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Potential diagnostic and drug 
target markers in glioblastoma
Hina Ahsan 1, Muhammad Asghar 2,3* & Shaukat Iqbal Malik 1*

Glioblastoma multiforme (GBM) IDH-wildtype is the most prevalent brain malignancy in adults. 
However, molecular mechanisms, which leads to GBM have not been completely elucidated. 
Granulocyte colony-stimulating factor (GCSF), Granulocyte colony-stimulating factor receptor 
GCSFR, and Signal transducers and activators of transcription 3 (STAT3) have been involved in the 
occurrence and development of various cancers, but their role in GBM is little known. Herein, we have 
investigated the gene and protein expression of GCSF, GCSFR, and STAT3 in 21 tissue biopsy samples 
and also in tumor associated normal tissue (TANT) samples derived from glioblastoma patients, which 
revealed significantly differential expression of these genes. To validate our findings, we performed a 
comprehensive integrated analysis of transcriptomic and proteomic profiling of respective genes by 
retrieving GBM RNA-sequence data from Genome Atlas Databases. GO and KEGG analysis revealed 
enrichment in disease-related pathways, such as JAK/STAT pathway activation, which were associated 
with GBM progression. We further performed computational docking analysis of potential drug 
candidate Nisin against GCSF, and the results were validated in vitro through cytotoxic activity assay 
using a human glioblastoma cell line SF-767 in a dose-dependent manner. Our comprehensive analysis 
reveals that GCSF augments glioma progression, and its blockade with anticancer bacteriocin peptide 
Nisin can potentially inhibit the growth and metastasis of GBM.

Keywords Glioblastoma, Transcriptomic profiling, Differential gene expression, Anti-cancer peptides, 
Biomarkers

Glioblastoma multiforme (GBM) is the most lethal malignant brain tumour, with a 5-year survival rate < 3% 
and a median survival of fewer than 15  months1. Glioblastoma was recently classified as CNS WHO grade-4 
IDH wildtype diffuse glioma with microvascular-proliferation and/or intertumoral-necrosis2. Although immu-
notherapy has transformed cancer treatment in recent years, GBM is an immunologically cold tumour typically 
resistant to this therapy due to the development of immune suppression mechanisms. Various studies have 
explored the intrinsic variables involved in tumour heterogeneity and  progression3. However, tumour micro-
environment dynamics are poorly understood and demand extensive study exploring the role of cytokines in 
the tumour microenvironment, either promoting tumour growth or suppressing its malignant  aspects4,5. Signal 
transducer and activator of transcription 3 (STAT 3) pathway is one of five critical pathways disrupted in human 
glioblastoma. In this context, we hypothesized that granulocyte-colony stimulating factor (GCSF), a potent 
mitogen for various cell types, may have a role in GBM by regulating the phosphorylation state of  STAT36. 
While the exact mechanisms linking GCSF and STAT3 phosphorylation in GBM warrant further investigation, 
several plausible pathways can be considered. The ability of GCSF to phosphorylate STAT3 is consistent with 
its capacity to activate Janus kinase (JAK) family members. STAT3 is known to be activated by the JAK kinases 
when it is phosphorylated at tyrosine residues. The subsequent phosphorylation and dimerization of STAT3 fol-
lowing GCSF-induced JAK activation may promote STAT3 nuclear translocation and transcriptional  activity7. 
The pathogenesis of GBM may then influence the expression of genes involved in cell survival, proliferation, and 
immune  evasion8. In multiple cellular preferences, cytokines—including GCSF—have been found to activate 
STAT3. This activation frequently occurs because of JAK kinase recruitment and activation, which then phos-
phorylate and activate STAT3. It has been demonstrated that cytokines and STAT3 signaling pathways interact 
in a variety of cell types, including GBM. Additionally, GBM has a complex tumor microenvironment that con-
tains immune cells. GCSF was first recognized as a leukemic differentiation factor and granulocyte stimulator, 
regulating granulocyte, macrophage, and hematopoietic progenitor cell proliferation, maturation, and survival 
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etc.9. The recruitment of immune cells by GCSF may indirectly affect STAT3 phosphorylation. Immune cells 
like granulocytes are mobilized and undergo differentiation as a result of GCSF. These immune cells can release 
cytokines and create inflammatory microenvironment in GBM. Through paracrine actions, such inflammatory 
settings can increase STAT3 signaling in GBM  cells10. According to the growing evidence, GCSF (CSF3) and its 
receptor GCSFR (CSF3R) are overexpressed in numerous malignancies, including melanoma, non-small cell 
lung cancer, bladder, prostate, and brain  tumours11,12.

Herein, we investigated the expression of GCSF, GCSFR, and STAT3 genes in 21 tissue biopsy samples and 
also in tumor associated normal tissue (TANT) samples derived from glioblastoma patients, which revealed 
differential expression of these genes. The biopsy specimens of malignant glioblastoma were found with an 
elevated level of GCSF and its receptor resulting in tumour progression. We further performed a comprehensive 
integrated analysis of transcriptomic and proteomic profiling of GCSF, GCSFR, and STAT3 by retrieving GBM 
RNA-sequence data from genome atlas databases. Moreover, increased GCSF (CSF3) expression associated with 
tumour grade, mutational status, immune infiltration patterns and the concomitant presence of anomalies in 
the JAK/STAT signaling pathway responsible for the favorable tumor microenvironment were reported. Various 
computational tools are used that supplemented data resource integration using the Genomic R/Bioconductor 
package incorporating web servers to evaluate data sets. The findings suggested that increased GCSF expres-
sion contributes to glioblastoma onset and progression. Therefore, the hypothesis that GCSF regulates STAT3 
phosphorylation in GBM is supported by overexpression of GCSF, STAT3’s significance in GBM biology, and 
documented cytokine-STAT3 interactions. As a result, we predicted the Nisin bacteriocin peptide as the possible 
drug candidate that may dampen the glioblastoma aggressiveness by inhibiting overexpressed GCSF. According to 
previous studies, nisin exhibits anticancer abilities via inhibiting cell growth and inducing apoptosis, with addi-
tional mechanisms. Nisin has been suggested to inhibit GCSF-induced signaling pathways in cancer cells, making 
it a promising candidate for targeted therapy in  glioblastoma13. In sum, the analyses provided new insights into 
molecular mechanisms underlying GBM etiology, identifying GCSF driving tumorgenicity, potential biological 
and clinical significant markers for therapeutic prognostic and diagnostic implications.

Materials and methods
An overview of workflow has been summarized and consists of the following four sections; (a) Patients clinical 
samples, (b) GBM RNA-sequence bioinformatic analysis, (c) Insilico studies to identify drug targets in glioblas-
toma and (d) validation by MTT Assay as shown in Fig. 1.

Figure 1.  Schematic illustration to identify key drug target associated with glioblastoma.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7292  | https://doi.org/10.1038/s41598-024-57752-1

www.nature.com/scientificreports/

Clinical samples analysis
Ethical approval and resource sharing
The Capital University of Science and Technology (CUST), Islamabad, Pakistan, research and ethical committee 
gave its approval for the study, which was carried out in accordance with the Declaration of Helsinki (Ref: BI&BS/
ERC/19–2 and September 23, 2019). "All of the patients agreed verbally and in writing to have their data used for 
research. From several surgery departments of public sector tertiary care hospitals in Pakistan, biopsy samples 
of 21 glioblastoma patients (13 men, 8 women, median age 50 ± 13 years) who underwent brain surgery between 
January 2018 and December 2021 were collected. Prior to sample collection, none of the study individuals had 
undergone radiation therapy or chemotherapy. In the current study the sample size based upon the burden of 
high-grade glioma assessed by counting the total number of glioblastoma (CNS WHO grade 4) IDH wildtype 
diagnosed cases leading to surgical procedure within a given time frame and geographic region. Factors such 
as patient availability, ethical considerations, and specific biomarkers or endpoints affecting the power analysis 
were also considered. However the effect size, desired power and significance level, heterogeneity, availability 
and feasibility, and power analysis were applied by using G*Power, R with the power package, and  SAS14.

