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Air pollutant prediction model 
based on transfer learning 
two‑stage attention mechanism
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Atmospheric pollution significantly impacts the regional economy and human health, and its 
prediction has been increasingly emphasized. The performance of traditional prediction methods is 
limited due to the lack of historical data support in new atmospheric monitoring sites. Therefore, this 
paper proposes a two‑stage attention mechanism model based on transfer learning (TL‑AdaBiGRU). 
First, the first stage of the model utilizes a temporal distribution characterization algorithm to 
segment the air pollutant sequences into periods. It introduces a temporal attention mechanism to 
assign self‑learning weights to the period segments in order to filter out essential period features. 
Then, in the second stage of the model, a multi‑head external attention mechanism is introduced 
to mine the network’s hidden layer key features. Finally, the adequate knowledge learned by the 
model at the source domain site is migrated to the new site to improve the prediction capability of 
the new site. The results show that (1) the model is modeled from the data distribution perspective, 
and the critical information within the sequence of periodic segments is mined in depth. (2) The model 
employs a unique two‑stage attention mechanism to capture complex nonlinear relationships in air 
pollutant data. (3) Compared with the existing models, the mean absolute error (MAE), root mean 
square error (RMSE), and mean absolute percentage error (MAPE) of the model decreased by 14%, 
13%, and 4%, respectively, and the prediction accuracy was greatly improved.

With the rapid growth of China’s economy and the rapid development of industrialization, the pressure on the 
environment continues to increase, and severe air pollution has brought many inconveniences to people’s lives; 
the relevant departments have begun to monitor the concentration of pollutants in the atmosphere.  PM2.5,  PM10, 
 NO2,  SO2,  O3, and so on, can be suspended in the atmosphere due to their tiny and lightweight properties. These 
tiny particles can enter the body through the respiratory tract to reach the depths of the lungs, causing irreversible 
damage to the respiratory system. Studies have shown that long-term exposure to high concentrations of  PM2.5 
 PM10 not only increases the risk of respiratory diseases but also cardiovascular will produce adverse damage; 
 SO2 particles will cause great harm to the environment, deposition to the soil and water contamination of soil 
and water, which affects crops and vegetation. This not only affects the growth of crops and vegetation but also 
disrupts the balance of the ecosystem; prolonged exposure to high concentrations of  NO2 and  O3 can lead to 
symptoms such as coughing, dizziness, and reduced concentration. Therefore, predicting the concentration of air 
pollutants has an important guiding role for the government in controlling air pollution and formulating relevant 
environmental protection policies. It also has an important significance for improving people’s quality of life.

Currently, there are two main methods for predicting atmospheric pollutant concentration: physicochemi-
cal and data-driven methods. Physicochemical methods predict changes in air pollutants at different scales and 
regions by modeling and analyzing the physicochemical reactions of air pollutants through physicochemical 
principles. They mainly include the Nested Air Quality Prediction Modeling System (NAQPMS), WRF_Chem 
model, and the Community Multiscale Air Quality (CMAQ)  model1,2. Although these models can achieve a high 
prediction accuracy, they often require complex model configurations and parameter adjustments, and different 
numerical prediction models are required for different locations, resulting in low generalizability of the models.

With the gradual establishment of monitoring tools such as meteorological observation stations, atmospheric 
quality monitoring stations, and meteorological satellites, the atmospheric pollutant concentration data and 
meteorological data collected by the equipment provide data support for atmospheric quality prediction research. 
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Data-driven methods are increasingly being applied to predict the concentration of atmospheric pollutants. In 
early statistical modeling, commonly used models include the autoregressive moving average model (ARMA), 
autoregressive Integrated moving average model (ARIMA), and multivariate linear regression model (MLR)3. 
Due to the influence of various factors on the concentration of atmospheric pollutants, they exhibit instability 
and nonlinearity. The above statistical modeling methods are not accurate in processing nonlinear sequence 
data, which in turn affects the prediction accuracy. In recent years, with the development of machine learning, 
methods such as multilayer perceptron (MLP)4, support vector machines (SVM)5,6, and random forest (RF)7–9 
have been used for predicting atmospheric pollutants. Although traditional machine learning methods have 
achieved good results in predicting air pollution, the concentration of air pollutants not only has the charac-
teristics of mutual conversion and cancellation but is also easily affected by meteorological factors, so it cannot 
effectively capture the time series characteristic information of air pollutant concentration. In order to extract 
internal feature correlation information from historical data, many scholars use neural networks to construct 
atmospheric pollutant prediction models, such as recurrent neural network (RNN)10,11, long short term memory 
(LSTM)12–14, weighted long short-term memory neural network (WLSTME)15, bi-directional long short-term 
memory neural network (BiLSTM)16, and gated recurrent unit (GRU)17. Some studies have combined the above 
networks to explore the long-term dependencies of data. For example, Huang et al.18 combined convolutional 
neural network (CNN) and long short-term memory network (LSTM) for  PM2.5 concentration prediction. Du 
et al.19 established a combination model of CNN and BiLSTM for multivariate atmospheric quality prediction. 
Zhang et al.20 proposed a hybrid model based on residual network (ResNet) and convolutional long short-term 
memory network (ConvLSTM) to predict  PM2.5 concentration in cities for a period of time in the future. Fur-
thermore, a prediction model is constructed by combining coupled swarm intelligence algorithms with neural 
 networks21,22, which have the characteristics of fewer dependent variables and higher prediction accuracy. The 
above deep learning-based prediction methods require sufficient training data. Otherwise, the trained neural 
network has poor robustness, low accuracy, and weak generalization ability. Leveraging its advantages for newly 
built atmospheric monitoring stations with limited historical data is difficult.

