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Adapting Laplace residual power
series approach to the Caudrey
Dodd Gibbon equation
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In real-life applications, nonlinear differential equations play an essential role in representing

many phenomena. One well-known nonlinear differential equation that helps describe and explain
many chemicals, physical, and biological processes is the Caudrey Dodd Gibbon equation (CDGE).

In this paper, we propose the Laplace residual power series method to solve fractional CDGE. The
use of terms that involve fractional derivatives leads to a higher degree of freedom, making them
more realistic than those equations that involve the derivation of an integer order. The proposed
method gives an easy and faster solution in the form of fast convergence. Using the limit theorem of
evaluation, the experimental part presents the results and graphs obtained at several values of the
fractional derivative order.

Keywords Fractional derivatives, Laplace transform, Residual power series method, Caudrey Dodd Gibbon
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Calculus is one of the branches of great importance, especially differential equations of various types, whether
ordinary or partial. Fractional differential equations have recently emerged in many applications such as plasma
physics, image processing, laser optics, biomedical engineering, viscoelasticity, hydrology, signal processing
and control system'™'*. Some of these equations do not have an analytical solution, so we resort to approximate
solutions using distinct analytical methods such as: the adomain decomposition method'*, the variational itera-
tion method'?, the homotopy method!®18, and the Gegenbauer wavelet method". In recent years, homeopathic
techniques have been combined with integral transformations and dealing with different types of mathematical
models by several authors?*-?%. In this paper, we will study the behavioral solution for fractional CDGE, which
takes the following form:

DU + Uy + 30Uty + 30ttty + 1800’1, = 0, (1)

where DY denote the fractional derivatives of Caputo sense®. The advantage of using Caputo’s derivative is that
it has the memory of nonlinear partial differential equations which occurs in the physical problems. It also uses
the initial conditions found in classical differential equations. For @ = 1, Eq. (1) represents the classical CDGE
introduced by Caudery, Dodd and Gibbon™®. The equation is studied as a mathematical model for internal waves
in shallow waters of small amplitude and long wavelength. It is also a very important phenomenon in plasma
and laser physics. CDGE solutions have been presented by many mathematicians®'~*. These methods have their
drawbacks, limitations, huge computational work, larger computer memory and time, and varying results. The
novelty of the results lies in obtaining new solutions easily, quickly, and with high accuracy using a LRPS method
that enables us to study the CDG equation better.

This article begins with introduction which include brave history of fractional calculus. Section “Preliminar-
ies” give some definitions and mathematical premises necessary for the theory of fractional theory. In Section
“Constructing the LRPSM for the CDGE”, we show the steps of LRPS for solving the fractional CDGE. In Section
“Numerical examples”, Numerical results are presented. Discussions and Conclusion are presented in Section
“Discussions and conclusion”
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Preliminaries
In this section, we will review some definitions of fractional calculus.

Definition 1 The Riemann-Liouville fractional integral of order « is given as*
1 = 1
Jf(x) = — [(x = t)* T f(t)dt,a > 0,x > 0,
I'(a) o
I°f () = f ().
Definition 2 The o' order Caputo time fractional derivative of u(x, t) is defined as*
t
1 —a—19"u(x8)
Df‘u(x,t): F(m—a)g(t_g)m a ;;tz d{, m—1<oa<m,

3" u(x,8)

T o =mé€EN.

Definition 3 The Laplace transform of Caputo time fractional derivative is defined as:

_S"F(x,5) — s"H(x,0) — 5" (x,0) — "3 (x,0) — -+ — [ (x,0)

Sm—a

L{D}f(x,1)}

m—1
E{Df‘f(x, t)} =s*F(x,s) — Z s"‘fj*lft(’)(x,O), m—1<a<m, meN.
j=0
More details using Laplace transform found in**-2*,

Theorem 1 *. IfU(x,s) = L{u(x, t] contains multiple fractional power series which is define as:

U, $)=300 0 Sy s{ikngle, 0 <m— 1 < a < m, then the coeflicients, f(x) take the form:

_ [ DFu(x,0), k=01,....m—1
Juk () = {DfD;Wu(x,O), k=0,1,....,m—1Ln=1,2,...

Proof See®.

