis indicate significant differences 
among the three immune characteristic T2D subtype samples: eosinophils, B cells naive, B cells memory, T-cells 
CD4 memory activated, T-cells gamma delta, NK cells activated, macrophages M1, macrophages M2, dendritic 
cells resting, dendritic cells activated, mast cells activated, and neutrophils infiltration (Fig. 6a–l). Correlation 
analysis revealed that HDAC9 exhibited a positive correlation with naive B cells (r = 0.204, p = 0.020) and a 
negative correlation with plasma cells (r = − 0.257, p = 0.003) and resting mast cells (r = − 0.204, p = 0.020) (Sup-
plementary Fig. 5a). ARRDC4 correlated positively with NK cells activated (r = 0.306, p = 0.0004), macrophages 
M2 (r = 0.440, p = 1.65e-07), and activated mast cells (r = 0.474, p = 1.20e-08) and negatively with B cells memory 
(r = − 0.480, p = 7.44e-09), T-cells CD8 (r = − 0.295, p = 0.0007), Tregs (r = − 0.266, p = 0.002), T-cells gamma delta 
(r = − 0.503, p = 1.08e-09), monocytes (r = − 0.256, p = 0.003), and macrophages M1 (r = − 0.435, p = 2.29e-07) 
(Supplementary Fig. 5b).

Discussion
Although previous studies have explored T2D mRNA expression profiles in the GEO  database37–39, few studies 
have combined the CTD database with GEO database to analyze the possible role of hepatic IR genes and immune 
cell infiltration in  T2D40,41. Hence, in this study, HDAC9 and ARRDC4 were identified as potentially accurate 
and efficient biomarkers for T2D diagnosis. Twenty hub genes were identified, whose expressions correlate with 
immune cell infiltration in T2D. In this study, bioinformatic quality control was done including microarray data 
quality assessment, normalization and batch effects correction, and cross validation.

Among the 105 BP annotations, the regulation of lipid metabolic processes, response to endoplasmic reticu-
lum stress, and the toll-like receptor signaling pathway were considered significantly associated with IR. Exces-
sive free fatty acid storage in muscles, the liver, and adipose tissue causes IR, leading to aggravation of lipid 
metabolism disorder, forming a vicious  cycle42. Activating protein kinase R-like endoplasmic reticulum including 
inositol-requiring kinase 1 and X box binding protein splicing increases NF-κb, TNF-α, and IL-6 level, leading 
to the phosphorylation of related receptors, which in turn affects insulin signaling  pathways43. Moreover, Tian 
et al44 found that T2D mice had increased TLR2 level in their skeletal muscle cells compared with normal mice. 
The knockout of the TLR4 gene, blocking TLR4-mediated inflammatory signaling, increased the glucose toler-
ance and sensitivity to insulin, and activation of the TLR4 signaling pathway caused the body to be in a state of 
low-grade inflammation, which is an important factor in  IR45 .

Further, among 62 enriched signaling pathways, the MAPK, TNF, and AMPK signaling pathways were related 
to IR. Notably, inhibiting p38 MAPK activity ameliorates liver insulin sensitivity in obesity-associated  disorders46. 
p38 MAPK activation induces the phosphorylation of insulin receptor substrate 1(IRS1) inhibition, which results 
in inhibiting insulin  signaling47. Patients with T2D have increased levels of TNF-α48. TNF-α reduction enhanced 
insulin-induced Akt phosphorylation and ameliorated lipid-induced IR in diabetic  hepatocytes49. Previous stud-
ies have indicated that AMPK activation could further promote IRS1 phosphorylation downstream of the insulin 
signaling pathway and activate Akt in driving the translocation of GLUT4 to the cell membrane, thereby promot-
ing the uptake and utilization of glucose and ultimately contributing to attenuating  IR50,51.

Previous research has demonstrated that miRNA modulates islet β cell function or IR in T2D humans, and 
could be regarded as a potential target for the early diagnosis and effective treatment of  T2D52. For example, 
in obese mice, miR-103/107 expression is  elevated53. Silencing of miR-103/107 improves protein levels of the 
insulin receptor regulator pavement protein-1, thereby affecting glucose homeostasis. A recent study showed 
that miR-30b expression was significantly elevated in the liver of rats fed  HFD54. miR-30b activates endoplasmic 
reticulum stress. Activation of hepatic endoplasmic reticulum stress impairs insulin sensitivity in rats promot-
ing the insulin signalling pathway and inhibiting hepatic adipogenesis. Studies have shown that miRNA could 
directly target and regulate the expression of multiple target mRNAs and their protein expression in the process 
of IR, and the target mRNA encoding the protein can also be regulated by multiple  miRNAs55,56.Our findings 
are consistent with those of previous studies; the miRNA that may participate in the regulation of the largest 
number of IR-DEGs was hsa-mir-1-3p.
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TFs can affect cell metabolism, forkhead box 3a TFs regulate the expression level of Bax in the process of 
diabetic cardiomyocyte  apoptosis57. Transcription factors can affect cell metabolism through transcription, trans-
lation, and encoding. Previous studies have shown that transcription factors regulate the expression level of Bax 
in the process of diabetic cardiomyocyte  apoptosis57, and also play a role in the apoptosis of diabetic  podocytes58. 
The present study showed the multiple transcription factors associated with IR in the network.