Some studies have noted that data interpolation methods to predict pollutants can alleviate the problems 
caused by data imbalance. For example, by interpolation, Chae et al.23 transformed non-uniform data from 
different monitoring locations into uniform spatial data. They combined it with the CNN model to construct 
an ICNN model for air quality prediction, which showed high prediction accuracy for  PM10 and  PM2.5. Samal 
et al.24 proposed a Multi-directional Temporal Convolutional Neural Network (MTCAN) model, the main idea 
of which is to use the correlation between pollutants and meteorological factors to fill in the missing values of 
 PM2.5 and then combine it with the null convolutional features of the TCN model for prediction, and the results 
showed a significant improvement in the prediction accuracy of the proposed model. Ding et al.25 proposed a 
geographic long- and short-term memory neural network (Geo-LSTM) based on interpolation of air pollutant 
spatial distributions, which was compared with the traditional spatial interpolation methods and the machine 
learning-based interpolation methods; the proposed model not only can learn nonlinearly from the long-term 
dependence of time series but also takes into account the spatiotemporal mechanism of air pollutants. Recently, 
transfer learning (TL) has been widely used in computer  vision26, text  classification27, activity  recognition28, 
multilingual speech  technology29, and other fields because it can transfer learned knowledge to target fields to 
solve problems with a small amount of labeled sample data. In view of its unique performance in solving the 
small sample learning problem, some research attempts to apply TL to the prediction of atmospheric pollutant 
concentration series. For example, Ma et al.30 proposed a transfer learning-based stacked bidirectional long short 
term memory network (TLS-BLSTM) for predicting atmospheric quality at a new station lacking data, which 
transfers knowledge learned from an existing atmospheric quality station to the new station to improve forecast-
ing capability. Using meteorological and pollutant concentration data as model inputs, Yuan et al.31 proposed 
a new model coupling long short-term memory neural network with transfer learning (TL-LSTM) to improve 
the accuracy and generalization ability of model prediction. Aiming at the problem of an existing single method 
for processing missing data, Ma et al.32 proposed an iterative estimation based on transferred long short-term 
memory-based iterative estimation (TLSTM-IE) for estimating consecutive missing values with large missing 
rates. However, the relationship between air pollutant variables is complex characterized by strong periodicity, 
continuity, and non-stationary. The above methods will have the problem of insufficient information mining of 
original data. Scholars have noticed that the prediction performance can be improved by improving the input 
variables, such as discrete wavelet transform (DWT), fourier transformed partial modulus Division (DFM), 
empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD)33, complementary 
ensemble empirical mode decomposition (CEEMD)34, and so on, but these methods do not consider the impact 
of data distribution changes on the prediction results, which means that these methods may encounter the 
problem of model drift when facing unknown data, This will lead to insufficient training, which will affect the 
prediction accuracy.

To this end, this paper proposes an atmospheric pollutant prediction model (TL-AdaBiGRU) based on a two-
stage attention mechanism of transfer learning. The prediction method is modeled from the perspective of air 
pollutant data distribution, using temporal distribution characterization to segment the air pollutant sequences 
periodically to capture the sequence period information fully and embedding a temporal attention mechanism 
layer and a multi-head external attention mechanism layer based on bidirectional gated recurrent neural network 
(BiGRU) to excavate long-term dependencies of time series deeply. Moreover, the BiGRU model incorporating 
the two-stage attention mechanism is combined with transfer learning for monitoring station prediction with 
limited historical data. The model proposed in this paper can effectively alleviate the problems of poor model 
generalization and poor prediction accuracy caused by data periodicity, non-stationarity, and insufficient data 
volume. The main contributions of this paper are as follows:
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1. In this paper, the characteristics of air pollutant concentration data with strong periodicity, continuity, and 
non-stationarity are taken into account, and the TDC algorithm is utilized to segment the sequence and 
learn the characteristics between the periods.

2. In order to better mine the potential information of the input data and capture the complex features of the 
data, the temporal attention mechanism and multiple external attention mechanisms are embedded in the 
temporal distribution matching layer. Through the temporal attention mechanism layer, the importance of 
different periods is determined, and the corresponding weights are assigned to obtain a better model input. 
In order to dig deeper into the critical information in the hidden layer of BiGRU and extract the temporal 
characteristics between different units, the temporal dependence between units is captured by embedding 
a multi-head external attention mechanism layer after the BiGRU layer, which assigns different attention to 
the important information in the hidden layer, and then learns the critical information inside the model.

3. The BiGRU model incorporating a two-stage attention mechanism is combined with transfer learning, and 
the source domain data determined by the Multiple Kernel Maximum Mean Discrepancy (MK-MMD) is 
used to pre-train the model to determine the optimal network parameters. In the transfer phase, the target 
domain data is used to fine-tuning the pre-training model to improve the generalization ability further. 
Through comparative analysis of prediction performance on sites lacking historical data, the TL-AdaBiGRU 
model is superior to Transformer, AdaBiGRU, BiGRU, GRU, and LightGBM models in prediction effect.

Air pollutants prediction approach
Air pollutants prediction framework
The air pollutant concentration prediction framework proposed in this paper is shown in Fig. 1 below. It can be 
divided into a pre-training stage and a transfer stage. For the pre-training stage, firstly, the pollutant concentration 
data and meteorological data are detected anomalously, and the detected anomalies are marked as missing values 
and the linear interpolation algorithm is used to fill in the missing data, after which the data are normalized. 
Secondly, the preprocessed data are fed into the temporal distribution characterization layer (TDC). The design of 
the TDC is inspired by the principle of maximum entropy, which divides the time series into ten parts uniformly 
and uses a greedy strategy to divide the length nj of each cycle, thus dividing the data into K periods with large 
distribution gaps. This design aims to reduce the effect of data periodicity and helps the model better learn each 
time period’s internal information. Next, the first-stage attention mechanism-temporal attention mechanism is 
used to assign weights a to each temporal data xi according to the importance of the temporal data in order to 
pay full attention to the feature information in the time-series data. Finally, the product of each temporal data 
xi and the attention α , fi , is used as the input to the BiGRU network. The hidden layer of BiGRU can efficiently 
capture the sequence data’s long-term dependencies and effectively fuse forward and backward information to 
generate more comprehensive and accurate feature representations. A second-stage attention mechanism, the 
Multihead External Attention Mechanism, is embedded behind the hidden layer of BiGRU to dig deeper into 
the key features of the network’s hidden layer. The composition of the multi-head external attention mechanism 
consists of two independent memory units,MK and Mv , which are used as keys and values, respectively. They can 
learn additional data features and prior knowledge to assist the model in feature selection and weighting, quickly 
filtering out the key features among numerous inputs. Finally, the source domain pre-training is completed 
using the fully connected layer. In the transfer stage, the parameters from the pre-training phase are used as the 
basis for the transfer learning using the fine-tuning strategy. First, we froze the last four layers of the AdaBiGRU 
model and performed a certain number of Epoch training to verify the fitting effect of the source domain. Then, 
we unfroze the frozen layers and designed a new fully connected layer spliced with the unfrozen AdaBiGRU to 