Constructing the LRPSM for the CDGE
In this section, we show the steps of using LRPSM for solving the fractional CDGE.
Consider a Caputo fractional CDGE in the operator form:

D¥u(x, t) + D3u(x, t) + 30u(x, ) Diu(x, t) + 30D u(x, t)yD2u(x, t) + 180u*(x, t)Dyu(x, t) = 0,

fort>0,xecRm—1<a < m.
The main idea of LRPSM in few steps as follow:
Step 1. Apply the Laplace transform to Eq. (2) as:

L{D¥u(x, t) + Du(x, t) + 30u(x, ) Dlu(x, t) + 30Dy u(x, ) D2u(x, t) + 180u*(x, t) Deu(x, t)} = 0.

Then we obtained

sU(x,s) — u(x, 0)
Sl—a

+30L{L 7N (DU, ) £ (D2U(x,9))} + 180L{ (L™ U x,5)) (L' D, U(x, 5))} = 0.

+ DU(x,8) + 30L{L™ 1 (U(x, )L (D}U(x,5))}

Multiply Eq. (4) by s~* we get
u(x,0) 1

@

U(x,s) —

D}U(x,s) + %Oz:{tl(U(x, L (DIUxs))}
+ %L{ﬁ*l(DxU(x, 9L (DIURx,s))} + %E{(ll’lU(x,s))z(ll’leU(x, s))} =0.

Step 2. We can write the transformed function U (x;, s) as the following expansion

U(x,s) = Z fn(X)
n=1

shot1 :

The kth-truncated series (6) take the form:

(6)
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=3 200, ) 5 g
The Laplace residual function define as:
LRes(x,5) = U(x,s) — ”(x U0 +- L DU + %‘?E{E’I(U(x, L (DPU(x,5)) }
(8)

-+§§£{£*1aatxxs»£* (D20 9)} + 5 £{(£71U9)* (£ DU ) ).

The kth-Laplace residual function defines as:

LResi(x%,5) = Ug(xys) — “° O)+ DSUk(x,s)—{— 2 L U )£ (D2 U, 9)) )

30 _ _ - 2/
+ s—a.c{ﬁ (D Uk(x,9) L7 (DEUK(x,9)) } + 575{ (L7 Uk(x,9)) " (L7 Dy Uk, 9)) }
©)
To determine the coefficient function f,(x), we substitute the kth-truncated series (7) into Eq. (9), multiply
the resulting equation by s***! and then solve recursively the following system:

lim st LResp(s) = 0 where k = 1,2,3. .. (10)
§—>00

Then we have

koH—l
—c{c!

k ka+1
ska“ﬁResk(x, s) = shartl Z {:ofi)l + D5 (fO(x) Z f::i)l

fox) fa (x) Sox) Sfa(x)

( : Z na+l ( ( - Z Smx-H))}

skt fox) fux) 2 o) |~ o) (an
+ s E{‘C (D (7 Z mx+1 ) <D( Z na+1 >}
skt fm 8\ e () f@) |
+ s {(£ 1( - Z na+1 (E 1Dx OS Z noH—l

Now, to determine the coefficient function f (x), we substitute k=1 into Eq. (11) and hence we will obtain

the relationship:
a+1 Ot+1
Slim s“T1LRes; (5) = saHfL(fl) + S D5 (M fl(fl)) + E{L 1(fO(X)
f1 (%) folx) | fix) fo(x) fix) fo(x) filx)
s+l e L ( (T + s+l )>} + £{£ (D (7 + o+l )ﬁ (D2 + s+l )}

—+

a+1

efer B A e <f R
By using Eq. (11), we obtained

A = =7 @ + 306017 @ + 30 @f 7 00 + 1807 V0 . (12)

to determine the coeflicient function f,(x), we substitute k=2 into Eq. (11) and hence we will obtain the

relationship:

fi(x) fz(x)) st D3 (fo(sx) +f1(x) fz(x)>

: 20+1 2a+1
slinc}o s ﬁResz (s) <5a+1 + s2o+1 s sa+1 s2o+1

Szilﬁ{bl(@ +f1(x) + £G) >£’1<D3 (ﬁ)(x) +f1(x) + L&) ))}

+ s Sot+1 52a+1 Sa+1 52a+1

sttt _ fox) | ix) | fax) _ folx) | filx) | falx)
e (o (P B B ) (e (M SR BN}

S

+ La:l E{E‘ (’M PRGN C) ) £'p, (f‘)(” L, > }
N N N $

satl T Qa+l

(13)

By using Eq. (11), we obtained
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fx) = —{ O x) + 3002 (x) + 30/ Of D (x) + 30£0 0fP () + 30, 0)f P (%)

(14)
+1802()f Y (x) + 360/ ()£ (0)f (x)}.