Inclusion and exclusion criteria
In the current study selection criteria, patient demographics and characteristics such as age, gender, tumor loca-
tion, and molecular subtype, has been considered. The study primarily focuses on Asian ethnicity. It includes 
participants from diverse ethnic backgrounds in Pakistan, including Punjabi and Pashtun. The study includes 
both men and women to explore gender-specific differences in glioblastoma incidence and outcomes. However 
Inclusion criteria were considered by newly diagnosed glioma tissue biopsies based on Immunohisto- chemi-
cal confirmation and radiological findings (CNS WHO grade 4, IDH wildtype) that were amenable to surgical 
resection, a Karnofsky Performance Score (KPS) 60%, Histopathological verified diagnosis after the CNS5 WHO 
classification, adequate liver function, and adequate renal function. Eligible ages for study including the patients 
with: 10 years and older (Adult, older Adult), all gender eligible were for current study, control biopsies = Tumor 
Associated Normal Tissue (TANT) minimum ≈ 11, Non-Probability sampling method was applied. Both type 
of glioma patients whether underwent chemotherapy or not was  applied15. Exclusion criteria included acute 
infections requiring active treatment, unstable or serious coexisting illnesses (such as pulmonary, cardiac, or 
other systemic diseases), known immunosuppressive diseases, positive HIV or hepatitis B serology, a history 
of an autoimmune disease, or prior history of other malignancies. Any kind of brain metastasis from a body 
malignancy, Pregnancy, second primary malignancy (cervical cancer that is still in situ, prior cancer that was 
treated more than five years before to enrollment without recurrence), or T1 vocal cord cancer in remission Brain 
tumours other than gliomas such as gliomatosis cerebri are present. The size of the patient’s glioma is less than 
2 cm3. Ages under ten years, the influence of complex co-morbidity causing systemic illness in the study, and 
patients with incomplete or missing data regarding their demographics, tumour type, or tumor  site16.

Tissue samples
The samples were obtained from patients with glioblastoma multiforme (GBM) through surgical resections, and 
tumor tissue samples were collected from the affected brain regions. The samples were sectioned into small frag-
ments, (approximately 1–2  mm3 in size) preserved using formalin fixation and paraffin embedding and stored 
at ultra-low temperatures (− 80 °C) to maintain their integrity and prevent degradation. Ethical safeguards were 
also implemented to ensure responsible research  practices17.

MRI imaging
Each patient was subjected to an intraoperative MRI scan for trajectory planning on a 3 Tesla MRI scanner 
(Siemens AG Healthcare, Erlangen) with the following criteria: FoV = 260 mm × 260 mm, voxel size = 1.03  mm3, 
and image matrix = 256 × 256.

Histopathology
Twenty-one Biopsy samples, approximately 1  mm3 in size were collected and using hematoxylin and eosin stain-
ing (HE stain), the purity of the tumour samples was assessed by a histopathologist to validate that each sample 
contained > 80% malignant cells.

Quantitative RT‑qPCR analysis
In order to reduce degradation by ubiquitous DNases and RNases, bio specimens of glioblastoma designated 
for genomic analysis were micro dissected and kept in the nucleic acid stabilising reagent RNA later (Sigma-
Aldrich). Specimens were immediately frozen in liquid nitrogen after ablation and stored at -80 °C until RNA 
extraction. Total RNA was extracted using the TriZol reagent (Thermo Fisher Scientific). Superscript II reverse 
transcriptase (Invitrogen, Paisley, UK) was used to create cDNA by cDNA synthesis kit (Thermo Scientific, Cat, 
No: K1622) and the SYBR® Green Master Mix kit (Maxima SYBR Green/ROX qPCR Master Mix (2 ×) (Thermo 
fisher Cat No: K0221), was utilized for qPCR to amplify the specific PCR products of the three genes presented 
in this work (Thermoscientific, CA, USA). Using a Nano Drop One spectrophotometer from Thermo Fisher 
Scientific, the purity of each RNA sample was determined. Using the 2 –ΔΔCt technique and β -actin as the 
reference gene, the mRNA expression of each gene was evaluated. The primer used for GCSF (Forward Primer 
GTG CCA CCT ACA AGC TGT GC and Reverse Primer AAA GGC CGC TAT GGA GTT GG) and GCSFR (Forward 
Primer AAG AGC CCC CTT ACC CAC TAC ACC ATCTT and Reverse Primer TGC TGT GAG CTG GGT CTG GGA 
CAC TT), STAT3 (Forward Primer CAT ATG CGG CCA GCA AAG AA and Reverse Primer ATA CCT GCT CTG 
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AAG AAA CT) and for β –actin (Forward Primer CAT GTA CGT TGC TAT CCA GGC and Reverse Primer CTC 
CTT AAT GTC ACG CAC GAT)18,19.

ELISA
Prior to protein extraction, Glioblastoma biopsy samples were sealed in sterile containers, snap-frozen until 
protein extraction and kept at -80 °C. Supernatants were slowly defrosted on ice. 96-well enzyme-linked Immu-
nosorbent assays (ELISA) were used to measure 100 µl of supernatant. The concentrations of GCSF, GCSFR, and 
phosphorylated STAT3 were measured using protein-specific ELISA kits (Abcam ELISA kit USA) according to 
the manufacturer’s procedure. Using the appropriate ELISA MAXTM Deluxe Set-in accordance with the manu-
facturer’s guidelines, cytokine levels were assessed by Human GCSF ELISA Kit, Cat. No. (ab100524), Human 
GCSFR ELISA Kit Cat. No (ab267649) and Human STAT3 ELISA Kit Cat. No (ab264629). A spectrophotometer 
immediately measured the specific binding optical density at 450  nm20.

Cluster analysis of gene expression using hierarchical heat maps, principal component analysis (PCA), and uniform 
manifold approximation and projection (UMAP)
Qlucore Omics Explorer 3.8.9 was used to perform PCA, Hierarchical Heat Map Cluster and UMAP analysis 
with a cut of q-value (adjusted p-value) of < 0.05 for the expression of GCSF, GCSFR and STAT3 genes. The 
Euclidean distance was taken as the default distance technique, and complete linkage as agglomeration mode. 
After removing variables with high overall variance to reduce the impact of noise, the remaining variables were 
scaled and centered to have zero mean and unit variance before being visualized using PCA. The projection score 
was used to determine the ideal filtering threshold in order to keep N variables. We used Uniform Manifold 
Approximation and Projection (UMAP) on the normalized count data of three genes, and using the default set-
tings (Benjamini-Hochberg) in Qlucore Omics Explorer 3.8.2212121.

Bioinformatic analysis of genome atlas databases of glioblastoma
Transcriptomic analysis
To investigate the differentially expressed genes (DEGs) in GBM patients, The Cancer Genome Atlas (TCGA), 
Genome Tissues Expression database (GTEx) and Gene Expression Profiling and Interactive Analyses GEPIA2 
were  used23. We retrieved expression data of 163 glioblastoma cases from TCGA and 207 normal brain tissues 
from GTEx. We validated differential analysis of GCSF, GCSFR, and STAT3 expression via GEPIA2 and depicted 
the results using a boxplot with log2 of transcript count per million representing the expression level of DEGs. 
Log2FC| Cutoff was applied to compute p-values. The log2FC| Cutoff value was adjusted at 1 with p-value cutoff 
at 0.01.