Figure 1.  Air pollutants prediction framework. (a) is GRU structure, (b) is BiGRU structure.
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obtain the new AdaBiGRU model. The new AdaBiGRU model contains the pre-trained AdaBiGRU layer of the 
source domain and the thawed AdaBiGRU layer (without weight update). Finally, we fine-tuned the AdaBiGRU 
model using the preprocessed target site data to optimize the remaining parameters. We applied the optimal TL-
AdaBiGRU model to predict air pollutant concentrations at the target site and output the final prediction results.

Two‑stage attention mechanisms neural networks
We propose AdaBiGRU, consisting mainly of a temporal distribution characterization module (TDC) and a 
temporal distribution matching module (TDM). The role of the TDC module is to quantify the successive data 
distributions in a sequence and classify them into sequences with the least similar K segment distributions. The 
role of the TDM module is to construct a model with temporal invariance for the above K-segment sequences. 
The details are given below.

Temporal distribution characterization
Atmospheric pollutant concentration data are typical time series data with periodicity and non-stationarity, 
and the data distribution changes dynamically with time. This paper defines the problem above as Temporal 
Covariate Shift (TCS). TCS means that there are n marked parts in a period of time D . If we can divide it into 
K period segments, that is, D ={D1 ,D2,...,DK } , where DK =

{

xi , yi
}nK+1

i=nK+1
, n1 = 0, nK+1 = n . It is referred to 

the case that all the segments in the same period follow the same data distribution PDi

(

x, y
)

,while for different 
time periods 1 ≤ i �= j ≤ K , PDi (x) �= PDj(x) and PDi

(

y|x
)

= PDj
(

y|x
)

 . As shown in Fig. 2 below, the data have 
different distributions in intervals A, B, C and D, that is,PA(x)  = PB(x)  = PC(x)  = PTest(x) . Especially during 
our training process, the distribution of the test data and the training data are also different, so how to solve 
the differences between the data distributions while capturing the common knowledge of the time series data 
between different periods to make the prediction model generalize more is the primary problem.

One approach of existing studies for the above scenario is to assume that all-time series segments follow the 
same data distribution, but this is clearly inappropriate in air pollutant prediction. Another approach is to use 
some adaptive algorithms to reduce the distributional differences between the data and thus learn the invariant 
knowledge of the data domain, such as Domain Adaptation (DA)35 and Domain Generalization (DG)36,37, which 
in turn are differentiated in that the former aims at reducing the distributional differences between the training 
data and the test data by learning a domain-invariant representation, and the latter hopes to learn a domain-
invariant model over multiple source domains to learn a domain-invariant model which generalizes well to the 
target domain. Unfortunately, atmospheric pollutants are not only time-varying but also have a strong sequence 
structure, making it difficult for DA and DG methods to address the data distribution differences effectively.

In order to better represent the distribution information in the time series, this paper proposes a temporal 
distribution characterization (TDC) algorithm, which is described in detail in Section TDC. According to the 
principle of maximum entropy, the training data is partitioned into K time periods with large distribution 
intervals to train the model; when the prediction model can have good generalization between periods with 
significant differences in the data distribution, then the performance must also be better for periods with more 
minor differences in the distribution. TDC achieves the time series partitioning by solving an optimization 
problem, which can be formulated as follows:

where �1,�2 and K0 are pre-set parameters to avoid meaningless solutions.d selects CORAL as the similarity 
measure function, and the covariance distance of the distribution samples represented by CORAL is shown in 
Eq. (2).

(1)

max
0<K<K0

max
n1,...,nk

1

K

∑

1≤i�=j≤K

d
(

Di ,Dj

)

s.t. ∀i,�1 < |Di| < �2;
∑

i

|Di| = n

(2)dcoral(hS , ht)=
1

4q2
�CS − Ct�

2
F

Figure 2.  Temporal covariate shift.
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where q is the dimension of the features and CS,Ct is the covariance matrix of the distribution.

Temporal distribution matching
After the TDC module, which obtains the least similar sequences of K segments, the TDM module assigns dif-
ferent temporal self-attention to the period sequences according to the importance of the period. In particular, 
in order to learn the temporal distribution properties and sequence correlations, AdaBiGRU adaptively matches 
the distributions among BiGRU units for each period using a multi-head external attention mechanism while 
capturing the temporal dependencies. The details are as follows.

Temporal self‑attention mechanism
In deep learning, the self-attention  mechanism38 is a vital model structure used to improve the model’s atten-
tion to and processing of input data. The self-attention mechanism allows the model to selectively focus on the 
essential parts and ignore the unimportant parts when processing the input data, thus improving the performance 
and effectiveness of the model. In this paper, we calculate the degree of correlation between each location of the 
input data and other locations through the temporal self-attention mechanism layer to get the weight of each 
location. By calculating the weights, the model can focus more on this task-relevant information and improve 
its processing power.

According to Eq. 1, a plurality of period segment data Z ={z(t)|t = d, d + 1,...,K } is used as input to the TSAM 
layer. The data for each period segment can be represented as: z(t)=

[

x(t,1), x(t,2),..., x(t,d)
]

, x(t,1) ∈ Rm,(1, 2,..., d), d 
is the length of each period. As shown in Fig. 3. Periodic data is passed through the TSAM layer to obtain a 
mapping relationship between time instances, as shown in Eqs. (3) and (4):

xi denotes the i th temporal data,Wi and bi denote the preset weights and biases corresponding to the i th 
temporal data,T is the device operation,σ is the sigmoid activation function, and ai denotes the temporal attention 
weight corresponding to the i th temporal data.