And so on, we can get more coeflicient function f,(x) by using Eq. (10), Eq. (11) and substitute it into Eq. (7).
Finally: Apply the inverse Laplace transform to Uy (x, s) to obtain the kth—approximate solution u (x, t).

Numerical examples

Example 1 Consider the time fractional CDGE (1) with initial condition

1, 5 (1
u(x,0) = —k“sech”| —kx+c|. (15)

4 2

The exact solution in classical case is
(1) L 2secn? ( Lk 1k2t+ 16
u(x,t) = —k°sech”| —kx — - c).

4 2 2 (16)

By using initial condition (15) and applying the steps of using LRPSM for solving the fractional CDGE which
discussed in Section “Preliminaries”, we obtain

_ _Lear(!
fo(x) = u(x,0) = 16sech (4x —I—O.S), (17)
1 [sinh (% + 0.5)
=50 (:1(“)5)) (19)
1
£ =36 (566h4(§ + 0'5) {COSh (g + 1) - 2}) (19)

And the approximate solution fractional CDGE is:

inh (£ +0.5 o
u(x,t)=1165€ch2(z+0.5>+1<Sm (4+ )> !

512 \ cosh?(% +0.5) ) C(@ + 1)
(+03) o
o7 (st (3 +03) foon (3 1) =2} o+
sech™( — . cosh ( = — _— 1t ...
32768 4 2 TQa+1)
Example 2 Consider time fractional CDGE (1) with initial condition
15 4+ 4/105
u(x,0) = ; - tanhz(x). (21)
30
The exact solution in classical case is
15+ /105
u(x, t) = 170 — tanh? (x - 2(11 - \/105) t). (22)

By using initial condition (21) and applying the steps of using LRPSM for solving the fractional CDGE which
discussed in Section “Preliminaries”, we obtain

15 + /105
fo(x) = u(x,0) = 30 tanh?(x), (23)
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Numerical solution
LRPSM with 3 terms LRPSM with 2 terms | FTC-VIM* | FTC-HPM?*”

X t a=0.7 a=0.9 a=1 a=1 a=1 a=1

0 0 0 0 0 0 0

2 6.40972e—-14 | 1.87107e-14 | 3.78100e-16 1.80551e-14 1.76778e-11 | 1.76778e-11

4 3.04059e-13 | 1.07794e-13 | 2.97855e-15 7.07545e-14 3.53211e-11 | 3.53211e-11
=0 6 5.67030e-13 | 2.13785e-13 | 9.90035e—-15 1.55999e-13 5.29318e-11 |5.29318e-11

8 8.32476e-13 | 3.27108e-13 | 2.31153e-14 2.71817e-13 7.05119e-11 | 7.05119e-11

10 | 1.09255e—12 | 4.43976e-13 | 4.44757e-14 4.16356e-13 8.80633e-11 | 8.80633e-11

0 0 0 0 0 0 0

2 9.51288e-12 | 2.77692e-12 | 5.61150e-14 2.67962e-12 2.62363e-09 | 2.62363e-09

4 4.51263e—11 | 1.59981e-11 | 4.42056e-13 1.05009e-11 5.24212e-09 | 5.24212e-09
40 6 8.41547e-11 | 3.17285e-11 | 1.469342e-12 |2.31523e-11 7.85578e—-09 | 7.85578e—-09

8 1.23550e-10 | 4.85472e-11 | 3.43061e-12 4.03412e-11 1.04649e—08 | 1.04649e-08

10 | 1.62149e-10 | 6.58920e-11 | 6.60078e—12 6.17927e-11 1.30697e-08 | 1.30697e-08

0 0 0 0 0 0 0

2 1.50403e—04 | 4.18130e-05 | 1.26391e-06 1.85127e-05 6.54334e-02 | 6.54334e-02

4 7.46909e-04 | 2.52505e-04 | 1.01620e-05 7.91573e-05 1.30909e-01 | 1.30909e-01
0 6 1.41638e—-03 | 4.96853e-04 | 3.44342e-05 1.89673e—-04 1.96434e-01 | 1.96434e-01

8 2.09931e—03 | 7.42150e-04 | 8.18630e-05 3.57844e-04 2.62018e—01 | 2.62018e-01

10 | 2.76599e-03 | 9.68940e—04 | 1.60187e—-04 5.91408e-04 3.27666e-01 | 3.27666e-01