Survival analysis
We grouped glioblastoma multiforme (GBM) samples into high and low GBM classes based on the optimal 
cut-off using the R package surv Misc and the gepia-2 programme. A survival package was used to conduct a 
Kaplan–Meier analysis employing a log-rank test to investigate the relationship between GBM-associated genes 
expression under investigation and survival. A p-value of 0.05 or less was taken as statistically  significant24.

Genomic landscape mutation analysis
Using a human proteo-genomics database, Active Driver DB, and the cBioportal database, we analyzed DEGs 
 mutations25. These are utilized to detect protein post-translational modification (PTM) sites and to visualize 
and analyze multimodal cancer genetics. Gene alterations, a set of gene types, the association between gene 
mutations and the prognosis of GBM patients were assessed using cBioPortal based on the TCGA database. The 
significance level was set at p < 0.0526.

Infiltrative immune cell analysis
To investigate the infiltration of various immune cells and their clinical impact, the immune cell correlation 
analysis of GCSF was practiced using the immunedeconv package in R and CIBERSORTx method through 
TIMER2.0 server, integrating samples data from the TCGA and CGGA datasets. After setting batch correction, 
executing "Bulk mode," and selecting the quantile normalization algorithm, sample results were adjusted for 
purity where necessary, and correlations with Spearman’s p < 0.05 were shown. Using the Wilcoxon rank-sum 
test, the differences between the two subgroups were  determined27.

Gene enrichment ontology and protein interactions
Gene ontology studies were conducted utilizing the g: Profiler, David, and Funrich  servers28. Significant signaling 
pathways and cellular components of differentially expressed genes were identified using GO. Protein–protein 
interactions (PPIs) were performed to explore differences in biological function. Metascape and STRING.v.10 
were used to find the intrinsic interactions of the source  gene292929. Additionally, the functions of the target genes 
in GBM were retrieved from several databases, including PubMed, CTD, and  OMIM31. Cytoscape software ver-
sion 3.6 was used to illustrate the network to investigate the significance of source (DEGs) and target proteins 
in patients with  glioblastoma32,33.

Pathway enrichment and integrated modelling
We investigated the pathway enrichment of DEGs using the Shiny GO tool and FunRich tool version 3.1.3 
with p-values < 0.05 that were statistically  significant34. The curation and mapping of potential biomarkers were 
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performed using the Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Wiki  pathways35. 
PathVisio3 tool was utilized to reassemble the biological and signaling pathways of prospective  biomarkers36.

Molecular docking using nisin bacteriocin peptide complex
Retrieval of experimentally reported nisin and visualization
The crystal structure of the target protein, named GCSF (PDB: 5GW9), was obtained from the Protein Data 
Bank (www. rcsb. com). The sequence was retrieved from the Uniprot  database37. Using Chimera software, water 
molecules and heteroatoms were removed from the PDB data. The potential anticancer Nisin bacteriocin peptide 
(PDB: 1WCO) was also retrieved from the Protein Data Bank (www. rcsb. com)38. The protein and drug library 
were generated using the Molecular Operating Environment (MOE) software. It was also used for scoring func-
tions to predict the binding affinity of the Nisin bacteriocin peptide to its target, and to provide insights into 
potential antibacterial interactions. MOE was used for molecular modeling, employing algorithms to explore 
possible orientations and conformations of the ligand within the protein’s binding site. To prepare proteins and 
ligands for docking, the protonate 3D technique in MOE was employed to add hydrogens, followed by energy 
minimization, electrostatic interactions, and solvation  effects39. After minimizing energy, the AMBER99 force 
field was employed to eliminate additional unbounded structures. Seven optimal configurations were selected 
using the force field refinement method. Protein–protein docking studies of putative bacteriocins and their 
interacting proteins were validated by  ClusPro40. UCSF chimera was used to analyze and visualize the docking 
results (www. cgl. ucsf. edu/ chime ra/ downl oad. html)41.

Model evaluation and validation
The Procheck tool confirmed the stereochemical correctness and overall structural geometry of the protein 
 structure42. The Ramachandran plot statistics were used to assess the model’s stability and validate the residues. 
In addition, the Ramachandran plot and Z-score analysis were performed on four high-resolution GCSF struc-
tures selected from the PDB database with PDB ID  5GW943. Normal mode analysis (NMA) was also carried out 
to comprehend the stability and flexibility of the docked model. The iMod technique was used to calculate the 
degree of stability. The elastic network model, deformability, eigenvalue, and covariance matrix were  computed44.

Cytotoxicity assay
The cell viability percentage was evaluated using MTT assay. The Cells (human glioblastoma SF-767) were cul-
tured in appropriate growth media and conditions until they reached the desired confluency or growth phase. 
In a 96-well culture plate, approximately 1 ×  103 cells of SF-767 glioblastoma cell line was seeded and allowed to 
adhere. The cells were treated with different dosage concentrations of Nisin (1, 5, 10, 30, 60 and 100 µg/mL) for 
48 h at 37 °C. The cellular fraction was labelled with MTT solution (5 mg/mL in PBS) for 4 h after discarding the 
supernatant, followed by solubilization in 50 µL of dimethyl sulfoxide (DMSO). The plate also contained cells 
treated with PBS as a negative control. The absorbance of the solubilized formazan is measured using a micro-
plate reader at a specific wavelength 570 nm (with 620 nm as a reference) to quantify the amount of formazan 
produced. The absorbance is proportional to the number of viable  cells45.

Statistical analysis
The clinical, radiological, and pathological data has been presented in a structured manner. Categorical variables 
were expressed as numbers and percentages, while continuous variables were represented as means ± standard 
deviations (SDs) or medians with interquartile range, depending on data distribution. Statistical comparisons 
were made using appropriate methods, such as the chi-squared test for categorical variables and Student’s t-test 
for normally distributed continuous  variables46. For RT-PCR and ELISA data, the mean ± SD from at least three 
independent experiments for statistical analysis were calculated by GraphPad Prism 9 software. The statistical 
significance using the chi-square test and two-tailed Student’s t-test, and data normality was evaluated using the 
D’Agostino & Pearson test. Inclusion and exclusion criteria were applied While considering the patients cohorts 
with complete data as compared to excluding patients with missing or incomplete data based on predefined 
exclusion criteria. Statistical significance was determined at P < 0.05. Median overall survival (mOS) with 95% 
confidence intervals (95% CI) was calculated for different glioma subtypes and distinct molecular features. 
Kaplan–Meier curves illustrated overall survival, with log-rank tests indicating significant differences between 
groups. Data analysis was conducted using SPSS (version 26.0, IBM, USA), and graphs were generated using 
RStudio (PBC & Certified B Corp.®, USA)47. Batch effects were identified and mitigated through preprocessing 
and statistical methods. Following batch effect removal, intended analyses, such as differential gene expression 
and survival analysis, were performed to provide accurate and interpretable  results48.