Finally, the temporal attention weight ai corresponding to each temporal data is multiplied with the corre-
sponding sample data xi to obtain the output fi of each period sample in the temporal self-attention mechanism 
layer, and the output F of the whole temporal self-attention mechanism layer is used as the input of the subse-
quent BiGRU. As shown in Eq. (5).

(3)γi= σ

(

WT
i xi+bi

)

=
1

1+ e−
(

WT
i xi+bi

)

(4)αi= softmax(γi)=
eγi

∑d
j=1 e

γj

(5)F =
[

f1, f 2,..., f d
]

=[a1x1, a2x2,..., adxd]

Figure 3.  The temporal self-attention mechanism structure.
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Bidirectional gated recurrent neural network
Gated Recurrent Unit (GRU) is a Recurrent Neural Network (RNN) variant for processing sequential data 
designed to solve the problem of gradient vanishing in traditional Recurrent Neural Network. Compared with 
traditional Recurrent Neural Network, GRU has better long-term dependency modeling capability and higher 
computational efficiency, and its main feature is the introduction of two gating units, reset gate and update gate, 
which decide how the information flows through the sequence by learning. The reset gate controls the effect of 
the previous moment’s hidden state on the current moment’s inputs. In contrast, the update gate determines how 
much information is retained by the hidden state of the previous moment to be passed on to the next moment. 
The structure of GRU is shown in Fig. 1a. The data transfer process of GRU can be described as follows:

σ denotes the sigmoid activation function, tanh denotes the hyperbolic tangent function, ft is the input vector 
per unit time, ht and ht−1 are the outputs of times t − 1 and t  , respectively. zt and rt are the outputs of the update 
gate and reset gate, respectively, as in Eqs. 6 and 7 above, and ct is the candidate state, as in Eq. 8 above.Uz ,Ur 
and Uc are the connectivity matrices of the update gate, reset gate, and candidate states to the inputs, respec-
tively.Wz , bz ,Wr , br ,Wc , bc are the weights and deviations of the update gate, reset gate, and candidate state, 
respectively. ⊙ for the dot product operation.

The GRU transmission direction is unidirectional from front to back. However, the temporal data correlation 
is strong; the current moment state is related to the previous moment state and the next moment state. Therefore, 
for the problem of air pollutant concentration prediction, it is necessary to study the inverse time series and apply 
the BiGRU network to air pollutant concentration prediction. The BiGRU function combines the hidden layer 
states by developing two different loop layers, forward and backward, and the base structure of BiGRU is shown 
in Fig. 1b. Assuming that the input time series has a time window of size d , The input to the forward GRU is 
ft(t = 1, 2,..., d) after the forward iteration, The forward output sequence of the implicit layer is shown in Eq. (10).

−−→
GRU  denotes the forward mapping relation of the GRU. The input sequence ft(t = d, d − 1,..., 1) reverses 

input for the reversed GRU is shown in Eq. (11).

where, ←−−
GRU  is the mapping relation of the backward GRU. Combining the above equations, the output ht of the 

hidden layer when t  is shown in Eq. (12).

In order to adaptively match the distribution between BiGRU units in each period while capturing the tem-
poral dependency, a multi-head external attention mechanism is introduced to allocate enough attention to the 
critical information output from the implicit layer of the BiGRU network to learn the essential local information, 
as shown in Fig. 4 below. The output of the BiGRU layer is characterized by a matrix of F ∈ RN×d , where N is the 
number of features affecting the parameter and d is the dimension of the feature. The self-attention mechanism 
linearly maps this input to a query matrix Q ∈ Rm×dk , key matrix K ∈ Rm×dk , and the value matrix V ∈ Rm×dv . 
However, in practical applications, we often use two different memory cells MK and Mv as keys and values in order 
to increase the size of the network capacity, and the single-head external attention matrix is shown in Eq. (13).

where Mk and Mv are learnable parameters, functioning as a memory. The external attention (a)i,j is the similarity 
between the i feature and the j row of the M . Update the input features of the external storage unit based on the 
similarity of the attention matrix. Based on the above single-head external attention mechanism, the multi-head 
external attention mechanism can be obtained by computing the attention multiple times on the outputs of dif-
ferent BiGRU units. The ith external attention is shown in Eqs. (14) and (15).

(6)zt= σ
(

Uzft+wzht−1+bz
)

(7)rt= σ
(

Urft+Wrht−1+br
)

(8)ct= tanh
(

Ucft+rt(Wc ⊙ ht−1)+bc
)

(9)ht=(1− zt)⊙ ct+zt ⊙ ht−1

(10)
−→
ht =

−−→
GRU

(−−→
ht−1, f t

)

(t = 1, 2,..., d)

(11)
←−
ht =

←−−
GRU

(←−−
ht+1, f t

)

(t = d, d − 1, . . . , 1)

(12)ht=
[−→
ht ,

←−
ht

]

(13)
A=(a)i,j= Norm

(

FMT
K

)

Fout= AMv

(14)hi= External Attention(Fi ,Mk ,Mv)

(15)Fout= MultiHead(F,MK ,Mv)= Concat(h1,..., hH)W0
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where hi is the ith head, H denotes the number of heads, W is a linear transformation matrix, it is designed to 
keep the input and output dimensions consistent. MK ∈ RS×d and Mv ∈ RS×d are used to compute the shared 
units of attention for each head.

Transfer learning
Transfer  learning39 is a method of learning by applying knowledge or models learned from one task to solve 
another related task. The domain, task, and marginal probabilities are used in transfer learning to describe 
transfer learning; the domain D contains two parts, the feature space X , and the marginal probability distribu-
tion P(X) , as shown in Eq. (16).

On the other hand, task T also contains two parts, the feature space γ , and the objective function f (·) , as 
shown in Eq. (17).

where f (·) is obtained by learning from the training sample 
{

xi , yi
}

.
The idea of transfer learning is to improve the prediction accuracy on the target domain task TT and target 

domain DT by utilizing the relevant knowledge learned from the source domain DS and the source task TS , where 
DS  = DT ,TS  = TT . The schematic diagram is shown in Fig. 5 below.