0 0 0 0 0 0 0

2 1.24156e—12 | 3.47519e—-13 | 7.83542e-15 3.78077e-13 4.02445e-10 | 4.02445e-10

4 6.99716e—-12 | 2.45302e-12 | 6.36846e—14 1.54465e-12 8.04102e-10 | 8.04102e-10
0 6 1.44110e-11 | 5.42196e—-12 | 2.18401e-13 3.55058e-12 1.20491e-09 | 1.20491e-09

8 2.3152e-11 9.15479e-12 | 5.26119e-13 6.44999e-12 1.60484e-09 | 1.60484e—-09

10 |3.31208e—11 |1.36464e—11 | 1.04446e-12 1.03005e-11 2.00381e-09 |2.00381e-09

0 0 0 0 0 0 0

2 8.36560e-15 | 2.34156e-15 | 5.27946e-17 2.54746e-15 2.71165e-12 | 2.71165e-12

4 4.71465e—14 | 1.65283e—-14 | 4.29103e-16 1.04077e-14 5.41799e-12 | 5.41799e-12
>0 6 9.71007e-14 | 3.65329e-14 | 1.47157e-15 2.39236e-14 8.11868e-12 | 8.11868e-12

8 1.55998e-13 | 6.16844e—-14 | 3.54496e-15 4.34597e-14 1.08133e-11 | 1.08133e-11

10 | 2.23166e-13 9.19492e-14 7.03753e-15 6.94043e-14 1.35016e-11 1.35016e-11

Table 1. Comparison between LRPSM with FTC-VIM and FTC-HPM for example 1.

Numerical results
Present Method (LRPSM) | ERROR-LRPSM | ERROR-HASTM*® | ERROR-NTDM?®
X t Exact Solution |a=1 a=1 a=1 a=1
0 0.6280127 0.628012 0 0 0
0.01 | 0.6388936 0.638893 2.26691e-06 3.51211e-05 6.63723e-06
0.02 | 0.6496327 0.649632 1.81241e-05 2.81021e-04 7.7452e-05
03 0.03 | 0.6602163 0.6602163 6.12895e-05 9.48603e—-04 1.38205e—04
0.04 | 0.6706305 0.6706305 1.45589e—-04 2.24888e-03 1.17e-03
0.05 | 0.6808615 0.6808615 2.84925e-04 4.39294e-03 1.8875e-03
0 0.2615393 0.2615393 0 0 0
0.01 |0.2712439 0.27124439 3.99819e-07 1.41429e-04 7.0112e-06
0.02 |0.2810871 0.28109041 3.23987e-06 2.24888e-03 2.78788e-05
! 0.03 | 0.2910662 0.29107745 1.12342e-05 3.81193e-04 1.2331e-04
0.04 |0.3011780 0.30120548 2.74038e-05 9.02767e-04 1.1006e-03
0.05 |0.311419 0.31147452 5.50858e-05 1.76163e—-03 1.0116e-03

Table 2. Comparison between LRPSM with NTDM and HASTM for example 2.
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(a) (b)

Figure 1. Numerical results for example 1 (a) Exact solution (b) ¢ = 1(c) @ = 0.9(d) « = 0.8

fit) = 3.0122 sinh (x)
x) = 3. —— ],
! cosh3(x) (24)
fo(x) = (9.0733sech®(x) — 13.61sech® (x)). (25)
And the approximate solution fractional CDGE is:
15+ +/105 inh t*
ety = DTV + 30122 PR
30 cosh3(x) ) T'(a 4+ 1)
e (26)
+ (9.0733 sech® (x) — 13.61 sech® (x)) T+ D

Discussions and conclusion

This paper introduces a series approximate solution to the fractional CDGE using LRPSM. For clarifying the
accuracy and efficiency of the present method, the tables and graphs are shown the numerical results of such
problems with the help of limit concept. A comparison was made between LRPSM, FTC-VIM, and FTC-HPM
on example 1 in Table 1, and a comparison was also made between the LRPSM with NTDM and HASTM shown
in Table 2 on example 2. From the two tables, it is proven that LRPSM is more accurate than the other methods.
Figures 1 and 2 show the 3D-solutions for different initial value of the current problem to show the behaviour of
LRPS solution at the different alpha values. It has been proven that the results are accuracy and efficiency with
simplest way. We indicating that the LRPSM approach is one of the most effective ways to solve fractional order
differential equations. In the near future, we look forward to use Laplace transform with other analytic method
to achieve a high-accuracy solution with lower expansion terms.
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(c)

(d)

Figure 2. Numerical results for example 2 (a) Exact solution (b) ¢ = 1(c) = 0.9(d) « = 0.8
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