Ethics statement
The Capital University of Science and Technology (CUST), Islamabad, Pakistan, research and ethical committee 
gave its approval for the study, which was carried out in accordance with the Declaration of Helsinki (Ref: BI&BS/
ERC/19–2 and September 23, 2019). Informed verbal and written consents were obtained from all patients to 
have their data used for research. From several surgery departments of public sector tertiary care hospitals in 
Pakistan, biopsy samples of 21 glioblastoma patients (13 men, 8 women, median age 50 ± 13 years) who under-
went brain surgery between January 2018 and December 2021 were collected. Prior to sample collection, none 
of the study individuals had undergone radiation therapy or chemotherapy.

http://www.rcsb.com
http://www.rcsb.com
http://www.cgl.ucsf.edu/chimera/download.html
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Results
Clinical sample analysis
Gene expression signatures in distinct spatial regions of glioblastoma
GBM tumors were characterized by Magnetic resonance imaging of axial slide of T1-weighted MRI after contrast 
administration with small areas of patchy enhancement and T2-weighted FLAIR obtained prior to stereotactic 
brain biopsy show a predominantly enhancing lesion within the left lobe with associated edema in (Fig. 2A,B). 
Histopathology findings indicated that the HE staining of glioblastoma tissues had evident atypia and deeper 
staining as compared to adjacent tumor associated normal tissues which showed agglomeration of less tumor 
cells around the periphery of necrotic regions, together with some mitotic activity and vascular growth (Fig. 2C). 
While (Fig. 2D) showed a high proliferation index, localized necrosis, hyperchromatic tumor cells in a parallel 
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fashion, and dense cellularity at 40X magnification power. Nonetheless, there may be instances in which combi-
nations of many lineages contribute to the tumor burden. To evaluate the potential role of GCSF in glioblastoma, 
we quantified the expression of GCSF and its receptor (GCSFR) and STAT3. GCSF mRNA and protein expres-
sion was significantly increased in glioblastoma biopsy samples. We examined the gene expression of targeted 
genes among glioblastoma specimen sections within tumors and tumor-associated normal tissue (TANT). All 
tissue samples were initially cut from four regions of the specimen, but samples with sufficient RNA quality and 
quantity was subjected to RT-PCR analysis of gene expression (Fig. 2E). GCSF, GCSFR, and STAT3 exhibited 
increased expression in tumor tissue biopsy samples. GCSF and STAT3 also showed positive Spearman correla-
tion in GBM biopsy tissues R = 0.20 and in TANT was R = 0.009 while the p-value was considered non-significant 
each. These quantitative expression data are also consistent with ELISA findings (Fig. 2F). These findings were 
validated by Intra- and Inter-Assay Variability factor by Evaluating variation within (intra-assay) and between 
(inter-assay) different runs or  experiments49. As low Coefficient of Variation (CV) values indicate that repeated 
measurements of the same sample yield consistent results of RT-qPCR and ELISA and these method show high 
reproducibility based on low CV etc. lastly Linearity and Accuracy was also analyzed to validate the results by 
Constructing standard curves using known standards or controls with a high correlation coefficient (R-squared) 
these results also conducted measurements with an appropriate number of replicates to ensure statistical signifi-
cance and robustness of these findings through t-tests, ANOVA, or regression analysis, by considering significant 
p-values50. Heat map and expression profile similarity demonstrated that all tumour samples clustered similarly, 
showing that the expression profile within a tumor specimen is preserved across the specimen with elevated gene 
expression. However there are alot of heterogeneity across the samples. This shows that the significant variation 
in gene expression occurs across samples of various grades of the tumor, followed by samples of the same grade, 
and finally, within a specific sample. Average linkage and correlation distance in 3 rows and 32 columns were 
grouped. Heatmaps showed that tumor cells have high expression of genes as compared to tumor associated nor-
mal tissue in respect to color range from blue to red brown according to Z-score scale − 1 to 1 (Fig. 2G). Principal 
component analysis (PCA) showed overall separation between the TANT and GBM patient samples. Rows are 
subjected to unit variance scaling, and SVD with imputation is employed to determine the major components. 
Principal components 1 and 2, which account for 77% and 19% of the total variance, are displayed on the X and 
Y axes, respectively (Fig. 2H) and uniform manifold approximation and projection (UMAP) also showed sepa-
ration between control and diseased samples, specifically the TANT (marked as C) and GBM (marked as GB) 
were clustered separately. More over the GB showed a dispersed pattern of distribution with others patient group 
neighboring cluster and the C group showed very low variation, suggesting a high degree of heterogeneity among 
patients (Fig. 2I). The expression of GCSF and its receptor was confirmed by the receiver operating characteristic 
(ROC) curves for each of our predictive schemes in the categorization of patients based on their CNS WHO grade 
4 malignancy and was also employed to classify glioblastoma based on the combination of three distinct feature 
types: histopathological, expression, and magnetic resonance imaging characteristics Similarly, the GCSF and 
GCSFR cut-off point was determined for which accuracy measures were derived from cross-tabulations (Fig. 2J).

Global RNA-seq bioinformatic analysis
Variegated expression and prognostic Value of GCSF, GCSFR, and STAT3
To confirm our findings, we performed a comprehensive integrated analysis of transcriptomic and proteomic 
profiling of respective genes by retrieving GBM RNA-sequence data from genome atlas databases. Using the 
GEPIA2, TCGA, and GTEX integrated platform with the integration of R, we discovered that the expression of 
GCSFR and STAT3 was higher in GBM samples (n = 163) compared to normal brain tissues (n = 207) (Fig. 3A). 
However, GCSF expression was not significant, similar to our finding where GCSF expression was higher in 
GBM samples, but difference did not reached to log2FC (fold change). To study the link between the differential 
expression of GCSF, GCSFR, and STAT3 genes and GBM patient prognosis, we assessed the correlation between 

Figure 2.  Quantification expression of glioblastoma patients. (A) Representative axial slices of T1-weighted 
MRI after contrast administration with small areas of patchy enhancement. (B) T2-weighted FLAIR obtained 
prior to stereotactic brain biopsy show a predominantly enhancing lesion within the left lobe with associated 
edema. (C) Histopathology image of TANT depicting the agglomeration of tumor cells around the periphery 
of necrotic regions, together with enhanced mitotic activity and vascular growth. (D) Hematoxylin and eosin 
staining (HE staining) also shows the arrangement of small hyperchromatic tumor cells in a parallel fashion, 
which resembles the arrangement in neuronal tumors. The images were retrieved using 40X magnification 
power. (E) Expression levels of the 3 candidate reference genes (GCSF, GCSFR, STAT3) in biopsy tissue of 
glioblastoma through RT-PCR. The statistical significance of differential expression is determined using 
distributions of gene expression levels by t-test at ** p < 0.01, and *** p < 0.001. As p values of less than 0.01 and 
less than 0.001 are denoted by two and three asterisks, respectively. The graphs were plotted with the GraphPad 
Prism 9 (Prism 9.5.0) software. (F) Enzyme Linked Immunosorbent Assay validated the expression of DEGs in 
glioblastoma patients by using the t-test. * p < 0.05 and** p < 0.01 respectively. (G) Heat Map and hierarchical 
grouping of glioblastoma samples based on three differentially expressed genes with the highest coefficient 
of variation across all samples. Rows are centered; unit variance scaling is applied to rows. Both rows and 
columns are clustered using correlation distance and average linkage. Heatmaps colored from blue to red brown 
according to Z-score scale − 1 to 1. (H) Unit variance scaling is applied to calculate principal components. X and 
Y axis show principal component 1 and principal component 2 that explain 77% and 19% of the total variance. 
(I) Uniform manifold approximation and projection (UMAP) analysis showed separate clusters in between 
C and GB. However, suggesting a high degree of heterogeneity for the tumor brain in individual patients of 
glioblastoma. (J) ROC curves show specificity of GCSF and GCSFR in the prognosis of glioblastoma. 

◂
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differential expression and overall survival with GEPIA2. It demonstrated that patients with a high expression 
of GCSF, GCSFR and STAT3 had a lower overall survival (Fig. 3B). The survival heat map of hazard ratio Log10 
(HR) indicated the prognostic impacts of GCSF, GCSFR and STAT3 and compared the survival contribution 
of GCSF, GCSFR and STAT3 by using Mantel-Cox test. The hazard ratio values for GCSF, GCSFR, and STAT3 
were 2.3, 1.5 and 1.2, respectively (Fig. 3C). The correlation between GCSF (CSF3) and GCSFR (CSF3R) was 
analyzed, and highly correlate in glioblastoma patients with an optimum cut-off median at significance level 
p = 0.05. The high correlation between GCSF (CSF3) and GCSFR (CSF3R) was considered significant and positive, 
with R-value of 0.37 (Fig. 3D), which demonstrated a positive correlation between OS and variation of expres-
sion. These results suggest that differential expression of GCSF, GCSFR and STAT3 impart a critical role in the 
prognosis of patients with GBM and may prove an appropriate survival predictor in these patients.