The primary transfer learning methods can be divided into three categories: instance transfer learning, feature 
transfer learning, and model transfer learning. Instance transfer learning assigns high weights to samples with 
highly similar data distributions in the source and target domains, which accomplishes the transfer learning 
process. Feature information transfer learning is used to obtain the feature representation of inter-domain data 
in the relevant feature space so that the inter-domain data distribution differences are more similar than data 
feature extraction, and then the transfer learning process is completed. Model parameter transfer learning, on 
the other hand, is more intuitive and involves retaining the main structural hyper-parameters of the original 
model and then performing layer-specific fine-tuning of the parameters adapted to the target domain data, thus 
completing the transfer learning process.

This paper uses model parameter transfer learning, where knowledge in the source domain is shared with the 
target domain task for transfer. The specific process is as follows: firstly, freeze the last four layers of the model 
and train the network in the source domain data, and after training a certain amount of Epoch, observe the 

(16)D ={x, P(X)}

(17)T =
{

γ , f (·)
}

Figure 4.  Multiple external attention mechanism structure.

Figure 5.  The working process of transfer learning.
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fitting effect of the model and retain the model parameter information; then, unfreeze the frozen layers to add a 
new fully-connected layer, and fine-tune the parameters of the fully-connected layer by using the data from the 
target domain to get the final atmospheric pollutant prediction model for the target site.

Description of the algorithm

In order to facilitate the design and implementation of the proposed air pollutants prediction approach, the 
necessary steps are summarized as Algorithm 1 in this paper.

Input: dataset for the prediction process (including source and target domain data) 

Output: data from predicted target sites 

S1: Perform outlier testing, missing value filling and normalization of data 

S2: Source domain site selection according to Eq. (18) 

S3: Quantized by time similarity according to Eq. 1 into different period segments 

S4: Initializing epoch = 1 and Epochmax in AdaBiGRU 

S5: While epoch ≤ Epochmax do 

S6: Assign appropriate weights to time instances according to Eqs. (3)-(5) 

S7: According to Eqs. (10)-(12), BiGRU learns the time-dependent features between data. 

S8: Mining hidden layer features according to Eqs. (13)-(15) Multi-head external attention mechanism 

S9: Enabling mapping from features to fully connected layers 

S10: Update the parameters of the network layer through S6-S9 

S11: epoch → epoch + 1 

S12: end while 

S13: Transfering the parameters of AdaBiGRU 

S14: Processing of the target domain data according to S1 

S15: Periodic segmentation of the target domain data according to S3 

S16: Input the target domain data into TL-AdaBiGRU, output the predicted values, and evaluate the 

model prediction performance according to Eqs. (22)-(24) 

Algorithm 1.  Air pollutants prediction via TL-AdaBiGRU 

Case study
Dataset description and preprocessing
Over the past few decades, Beijing has experienced rapid urbanization, industrial production, and energy con-
sumption; however, this growth has also resulted in severe air pollution problems. A large number of pollut-
ants are emitted every year, leading to a continuous decline in atmospheric quality. In this paper, the Beijing 
Municipality in China was selected as the study area, and the dataset was obtained from the Beijing Embassy in 
Foreign Countries (http:// archi ve. ics. uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data) 9 sites from 
March 2013 to February 2017 for atmospheric quality information. The locations of the atmospheric monitoring 
stations in this paper are shown in Fig. 6 below.

In this study,  PM10 was selected as the prediction target, and in order to characterize the distribution of  PM10, 
a violin plot with a box shape was created with  PM10 at each station, as shown in Fig. 7 below. The distribution 
of  PM10 data at each site can be observed in the figure, and the maximum value is set in the violin plot; in this 
paper, the data more significant than the maximum value is called anomalous data, and the anomalous data is 
recorded as missing values. For  PM10 concentration series data, the inconsistency of time stamps affects the 
prediction accuracy. Therefore, a linear interpolation algorithm is used to fill in the missing data, and the linear 
interpolation processed data is closer to the original data than the average interpolation method. In order to 
eliminate the dimensionality effect of the features and to improve the efficiency of the model operation, the 
maximum-minimum normalization method is used to make the data mapped in the same range. Atmospheric 
pollutants not only affect each other, but temperature and barometric pressure also have a strong influence on 
the pollutant effects; we plotted the Spearman correlation coefficient heat map as shown in Fig. 8, in which the 
temperature is negatively correlated with  PM2.5,  SO2, CO, and positively correlated with  PM10, CO,  PM2. 5,  SO2, 
and  NO2 are positively correlated with the barometric pressure. The dew-point temperature is correlated with 
 PM2.5,  PM10,  NO2, and  O3 were positively correlated, and negatively correlated with  SO2 and CO. Rainfall showed 
a positive correlation with  PM2.5, CO and  O3, negative correlation with  SO2 and  NO2, wind speed was positively 

http://archive.ics
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Figure 6.  Distribution of the locations of the nine atmospheric monitoring stations in Beijing. Blue triangles 
represent stations with less historical data, and red triangles represent source domain stations with sufficient 
data. (This Figure is drawn by using Microsoft Visio software, the version number is 16.0.10730.20102 and the 
link to the software is http:// offic ecdn. micro soft. com/ pr/ 49235 0f6- 3a01- 4f97- b9c0- c7c6d df67d 60/ media/ zh- cn/ 
Visio Pro20 19Ret ail. img).

Figure 7.  A violin plot with box plots showing the distribution of  PM10 data at each site, with a maximum value 
set and data exceeding the maximum value identified as outliers.

http://officecdn.microsoft.com/pr/492350f6-3a01-4f97-b9c0-c7c6ddf67d60/media/zh-cn/VisioPro2019Retail.img
http://officecdn.microsoft.com/pr/492350f6-3a01-4f97-b9c0-c7c6ddf67d60/media/zh-cn/VisioPro2019Retail.img
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correlated with  O3 and negatively correlated with the remaining five pollutants. The overall correlation between 
atmospheric pollutants and meteorological factors in the thermograms is weak, so the meteorological factors 
are entered as input layers with the auxiliary of the model input parameters.