Figure 6.  Evaluation and visualization of immune cell infiltration in three immune characteristic T2D 
subtypes. (a–l) Violin plots of immune cells that are significantly different between the C1, C2, and C3 subtypes. 
The blue is the C1 subtype, the orange is the C2 subtype, and the red is the C3 subtype.
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The drug-target network indicated that melphalan, cabazitaxel, and azathioprine were found to interact 
with CYP3A4, a critical enzyme involved in the hepatic metabolism of repaglinide (oral hypoglycemic drug)59. 
Growing evidence has indicated that diabetes mellitus could cause marked alterations in the CYP3A4 activity 
and  expression60 and elevated fatty acids levels lead to enhanced CYP3A4 function and  expression61. This may 
provide new evidence in the clinical search for effective drugs to treat diabetes.

Recently, T2D has been identified as an immune-related inflammatory disease, and abnormal immune regula-
tion is strongly related to T2D  pathogenesis62. In this study, we identified a differential immune gene set–Tregs 

Figure 6.  (continued)
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by comparing ssGSEA scores of T2D samples with those of normal samples, which are the main controllers of 
the body’s immune tolerance and are associated with long-term immune homeostasis and tissue  inflammation63. 
Recent studies have shown that Tregs may mediate metabolic diseases, including  atherosclerosis64,  obesity65, and 
 T2D66. The imbalance of Th1/Th2 and the decrease in Treg level in patients with T2D indicated that abnormal.

T-cell subsets exist in  T2D66. Yuan and  colleagues67 discovered that the proportion of Tregs was significantly 
reduced and was negatively correlated with IR individuals with newly diagnosed T2D. We discovered that the 
immune-related genes IL1R2, ICOS, ACSL4 could participate in regulating Tregs in T2D. However, the underly-
ing mechanisms require further investigation using cell and animal model experiments.

In this study, we identified two IR-related genes (HDAC9 and ARRDC4) closely related to T2D. It has been 
suggested that HDAC9, which is involved in the generation of reactive oxygen species, apoptosis, and inflamma-
tion modulates adipogenic differentiation and hepatic insulin  sensitivity68,69. HDAC9 expression was found to be 
upregulated in skeletal muscle tissue of IR women with metabolic  syndrome70. In vivo and in vitro experiments 
in diabetic nephropathy models have demonstrated that HDAC9 can induce podocyte apoptosis and renal injury 
through the JAK2/STAT3  pathway71. HDAC9 induces the expression of phosphoenolpyruvate carboxykinase and 
glucose 6-phosphatase through  deacetylation72. It was found the visceral adipose tissue (VAT) mRNA expression 
level of HDAC9 were significantly lower in obese patients in comparison with normal-weight women. The VAT 
HDAC9 mRNA level inversely correlated with BMI, waist, hip and with HOMA-IR, insulin levels, and serum 
concentration of hs-CRP73. In contrast, Chatterjee et al. found that HDAC9 expression increased in adipocytes 
of diet-induced obesity mice in comparison with chow-fed mice. HDAC9 gene deletion improves adipogenic 
differentiation and systemic metabolic state during an HFD, resulting in improved glucose tolerance and insulin 
sensitivity, and prevented  hepatosteatosis68. In addition, a gene expression microarray analysis identified that 
HDAC9 was significantly correlated with insulin  resistance74. ARRDC4 is associated with innate  immunity75 ; 
however, the relationship between ARRDC4 and IR is not yet clear. Our findings suggested that these two-genes 
are important biomarkers affecting the diagnosis of T2D. To better understand HDAC9-related inflammatory 
activities, the present study revealed that HDAC9 was positively correlated with B cells but negatively correlated 
with the plasma cells and mast cells when resting; we further validated the values of HDAC9 and ARRDC4 as 
T2D markers using qRT-PCR. Expression of HDAC9 and ARRDC4 are useful in differentiating T2D from normal 
tissue. However, the underlying mechanisms need to be further analyzed in future studies.

Our study has some limitations. First, western blot, immunohistochemistry approaches, and other tools 
should be used to further determine the regulatory effect of hub genes of T2D. Second, to determine the effects of 
DEGs in T2D, it remains essential to conduct concrete double gain and loss-of-function experiments. Third, we 
have not identified any data on immunotherapy for type 2 diabetes in any public databases, and we would collect 
patient samples of immunotherapy and control samples for sequencing in further study. Fourth, although we 
assessed the immune infiltration-related signature of T2D, a detailed functional analysis is necessary to discover 
potential immunomodulatory mechanisms. Finally, in our study, we used a microarray gene expression dataset 
of type 2 diabetes patients to identify potential biomarkers. However, it is worth noting that we only used animal 
studies during the validation phase. Although these results provide us with initial insights, additional validation 
studies, particularly on human samples, are needed before these biomarkers can be used in the clinic. In our 
study, we did not validate the biomarkers by integrating multiple GEO datasets, which may have introduced data 
bias to some extent. We intend to consider more GEO datasets in subsequent studies.

Conclusions
Overall, this study identified two key biomarkers (HDAC9 and ARRDC4) and 20 hub genes, which could be used 
as novel potential biomarkers and therapeutic targets for T2D. Meanwhile, the immune cell infiltration in the 
T2D subtype and the relationship between 20 hub genes and 29 immune-related genes sets in the three different 
T2D subtype samples were analyzed providing new evidence of immunotherapy in T2D. These observations 
revealed new insights into the development of novel diagnosis and therapeutic strategies for T2D.

Data availability
The datasets supporting the conclusions of this article are available in the Gene Expression Omnibus (GEO) 
datasets: https:// www. ncbi. nlm. nih. gov/ Gene Expression Omnibus (GEO) GSE78721, https:// www. ncbi. nlm. 
nih. gov/ Gene Expression Omnibus (GEO) GSE76894, and https:// www. ncbi. nlm. nih. gov/ Gene Expression 
Omnibus (GEO) GSE9006.
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