Figure 3.  GCSF, GCSFR and STAT3 expression, survival analysis, heat-map and their correlation in 
glioblastoma. (A) Tissue gene expression according to the GEPIA2, TCGA and GTEX databases. GCSFR, 
GCSF, and STAT3 show significant (*p < 0.01) differential expression between GBM and normal tissue. The 
cut-off value for log2FC (fold change) was 1. We used a p-value threshold of 0.01 and a jitter size of 4. TPM is an 
acronym for transcripts per million. (B) Using the GEPIA2, TCGA, and GTEX platforms, Kaplan–Meier survival 
graphs were generated. The overall survival curve of several malignant tissues was investigated between a high 
expression group (red line) and a low expression group (blue line) of GCSFR, GCSF, and STAT3, using p = 0.01 as 
the threshold for statistical significance. (C) The survival heat map of hazard ratio (HR) indicates the prognostic 
impacts of highly significant expressed genes, e.g. GCSF log10 (HR) = 2.3, GCSFR log10 (HR) = 1.5 and STAT3 
log10 (HR) = 1.2. (D) The correlation analysis of GCSF, GCSFR, and STAT3 has been depicted. GCSF and 
GCSFR revealed a high correlation with an R-value of 0.37.
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Genomic landscape alteration and frequency changes of GCSF in GBM patients
We explored the potential mechanism of GCSF (CSF3), GCSFR (CSF3R) and STAT3 in the pathogenesis of GBM 
from the dataset of patient samples of the TCGA Pan-Cancer Atlas database with the respective genetic alterations 
of GCSF (CSF3) 1.7%, GSCFR (CSF3R) 2.1% and STAT3 1.7% respectively (Fig. 4A). According to the TCGA 
database, 4.73% of glioblastoma genes were found to be altered, with the following frequencies: mutation 0.51%, 
amplification 0.84%, deep deletion 0.34%, mRNA high 1.86%, mRNA low 1.0%, and multiple alteration 0.17% 
(Fig. 4B). The comparison between the number of mutations counts and a fraction of the copy number alterations 
in the genome shows the frequency of GCSF family genes mutation in GBM patient samples with significant 
positive Pearson and Spearman correlation of R = 0.77 and R = 0.18 respectively. In the case of each sample the 
fraction of the genome which altered with the number of mutations present (Fig. 4). We also used the cBioPortal 
and GEPIA2 database to examine frequency changes of GCSF mRNA expression (mRNA expression z-scores 
relative to diploid samples (RNASeqV2 RSEM)) including, shallow deletions, diploid, gain and amplifications 
upregulation of missense mutation. The findings suggest the median value ranges from − 0.39 to − 0.16 as low-
level gain, diploid copy numbers between − 0.36 and 0.5 and included gain. The majority of them also showed 
few amplifications ranging from − 0.37 to − 0.24. However, shallow deletion showed a significant rise from − 0.36 
to 0.73 (Fig. 4D). Another mutational analysis was also performed which depicts the position and frequency of 
all mutations within the framework of Pfam protein of respective homologous domains encoded by the highly 
expressed canonical isoform, as well as specific mutation positions. The length of the line linking the mutation 
annotations to the protein indicates the number of mutation-bearing samples. Germline frameshift mutations at 
hotspot (L194R) codons 100 and 207aa, associated with elevated IL6 expression, represent the majority of GCSF 
mutations as mentioned in Fig. 4E. The shared exclusivity study showed that distribution of cell cycle control was 
likely to occur in GBM through principal component analysis of GBM tumour cells in the brain.

To investigate the optimal gene combination to compare GBM with normal brain tissue, the combined 
expression levels of three validated genes (GCSF, GCSFR, and STAT3) were examined using PCA dimensional-
ity reduction. According to Fig. 4F, the three-dimensional space represented by the three variance components 
(PC1, PC2, and PC3) attributed to the expression values of these three genes revealed a remarkable demarcation 
between 163 GBM and 207 healthy controls. The source data plot portraying the logarithmic log p-values for 
each protein reveals that the PCA-based component represents nearly all differential expressions (red Dots), 
keeping the GBM projection scale range from 0.5 to 1.5 as shown in Fig. 4G.

Prognostic value of differential abundances of infiltrative immune cells
Immune infiltration is often associated with developing a favorable tumor microenvironment for oncogenesis.

In order to predict the prognostic value of expression of immune checkpoint signaling molecules and immune 
cell infiltration fractions in GBM. The TIMER database was used in the current investigation for systemic analysis 
of clinical impact of immune cells to examine the correlation between GCSF transcriptomic expression and its 
immune infiltration to suggest the effectiveness of newly developed immune checkpoint blockade medicines. The 
relative proportions of 09 different types of infiltrating immune cells, including T cells (CD4), Tregs, B cell mem-
ory, neutrophil, monocyte, myeloid dendritic cell, NK resting cell, mast cells, and eosinophils that were differen-
tially expressed, were determined using the CIBERSORTx algorithm. These associations imply that several gene 
profiles linked to pro-tumor immune settings in GBM patients exhibit with differential GCSF expression. The 
significant expression of GCSF had a positive association with B cells (Rho = 0.191, p = 2.53e−02), CD4 + T cells 
(Rho = 0.184, p = 3.11e−02), Tregs (Rho = 0.315, p = 1.74e−04), neutrophils (Rho = 0.269, p = 1.47e−03), monocyte 
(Rho = 0.191, p = 2.52e−02), Myeloid dendritic cell (Rho = 0.304, p = 3.03e−04), NK cell resting (Rho = 0.336, 
p = 6.09e−05), mast cells resting (Rho = 0.17, p = 4.64e−02) and eosinophils (Rho = 0.326, p = 1.00e−04) as shown 
in Fig. 5.

GCSF co expression and enrichment analysis
After Immune infiltration analysis, the molecular, cellular and biological functions of GCSF and the aforemen-
tioned co-expressed genes were also investigated using Metascape and g profiler. The enrichment background is 
comprised of all genes in the genome. During/ In investigation, the p-value < 0.01, and an enrichment factor > 1.5 
were retrieved and clustered based on their association patterns. Furthermore, the most significant expressions 
integrating to the input set of genes were found using cumulative hypergeometric P-values by g: Profiler. In con-
trast, while performing hierarchical cluster analysis, q-values were determined using the Benjamini–Hochberg 
method. Then 0.3 Kappa scores were taken as the threshold, and sub-trees similarity > 0.30 were considered. The 
term having the highest statistical significance is selected to represent the cluster resulting in the inactivation of 
GCSF signaling at Log10 p = -9.30 (Fig. 6A). The most frequent terms are shown in the bar chart representing 
the p-value of immune system process, signaling and response to stimulus in response of GCSF, GCSFR, and 
STAT3 (Fig. 6B). In addition, a network map of the enriched terms with log p-values was also constructed as 
shown in Fig. 6C. In the protein interactions, densely connected network regions have been found using the 
Molecular Complex Detection (MCODE) algorithm. MCODE1 was associated with inactivation of CSF3 (GCSF) 
at Log10 p = -9.30, similarly the signaling of CSF3(GCSF) at Log10 p = -9.1, and JAK/STAT signaling pathway 
at Log10 p = -6.8 as shown in Fig. 6D. An enrichment study of protein–protein interactions of respective genes 
was also analyzed by using the STRING and BioGrid databases. The resulting network comprises the subset of 
proteins interacting physically with at least one other component (Fig. 6E). To further analyze the association 
and significant interactions between gene and disease, the genes were further analyzed by keeping Log p-value 
significant to estimate the molecular mechanism, signaling pathways, cellular and biological processes involved in 
glioblastoma. However, the Gene Ontology analysis of DEGs showed significant enriched terms (p-value < 0.05) 
of GCSF receptor binding as important molecular function. Similarly the significant biological process involved 
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in regulation of myeloid cell differentiation and cytokine mediated signaling pathway while KEGG showed 
JAK/STAT signaling pathway at p-value < 0.05 significant in Fig. 6F. We evaluated the regulatory network and 
functionally related genes using the Gene MANIA database. We identified twenty (20) genes with the highest 
correlation, which were GCSFR, elastase neutrophil expressed (ELANE), Interleukin 6 (IL6), interleukin 6 signal 