Source domain site selection
The purpose of this study is to explore the impact of transfer learning on the predictive performance of sites 
lacking historical data, the paper selected the Dongsi monitoring site as the target site, and the 6-month data 
from 2016/1 to 2016/7 was selected as the Dongsi site dataset. The limited historical data at the Dongsi site does 
not satisfy the need for deep learning model convergence. Therefore, in addition to the general features in the 
transfer pre-training model, source domain data are still needed to assist in learning the features of the target 
task, and the source domain monitoring sites play a crucial role in transferring the meteorological and temporal 
knowledge to the target domain sites. In this paper, we adopt the Maximum Mean Discrepancy (MMD) method 
to measure the similarity between the source domain monitoring sites and the target monitoring sites. The MMD 
method can efficiently measure the scatter of first-order distributions in the Reproducing Kernel Hilbert Space 
(RKHS). Datasets A ={ai}

n1
i=1 and B ={bi}

n2
i=1 . The MMD of A and B is shown in Eq. (18).

where H denotes the RKHS,�(·) is the nonlinear mapping function from the original data space to the RKHS, 
and p and q denote the probability distributions of the two datasets. MMD is further squared to obtain more 
precise results as shown in Eq. (19).

The Gaussian Radial Basis Function (RBF) k
〈

ai , bj
〉

= exp
(

−
∥
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∥

∥

2
/2γ 2

)

 is used where k�·, ·� is the kernel 
function. Many studies have shown that multi-core MMD methods can improve domain  adaptation40, and the 
kernel representation of NkRBF is as follows.

where ki denotes the RBF kernel with bandwidth parameter γ 2
i  , the MMD between the source domain site and 

the target site is shown in Eq. (21).

where M is the total number of source domain site samples.
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Figure 8.  Spearman’s correlation coefficient between pollutants and meteorological data. The Spearman 
correlation coefficient values range from − 1 to 1. The larger the absolute value of the coefficient, the stronger the 
correlation between the two variables.
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The smaller the value of MMD, the higher the similarity with the target site; the results are shown in Table 1. 
The MMD values of Tiantan, Shunyi, Changping, and Dongsi are 0.669, 0.668, 0.667 respectively, and the MMD 
values of Guanyuan, Huairou, and Wanliu are 0.674, 0.657, 0.656 respectively, the above MMD values are all 
bigger than that of the Aotizhongxin value. Therefore, we selected the Aotizhongxin site as the source domain 
data set. The site, auxiliary target site, and the data of the Aotizhongxin site for 42 months from 2013/1 to 2016/7 
were selected as the source domain dataset. The descriptive data statistics of the Dongsi site (target site) and the 
Aotizhongxin site (source domain site) are shown in the following Table 2.

Result
Model parameters and evaluation indicators
According to the Table 1 results with the Aotizhongxin site as the source domain site, the data of 42 months 
from 2013/1 to 2016/7 are collected as the source domain dataset for model pre-training. 80% of its data are 
used as the training set, 10% as the testing set, and 10% as the validation set. The source domain site data are 
input into AdaBiGRU after outlier detection, missing value filling and normalization, period segmentation by 
the TDC layer, and allocation of different weights by temporal self-attention mechanism. In this paper, the lag 
time is set to 24 h, the Dropout is 0.5, and the model is optimized using Adam optimizer with a learning rate of 
0.005, Batch size set to 36, activation function of Relu, and loss function of MSE. In this paper, we utilize the root 
mean squared error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE) 
as three evaluation metrics to evaluate the prediction performance of AdaBiGRU. The formulas for these three 
metrics are as follows.

(22)RMSE =

√

1

n

∑n

i=1

(

yi − y∗i
)2

(23)MAE =
1

n

∑n

i=1

∣

∣yi − y∗i
∣

∣

Table 1.  MMD values between target atmospheric monitoring sites and neighboring atmospheric monitoring 
sites.

Station Aotizhongxin Changping Guanyuan Gucheng Huairou Shunyi Tiantan Wanliu

Dongsi 0.647 0.667 0.674 0.663 0.657 0.668 0.669 0.656

Table 2.  The descriptive data statistics of the target site and the source domain site.

Station Record count Variables Mean Standard deviation Minimum Maximum

Dongsi (target domain) 5112

PM10 89.328 64.450 5.000 318.000

PM2.5 67.245 56.502 3.000 258.000

SO2 11.858 11.917 2.000 54.000

NO2 43.614 26.770 6.000 138.000

CO 977.928 648.754 100.000 3100.000

O3 69.345 54.174 2.000 304.000

TEMP 13.995 12.415 16.800 37.300

PRES 1011.391 11.058 990.100 1042.000

DEWP − 0.016 15.011 − 35.300 27.300

RAIN 0.086 0.977 0.000 24.100

WSPM 2.098 1.235 0.000 8.100

Aotizhongxin (Source domain) 29,976

PM10 108.610 93.880 2.000 491.000

PM2.5 84.493 83.321 3.000 537.000

SO2 19.463 23.782 0.286 278.000

NO2 52.484 33.291 2.000 258.000

CO 1292.583 1120.248 100.000 6000.000

O3 60.373 59.411 0.643 671.000

TEMP 14.280 11.357 − 16.800 41.100

PRES 1011.751 10.189 987.100 1042.000

DEWP 2.807 13.772 − 35.300 28.800

RAIN 0.066 0.777 0.000 36.600

WSPM 1.897 1.304 0.000 10.500
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where n denotes the number of samples,yi denotes the observed value of the i-th sample, and y∗i  denotes the 
predicted value of the i-th sample. The smaller the value of these three indicators, the higher the prediction 
accuracy and the better the model’s performance.

Comparison of pre‑trained models
In order to test the performance of the AdaBiGRU model, this paper compares it with five prediction models, 
namely, ARIMA, GRU, BiGRU, LightGBM, and Transformer, at four sites, namely, the Gucheng, the Tiantan, the 
Aotizhongxin, and Wanliu, and the results are shown in Table 3. For  PM10 concentration, the error values of both 
ARIMA and LightGBM are higher than those of GRU, BiGRU, Transformer, and AdaBiGRU, which suggests that 
the time-series neural network model has higher prediction accuracy in atmospheric quality prediction. BiGRU 
predicts better than GRU. The performance of the Transformer is better than GRU and BiGRU, indicating that the 
model based on the attention mechanism performs better than the traditional model. In addition, the proposed 
AdaBiGRU model has smaller values than GRU, BiGRU, and Transformer, proving that AdaBiGRU is effective 
when applied to the problem of atmospheric pollutant concentration prediction.

TL‑AdaBiGRU 
In order to improve the prediction performance of the model in limited data sites, this paper implements TL-
AdaBiGRU by combining AdaBiGRU with model parameter transfer learning. The model is first trained on suf-
ficient source domain datasets to determine the optimal model parameters; then, the last four layers of the model 
are frozen, and the model parameter information is retained after a certain amount of Epoch training. Finally, 
the frozen layers were unfrozen, and a new fully connected layer was added to fine-tune the source domain 
model using the target domain data to improve the prediction accuracy at the target site. The frozen layers of the 
model need to be identified before fine-tuning the model, which serves to preserve the knowledge learned by the 
pre-trained model on the source domain data and to prevent performance degradation due to over-tuning on 
the target domain data. The number of freezing layers directly affects the prediction performance of the model. 
If the number of freezing layers is too small, the model may not be able to learn enough “knowledge” from the 
source data. If the number of freezing layers is too large, the model will not be able to adjust enough parameters 
for the target data, which will affect the prediction effect. Therefore, to make the model have better prediction 
performance, selecting the appropriate number of freezing layers is a key issue. The AdaBiGRU model was pre-
trained using  PM10 concentration data from the Aotizhongxin site. Eighty percent of the samples collected from 
the Dongsi site for six months of data from 2016/1 to 2016/7 were used to fine-tune the model with different 
numbers of freezing layers; 10 percent was used for testing and 10 percent for validation. The results presented 
in Table 4 below show that the values of the three metrics decrease as the number of freezing layers increases, 
reaching a minimum when the number of freezing layers is 4. This is because when the number of freezing lay-
ers is too small, the model is affected by noise from other sites. As the number of frozen layers increases, the 
model is gradually less affected by noise from other sites, and the performance improves. When the number of 
frozen layers is more than 4, the error increases as the number of frozen layers increases, and this result is due 
to the overfitting of the model to the auxiliary sites. Therefore, this paper sets the number of frozen layers to 
4. In order to verify the validity and reasonableness of the number of freezing layers of the model, we used the 
same method to experiment with the number of freezing layers of  PM2.5 and  NO2 pollutants and determined 
the optimal number of freezing layers is also four layers. After that, the transfer model was tested using 20% 
of the data from the Dongsi site, and the comparison between the predicted and real values is shown in Fig. 9. 
Compared with the AdaBiGRU model, the fitting effect of the TL-AdaBiGRU model is significantly improved.

Discussions
The performance of the proposed methodological framework for atmospheric site prediction is presented in the 
previous sections. Its reliability and applicability still need to be further explored. This section focuses on the 
period segmentation of the time-similarity quantization algorithm, the validation of the model’s effectiveness at 
other monitoring stations, and the prediction effectiveness of the proposed model for other pollutants.

(24)MAPE =
1

n

∑n

i=1

∣

∣yi − y∗i
∣

∣

yi

Table 3.  Comparison of effects of pre-trained models. Significant values are in bold.

Tiantan Aotizhongxin Wanliu Gucheng

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

ARIMA 0.181 0.136 0.141 0.108 0.156 0.12 0.092 0.071

GRU 0.051 0.038 0.048 0.035 0.046 0.033 0.035 0.025

BiGRU 0.036 0.026 0.018 0.012 0.026 0.019 0.028 0.015

LightGBM 0.058 0.039 0.041 0.028 0.042 0.031 0.032 0.021

Transformer 0.034 0.022 0.033 0.016 0.027 0.018 0.026 0.016

AdaBiGRU 0.030 0.019 0.021 0.014 0.022 0.014 0.025 0.015
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Time similarity quantization period segmentation
In section temporal distribution characterization above for the air pollutant data is periodic and non-stationary, 
the data distribution changes dynamically over time; in order to better characterize the distribution infor-
mation in the air pollutant series, this paper adopts dynamic programming (DP) to solve the optimization 
problem of Eq. (1). First, the time series is uniformly partitioned into N = 10 parts, each of which is the most 
minor unit period that cannot be subdivided. Then, the value of a is chosen randomly for K range of values of 
K ={2, 3, 4, 5, 6, 7, 8, 9, 10} . For a given value of K , a greedy strategy is used to choose the length nj of each period. 
Use A and B to denote the start and end points of the time series, respectively. First, consider the case of K = 2 
and maximize the distribution distance d(SAC , SCB) by choosing a segmentation point (denoted as C ), specifically, 
choosing one of the N segments as C such that d(SAC , SCD)+d(SDB, SB) is maximized. In this way, the time series 
is divided into three parts: [A,C],[C,D] and [D,B] . Similarly, K = 4, 5, 6, 7, 8, 9, 10 , the same strategy is used to 
maximize the distribution distance. With the greedy strategy, the optimal splitting point can be selected so that 
the length of each period of the time series can be more evenly distributed, thus obtaining a better prediction 
model performance. In order to verify the effectiveness of the proposed method, experiments were carried out 
at two sites, Changping and Shunyi, as shown in Fig. 10a below; with the increase of K , the model performance 
first becomes better and then worse, and the model performance is the best when K = 4, 6 and the model perfor-
mance gradually decreases with the increase of K . The model performance of K = 4, 6 is the best, and the model 
performance gradually decreases with the increase of the K value. In order to verify the effectiveness of temporal 
distribution characterization for segmentation of atmospheric pollutant sequences, comparative experiments 
were carried out as shown in Fig. 10b below; Split1 represents random partitioning, Split2 represents partition-
ing based on closest similarity, and Split3 represents partitioning quantified by temporal similarity. Our TDC 
divides the atmospheric pollutant sequence into the time periods with the greatest distribution distance, which 
means that RMSE is the best when partitioning into the least similar time periods.