Figure 4.  Genome landscape alterations in GBM patients (A) illustrates genetic alteration of GCSF 1.7%, 
GSCFR 2.1% and STAT3 1.7% (B) Alteration frequency in glioblastoma multiform depicts the percentage 
of mRNA low expression, high expression, deep deletion, amplification and mutation. (C) The comparison 
between the number of mutation counts and a fraction of the copy number alterations in the genome shows a 
positive Pearson and Spearman correlation with a significant p-value < 0.05. (D) GCSF gene amplification versus 
mRNA expression in GBM shows putative copy number alteration of diploid and shallow deletion according to 
GISTIC (Genomic Identification of Significant Targets in Cancer). (E) Distribution of GCSF mutations in GBM 
cancer across protein domains at hotspot (L194R) codons 100 and 207aa associated with elevated expression of 
IL6. (F) The scatterplot distribution of the first three principal components of PCA from the protein expression 
data differentiates between normal and malignant tissues used for PC analysis. The green dots represent the 
normal tissues, whereas the blue dots indicate tumours between ( +) and ( −) coordinates. (G) 2D plot also 
depicts the logarithmic log p-values for each protein on the x-axis and the y-axis showing GBM (red dots) 
projection between scale 0.5 to 1.5 of value.
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transducer (IL6ST), POU Class 2 homeobox 2 (POU2F2), heat shock transcription factor 1 (HSF1), surfactant 
protein B (SFTBP), C-X-C Motif Chemokine Ligand 3 (CXCL3), TNF alpha induced protein 6 (TNFAIP6), 
Heparin Binding EGF Like Growth Factor (HBEGF), advanced glycosylation end-product specific receptor 
(AGER), endothelin 1 (EDN1), RELA proto-oncogene, NF-kB subunit (RELA), C–C Motif Chemokine Ligand 
2 (CCL2), LIF Interleukin 6 family cytokine (LIF), retinoic acid receptor responder 1 (RARRES1), nephrocystin 
1 (NPHP1),calcium modulating ligand (CAMLG), general transcription factor IIIC subunit1 (GTF3C1), solute 
carrier family 34 member 2 (SLC34A2) (Fig. 6G). The different modes of orientation from gene–gene network 
show the different functions of genes, including physical interaction at about 77.64%, and the group of genes 
which shows the physical interaction with each other e.g. GCSFR, GCSF, ELANE, TNFAIP6, AGER, RELA, IL6, 
IL6ST, LIF, CCL2 and the other gene functions include co-expression 8.01%, predicted 5.37%, colocalization of 
3.63%, genetic alteration of 2.87%, pathway 1.88%, shared protein domain 0.60%, and pfam 0.21% (Fig. 6H).

KEGG pathway enrichment analysis and associated mechanisms
The GCSF, GCSFR, and STAT3 genes were also analyzed through fold chain enrichment analysis using shiny GO 
graphical enrichment tool, which identified five significant enriched pathways. The JAK/STAT signaling with 
maximum fold chain enrichment, while the association of hematopoietic cell lineage, Cytokine-cytokine receptor 
interaction, and PI3K-AKT signaling pathway with minimum value of fold chain enrichment as shown in Fig. 7A. 
The activation of STAT3 pathway is crucial to carcinogenesis and immune evasion. Various potential upstream 
and downstream regulatory mechanisms and development of the immunological milieu are transcriptionally 
upregulated by STAT3 activation. The equilibrium of cytokines stimulates the infiltration of immunosuppressive 
immune cell types and promotes STAT3 signaling within immune cell populations to induce immunosuppressive 
microenvironment. KEGG pathway indicates the genes involved in GBM progression showing significant fold 
chain enrichment of 3.5 –log10 (FDR) in JAK/STAT signaling pathway. We examined GCSF role in the associ-
ated pathways in GBM to highlight aberrant signal transduction cascades and potential drug targets especially 
in the critical JAK/STAT pathway (Fig. 7B).

Molecular docking of anticancer bacteriocins and validation by MTT assay
After expression Analysis in different integrated ways, the molecular docking was performed. For this, the crystal 
structure of C163, a backbone circularized GCSF of the model, was modified for further investigation. Various 
structure validation programmes evaluate to generate the model proteins, including stereochemical quality 
and geometrical conformations assessments. The Ramachandran plot computations were conducted using the 
PROCHECK software and revealed that 93.3% of residues were located in the most desirable zone, 5.9% in the 
permissible region, and 0.7% in the prescribed region of model protein as shown in Fig. 8A. In addition, the 
Rama favored region for the crystal structure of C163 was shown to be 93.3% for 5GW9. MOE software was 
used to dock anticancer bacteriocins peptide against GCSF in glioblastoma against a specific binding pocket. 
The energy function score (S-Score), hydrogen bonding, and the interaction with binding pocket were used to 

Figure 5.  Correlation between GCSF expression with 09 immune infiltration levels using algorithms 
CIBERSOFT. The association between GCSF and immune infiltrating cells shows a positive differential 
infiltrative correlation with a significant p-value < 0.05.
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Figure 6.  The enrichment analysis of GCSF (CSF3) in GBM patients (A) Ontology category clustering across the 
input gene CSF3 is illustrated using p-values from Metascape. Displaying Top 1 cluster (inactivation of CSF3 signaling) 
at log base-10 p-value. (B) Bar chart of the first three enriched terms for CSF3 also constructed through Metascape. 
(C) Enriched cluster analysis involving interacting genes based upon Color by cluster ID wherein nodes share the 
same cluster-ID are often adjacent and colored by p-value, similar genes have significant p-value. (D) Identification of 
enriched term net graph showed Module of molecular complex detection (MCODE) component. (E) protein–protein 
interaction (PPI) network of DEGs at significant p-values < 0.05. (F) Gene Ontology (GO) analysis of DEGs suggest 
essential molecular functions and comprise the crucial analysis of MF: molecular functions, BP: biological processes., 
CC: cellular components and KEGG: Kyoto Encyclopedia of Genes and Genomes pathway by showing (JAK-STAT 
signaling pathway and Hematopoietic cell linage) evaluated according to the levels of DEGs enriched in CSF3 at 
significant p-values < 0.05. (G) In GBM patients, the GeneMANIA database reported 20 genes significantly associated 
with CSF3 through gene–gene networks. (H) Differential mode of orientation of gene–gene network showing different 
functions of genes.
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classify all complexes (Fig. 8B). Among 33 docked clusters, 7 were selected for interaction analysis based on 
highest levels of hydrogen bonding, van der Waals interaction, and other hydrophobic interactions with binding 
pocket residues. Cluster 0 had the lowest energy-weighted score of − 554.7 kcal/mol with a total 413 members, 
Moreover, the visualization of the docking results reported 3 hydrophobic interactions with Ser B156, Glu 46 
and Arg 170 residues of cluster 0. Furthermore, cluster1 had a score of -538.1 kcal/mol and their visualization 
revealed the 8 hydrophobic interactions with the Glu A124, Gln A120, Thr A116, Gly B88, Phe B84, Glu A123, 
Gln B135 and Thr B134 residues (Fig. 8C−D). The stability and the quality of the docked model was examined 
by dynamic simulation through deformability and B-factor as shown in (Fig. 8E).

The results indicated an insignificant hinge, and the B-factor provides an average RMS value, as the experi-
mental B-factor was used to determine the protein mobility changes associated with protein–ligand complex 
interactions and calculated from NMA method (Fig. 8F). The degree to which a given molecule can deform at 
each of its residues is known as deformability. This is primarily seen as "highest peaks" that can be produced in 
high deformability spots. The docked NISIN complex exhibits a small amount of deformability since it has peaks 
with deformability indices that range from about 0.8 to 1.0. A low likelihood of deformation was suggested for 
the anticipated homology model (Fig. 8G). The correlation between the residues in the complex is shown by the 
covariance matrix, the stronger the correlation, the better the complex. White color illustrates no correlation, 
while blue coloration shows anticorrelations. Red coloration denotes a strong correlation between residues. 
The Nisin docked complex predicts a strong correlation with only a few anticorrelations (Fig. 8H). The dose-
dependent cytotoxicity of Nisin against SF-767 cells and normal cell line CHO was evaluated using MTT assay 
and determined by the statistical analysis.

In this study the proliferation of SF-767 cell was significantly inhibited showed 78.15% inhibition at 100 µg/mL 
while at 1 µg/mL was 16.70%. At 48 h. the IC50 value of Nisin for SF-767 was 30.65 µg/mL found. However, the 
results demonstrate that Nisin has lower cytotoxicity in a normal cell line, CHO, with an IC50 value of 110.4 g/
mL as compared to glioblastoma cell line, SF-767, as shown in (Fig. 8I).

Figure 7.  Pathway enrichment analysis (A) highlighting the percentage of DEGs in the biological pathway 
using the shiny GO tool. (B) KEGG and Wiki Pathways have been employed to map the pathways. Color codes 
are applied to explain the involvement of DEGs and their associated mechanism in the pathway model.
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Figure 8.  (A) Ramachandran plot statistics for modelled protein GCSF. (B) The best scoring docked complexes 
for target receptors 3D Docked pocket. It also demonstrates our ligand’s overlaid 3D interaction with the active 
region of the receptor protein GCSF. The ligand molecule is shown in marine blue, the amino acid residues 
are shown in grey blue, and the protein structure is shown in red. (C) 2D interactions of 1WCO with 5GW9 
reported 3 hydrophobic interactions with Ser B156, Glu46 and Arg 170 residues of cluster 0. (D) 2D interactions 
of 1WCO with 5GW9 reported revealed the 8 hydrophobic interactions with the Glu A124, Gln A120, Thr 
A116, Gly B88, Phe B84, Glu A123, Gln B135 and Thr B134 residues of cluster 1. (E) Molecular dynamics 
simulations of the complex generated between our drug and receptor, which represents the docked molecule 
orientation (F–G) represents outputs of NMA study deformability and B-factor plot graph. (H) represents 
residue index co-variance heat Map for the Dock modelled GCSF-Nisin. (I) The effects of Nisin on % inhibition 
as determined by MTT assay. Blue curve represents normal CHO and Red curve show SF-767 Cancer Cell lines 
which were incubated for 48 h with different concentrations of Nisin.
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Discussion
Glioblastoma multiforme (GBM) is a highly heterogeneous tumor at the genomic level revealing the intricate 
and complex molecular  identity51. The priority of molecular characterization for glioma subtyping is empha-
sized in the recent CNS 5 WHO classification of brain tumours. However the presence of IDH wild-type (WT) 
gene classify a glioma as a glioblastoma (CNS WHO grade 4)52. The main objective of the current study was 
to investigate the role of GCSF (CSF3) in GBM, particularly the underlying regulatory molecular mechanism 
through comparative analysis. In this regard, we analyzed GCSF, GCSFR and STAT3 gene expressions between 
tumour-associated normal tissue (TANT) and IDH-wild type, (CNS WHO grade 4) glioma (GBM) resulting in 
statistically significant differences in their expressions. The co-expression of GCSF and GCSFR indicates that it 
may heighten autocrine and paracrine signaling in  GBM11. Granulocyte macrophage colony stimulating factor 
(GMCSF), commonly known as CSF2, has been the subject of numerous expression investigations in the past. 
G-CSF and GM-CSF may correspond for a variety of roles but also apposing to perform some  functions535353. The 
originality of the present study, however, is in the first-time reporting of a comparative analysis of the differential 
expression of GCSF (CSF3) in Pakistan. It was shown through bioinformatics analysis of publicly accessible 
TCGA data for GCSF (CSF3) that GCSF expression was not consistent and significant in GBM, however earlier 
research had found increased GCSF and G-CSFR expression in glioma samples from the Chinese  population55. 
Our findings thus confirmed the widespread expression of GCSF in Pakistan glioblastoma patients in the similar 
pattern, however the difference did not surpass log2FC (fold change). According to our findings, ethnicity and 
genetics may possibly have a role in the varied expression of GCSF in glioblastoma patients. However, meta-
analysis of earlier studies revealed a link between polymorphism and the pathogenicity of gliomas. For instance, 
the Arg399Gln polymorphism was linked to a higher risk of GBM in Caucasians and glioma in Asians. However, 
Arg194Trp/Arg280His, polymorphisms most likely have no impact on gliomas in various ethnic groups. Patients 
with inherited tumor syndromes, such as Turcot syndrome and Li-Fraumeni syndrome, have a higher prevalence 
of GBM. Otherwise, GBM happens infrequently and without a genetic predilection that is  known56. The glio-
blastoma patients biopsy samples RT-PCR based study revealed that GCSF modulated the malignant biologic 
properties of glioma cells as a tumor-promoting factor. The results of increased expression of GCSF, GCSFR 
and STAT3 genes were validated by quantifying their respective proteins through ELISA. Constitutive STAT3 
activation suppresses host anti-tumor immune responses, facilitating unregulated tumorigenesis, angiogenesis 
and induction of immune evasion mechanisms. In the current study, STAT3 activation seems to be facilitated 
by increased expression of GCSF. And showed a positive correlation among GCSF and STAT3 of GBM biopsies 
while GCSF and STAT3 showed weak correlation with TANT. STAT3 expedites GBM immune evasion via a 
decrease in activated circulating lymphocytes and a decrease in  Tregs57. The system-level framework approach 
endorsed the meta-analysis of RNA-seq datasets identifying differentially expressed  genes58. Thus, our results 
demonstrated that though histopathologically CNS WHO grade 4 IDH wildtype glioblastoma malignancy is a 
single entity, their molecular mechanisms differ distinctly based on expressions of specific genes. The complex 
interplay between glioblastoma’s imaging traits, histological properties, and gene expression patterns reveals the 
biology and heterogeneity of the tumor. Magnetic resonance imaging and histological results were used in this 
investigation to characterize GBM tumors. (Fig. 2A,B). Necrosis-affected areas, contrast enhancement, edema, 
and uneven boundaries are significant characteristics. When compared to normal tissues, the histopathology 
revealed atypia and darker staining, as well as a high proliferation index, localised necrosis, hyperchromatic 
tumor cells, and dense cellularity. (Fig. 2C,D). Histopathological observations of necrotic and enhanced cellular-
ity generally match imaging characteristics of glioblastoma, such as areas of necrosis and contrast enhancement. 
These associations confirm that imaging accurately depicts the underlying cellular and structural alterations in 
the  tumor59. To evaluate the potential role of GCSF in glioblastoma, we quantified the expression of GCSF and its 
receptor (GCSFR) and STAT3. Gene expression analyses through RTPCR and ELISA have revealed differential 
expression within glioblastoma based on molecular signatures. Different molecular subtypes, such as classical, 
mesenchymal, proneural, and neural, have been found by the Cancer Genome Atlas project. Each is associated 
with distinct genetic abnormalities and clinical consequences. In glioblastoma biopsy samples, GCSF mRNA and 
protein expression were significantly elevated, and particular imaging features such contrast enhancement and 
necrotic areas frequently correlated with hypoxia areas in the tumour microenvironment. The gene expression of 
targeted genes has been examined among glioblastoma specimen sections within tumors and tumor-associated 
normal tissue (TANT). GCSF, GCSFR, and STAT3 exhibited increased expression in tumor tissue biopsy samples. 
Specific imaging characteristics, like contrast enhancement, can be associated with increased angiogenesis, which 
is driven by upregulated genes involved in vascularization  pathways60. Additionally, areas of necrosis observed 
on imaging often correspond to hypoxic regions in the tumor microenvironment, which can be linked to altered 
gene expression related to hypoxia-responsive  pathways61. Molecular subtypes and certain genetic alterations, 
identified through gene expression analysis correlate with histopathological characteristics with increased cell 
invasion, reflecting the infiltrative tumor  edges62.