Table 4.  Impact of the number of frozen layers on prediction accuracy of model.

Frozen layers RMSE MAE MAPE

1 0.1 0.072 0.103

2 0.084 0.065 0.076

3 0.048 0.034 0.055

4 0.029 0.021 0.035

5 0.054 0.043 0.057

6 0.081 0.065 0.073

7 0.11 0.083 0.092

Figure 9.  Comparison of actual and predicted values on  PM2.5,  PM10, and  NO2 by AdaBiGRU and 
TL-AdaBiGRU models.
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Validation of other monitoring sites
In order to verify the validity of the model proposed in this paper, we compared TL-AdaBiGRU with six models, 
namely, ARIMA, GRU, BiGRU, LightGBM, and Transformer, AdaBiGRU, at the Huairou monitoring site. We 
selected the 6-month data from 2016/6 to 2016/12 at the Huairou monitoring station as the dataset and predicted 
the  PM10 concentration for 2017/1/1/0:00 a.m.–1/3/12:00 a.m. (60 h in total). It can be seen from Fig. 11 that with 
less data, the  PM10 concentration predicted by the TL-AdaBiGRU model is closer to the actual value compared 
with the other models closer to the real value. The model effectively alleviates the problems of low prediction 
accuracy and weak generalization ability caused by the small amount of data. The model proposed in this paper 
is also very effective in multi-step prediction, predicting the next 6, 12, 18, and 24 h, as shown in Fig. 12.

Predictive applications for other pollutants
The TL-AdaBiGRU model proposed in this article has achieved high accuracy in predicting  PM10 concentration. 
In order to further verify the generalization of the model, we used the dataset from Huairou Station to predict 
 PM2.5,  NO2,  SO2, and  O3 pollutants, as shown in Fig. 13. Our proposed model has shown good predictive perfor-
mance on various pollutants, and experimental results have shown that the TL-AdaBiGRU model can effectively 
address the problem of low prediction accuracy caused by limited data volume.

Conclusion
This paper proposes a two-stage attention mechanism model (TL-AdaBiGRU) based on transfer learning to 
improve the prediction accuracy of newly built monitoring sites with limited historical monitoring data. The 
model is first pre-trained using source domain sites with sufficient data. The data in the pre-training phase are 
processed by a temporal distribution characterization layer and then entered into a temporal distribution match-
ing layer that integrates a temporal attention mechanism and a multi-head external attention mechanism. The 
temporal attention mechanism can adaptively select relevant sequences and assign weights, thus capturing the 
feature information of the input sequences. The multi-head external attention mechanism can dig deeper into 
the key features of the hidden layer of the network to quickly filter out the critical features among many inputs. 
After the two attention mechanisms, the model can not only adaptively select the most relevant input features 

Figure 10.  Comparison of quantitative results for temporal similarity.

Figure 11.  Comparison of different models at the Huairou monitoring site. The red solid line is the real value, 
the blue dotted line represents TL-AdaBiGRU, the green dotted line represents AdaBiGRU, the pink dotted 
line represents BiGRU, the indigo dotted line represents GRU, the brown dotted line represents LightGBM, the 
purple dotted line represents ARIMA, and the yellow dotted line represents Transformer.
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but also efficiently capture the time dependence of the time series. Then, based on the pre-trained model, a fine-
tuning strategy is used to freeze the last few layers of the pre-trained model and fine-tune the remaining layers 
using the target domain data. The fine-tuned model can transfer the knowledge learned at the source site to the 
target site, thus improving the prediction accuracy. In this paper, experiments were conducted using air pollutant 
data from Beijing, and the main results are as follows:

• Quantifying temporal distribution characterization can be an excellent way to deal with air pollutant con-
centration data characterized by periodicity and dynamic changes in data distribution over time.

• The two-stage attention mechanism of the model can better analyze the nonlinear relationship between 
the air pollutant data, and in the  PM10 concentration prediction experiments, the prediction results of the 
TL-AdaBiGRU proposed in this paper are better than those of AdaBiGRU, Transformer, BiGRU, GRU and 
LightGBM.

• Transfer learning can effectively improve the performance of pollutant concentration prediction at data 
shortage sites, and other pollutant prediction experiments were conducted at data shortage sites with good 
results, verifying that the model has strong generalization.

The contribution of this study lies in the fact that a TL-AdaBiGRU model is proposed to solve the problem 
of the small amount of historical data of newly built air quality monitoring stations and the problem that the 
time series data of air pollutants have periodicity and the data distribution changes dynamically with time, and 
the prediction accuracy of the proposed model at newly built stations is significantly improved. Taking Beijing’s 
air pollutant concentration data as an example, this paper proves that the model has higher accuracy. Of course, 
the method proposed in this paper also has limitations. Firstly, since the idea of transfer learning is to “learn 
from similar time series,” the current method can only rely on having similar sites to assist in learning the tar-
get. If there is no such a learning target, transferring learning is not feasible. Second, this study only predicted 
pollutant concentration data for a few cities, and the migration analysis of the model was not comprehensive 
enough. Future work could apply the model to predict pollutant concentrations in multiple areas. In addition, the 
model can be applied to studying other time-series data predictions, such as stock price predictions, power load 

Figure 12.  Comparison of the effects of multi-step prediction effects. (a) Figure shows the prediction effects of 
the models at 6 and 12 h. (b) Figure shows the prediction effects of the models at 18 and 24 h.
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data predictions, and traffic flow predictions. Third, although the method proposed in this paper improves the 
accuracy of pollutant prediction, its superior performance cannot be supported by high-quality data, especially 
under different geographic conditions and infrastructures, and its applicability needs to be further improved in 
future studies. In future studies, we will try to consider other aspects, such as combining the knowledge of meta-
transfer learning, domain adaptation, and domain generalization, to consider the generalization and robustness 
of the model under different environments and infrastructures to further improve the overall performance of 
the prediction model.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Figure 13.  Predicted results of  PM2.5,  NO2,  SO2 and  O3 concentrations. The red part represents the real value, 
the blue represents the TL-AdaBiGRU model, the yellow represents the Transformer model, the green represents 
the BiGRU model, and the gray represents the LightGBM.
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