These results revealed that high GCSF and GCSFR expressions were independent predictors of decreased 
OS for GBM. Overall, our research provides real-world data to confirm that both genes are positively associated 
with immunosuppressive and tumour-promoting phenotypes and negatively associated with patient survival. 
In the current study Immune microenvironment-related bioinformatic algorithms have been applied for the 
better prognosis of GBM. The effectiveness of this algorithms was also reported in the previous studies related 
to gliomas, breast cancer, and cervical cancer. To better understand the proportions of immune cells in the TME, 
The CIBERSORT (Cell type Identification By Estimating Relative Subsets Of RNA Transcripts) deconvolution 
software has been  used63. Infiltrating immune cells in GBM have been evaluated for their prognostic significance. 
Nine different types of heavily infiltrating immune cells were found to be predictive of longer overall life, with the 
majority of these findings having been supported by earlier research. Numerous studies highlight GCSF-mediated 
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exacerbation of inflammation in the tumor microenvironment. In agreement with previous findings, various 
studies validate the aggravated expression of GCSF in multiple cancer  types64.

The oncogenic mechanisms associated with GBM progression include changes to the genetic sequence and 
karyotype, with some events resulting in chromosomal  aberrations65. In the current finding, the GCSF gene 
encodes deep deletions (0.34%), mutations (0.51%), amplifications (0.84%), mRNA high 1.86%, mRNA low 
1.01%, and multiple alterations 0.17%. Correlations among mutations and the fractions of copy number are 
directly proportional to the significantly upregulated mRNA  expression66.

The heterogeneity that influences the tumour immune microenvironment remains  elusive67. GBM samples 
contained nine immune cells associated with survival. Previous research has shown that immune cells, par-
ticularly tumor-associated macrophages, interact with tumor cells through direct contact or various signaling 
 pathways68,68. These findings suggest potential GCSF (CSF3) signaling associations with how TME is shaped 
and maintained, potentially affecting responses to immunotherapies. Many studies have reported that the co-
expression of GCSF and IL-6 involved co-augmenting effects on neutrophils, including an elevation in STAT3 
expression and diminution in JAK/STAT pathway  activation10,69. These differential immune-related genes are 
enriched in the JAK/STAT signaling pathway based on the findings of our study.

In the case of protein–protein interactions, we identified that these potential drug targets are intricately 
interconnected with other associated target proteins. The normal expression patterns of respective DEGs affect 
the expression of these biomolecules, while anomalies result in dysregulation of the pathways that control their 
expression. Previous research investigations have shown that GCSF increased STAT3 phosphorylation and JAK2 
overexpression via binding to G-CSFR, which may foster GBM cells migration and  proliferation70. Filgrastim 
(rhG-CSF) is administered parenterally to ameliorate chemotherapy induced neutropenia. This study shows 
that GCSF can upregulate GCSFR and STAT3 in glioblastoma patients. Therefore, further studies are needed to 
investigate whether administering rhGCSF following chemotherapy lowers drug effects by upregulating GCSFR-
positive tumor growth. However, we found that it is highly expressed in high-grade glioblastoma suggesting a 
strong association between GCSF and GCSFR, causing STAT3 activation by increased phosphorylation.

The characteristics of cationic peptides, including Nisin enable them to induce apoptosis in tumor  cells71. 
Therefore, they are increasingly regarded as potential agents for improving anticancer therapy. A ligand with 
minimal binding energy is preferred because a low binding score is directly associated with higher binding affin-
ity. The docking study of Nisin with GCSF (5GW9) protein reveals 33 docked clusters, 7 were used as the best 
for hydrophobic interactions. Cluster 0 had the lowest energy-weighted score of − 554.7 kcal/mol and gave the 
least complex energy. This study identified that the hydrogen bond interaction of the anticancer peptide (Nisin) 
drug with the amino acid residues was potent in both clusters, and the overall docked complex attained a stable 
conformation on these interactions. In the current study, Nisin elicited significant apoptosis in the SF-767 cell 
line compared to the normal CHO cell line. The significance of SF-767 has been also reported in the previ-
ous  study72. Tumor cells are negatively charged because their cell membranes include anionic substances like 
phosphatidylserine. Normal cells have a neutral charge due to their zwitterionic lipid membranes. Electrostatic 
interactions between cationic Nisin and cancer cell membranes may contribute to its selectivity. Our findings 
reveal that the concentration of Nisin has a direct effect on cell viability. It has been reported that Nisin induced 
programmed cell death, arrest of the cell cycle and inhibited HNSCC cell growth in contrast to the normal cell 
 line73. Another study found that Nisin had a cytotoxic effect on colorectal cancer cells via intrinsic mechanisms 
responsible for apoptosis. This study systematically investigated the expression levels of GCSF, GCSFR, and 
STAT3 using the TCGA database and glioblastoma tissue biopsy samples. However, the most significant limita-
tion of the current study was its retrospective nature. Further studies can elucidate the regulatory mechanisms 
of GCSF and GCSFR in GBM progression. Moreover, in vivo experiments are needed to elucidate the molecular 
mechanisms of interacting GCSF, GCSFR, STAT3 and the therapeutic potential of Nisin against  glioblastoma74.

Conclusion
This study identified a functional expression profiling of GCSF, GCSFR, and STAT3 for GBM prognosis in Paki-
stan Elevated GCSF expression levels correlate with increased GCSFR expression levels and GBM associated 
JAK/STAT signaling pathway. We examined 21 biopsy samples gene expression of glioblastoma patients, which 
showed elevated expression of G-CSF, G-CSFR, and STAT3 at the transcriptome and proteomic levels compared 
to tumor-associated normal tissue (TANT), which might be considered diagnostic and prognostic biomarkers. 
Furthermore, comparative transcriptome profiling of GCSF, CGSFR, and STAT3 genes in GBM (163 cases) 
and normal tissue samples (207 cases) from integrated genome atlas databases also demonstrated the genet-
ics changes, functional annotation and immune cell infiltration, resulting differential expression of genes and 
reduced overall survival. This study also revealed distinct immune infiltration patterns through bioinformatics 
analysis and indicated that immunomodulators are essential determinants of GBM prognoses. The computational 
docking of potential therapeutic candidate Nisin against GCSF was also performed, and the results were verified 
in vitro through MTT assay using a glioblastoma cell line SF-767. These findings imply that G-CSF contributes 
to glioblastoma progression and there blocking by using the anticancer bacteriocin peptide Nisin may dampen 
tumor progression and will have better therapeutic response as angiogenesis inhibitors.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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