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A comprehensive computational 
study to explore promising 
natural bioactive compounds 
targeting glycosyltransferase MurG 
in Escherichia coli for potential drug 
development
Amneh Shtaiwi 1*, Shafi Ullah Khan 2,3, Meriem Khedraoui 4, Mohd Alaraj 5, 
Abdelouahid Samadi 6* & Samir Chtita 4

Peptidoglycan is a carbohydrate with a cross-linked structure that protects the cytoplasmic membrane 
of bacterial cells from damage. The mechanism of peptidoglycan biosynthesis involves the main 
synthesizing enzyme glycosyltransferase MurG, which is known as a potential target for antibiotic 
therapy. Many MurG inhibitors have been recognized as MurG targets, but high toxicity and drug-
resistant Escherichia coli strains remain the most important problems for further development. In 
addition, the discovery of selective MurG inhibitors has been limited to the synthesis of peptidoglycan-
mimicking compounds. The present study employed drug discovery, such as virtual screening 
using molecular docking, drug likeness ADMET proprieties predictions, and molecular dynamics 
(MD) simulation, to identify potential natural products (NPs) for Escherichia coli. We conducted a 
screening of 30,926 NPs from the NPASS database. Subsequently, 20 of these compounds successfully 
passed the potency, pharmacokinetic, ADMET screening assays, and their validation was further 
confirmed through molecular docking. The best three hits and the standard were chosen for further 
MD simulations up to 400 ns and energy calculations to investigate the stability of the NPs-MurG 
complexes. The analyses of MD simulations and total binding energies suggested the higher stability 
of NPC272174. The potential compounds can be further explored in vivo and in vitro for promising 
novel antibacterial drug discovery.

Keywords MurG, Natural products, Antibacterial, Antibiotics resistance, Virtual screening, Molecular 
dynamics, Escherichia coli

Diarrhoeagenic Escherichia coli (E. coli) pathotypes, particularly enteroaggregative E. coli, are one of the major 
food pollutants in gastrointestinal infections  worldwide1,2. Causing more than half a million deaths and 1.7 billion 
morbidities of children under five yearly, thus representing an awful global health  issue3,4. Indeed, the existence 
of E. coli has commonly been described in all countries  worldwide3,5. And antimicrobial misuse is responsible 
for a frightening upsurge in bacterial  resistance6–8. E. coli is a complex group consisting of non-pathogenic and 
pathogenic strains. When non-pathogenic commensals acquire additional virulence factors, juvenile, adult, 
pregnant, and immunocompromised individuals sometimes get  diseases9–11. In addition, E. coli multi-drug 

OPEN

1Faculty of Pharmacy, Middle East University, Queen Alia Airport Street, Amman, P.O. Box No. 11610, 
Jordan. 2Interdisciplinary Research Unit for Cancer Prevention and Treatment, Baclesse Cancer Centre, Université 
de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue 
Général Harris, BP 45026, 14076 Cedex 05 Caen, France. 3Centre François Baclesse, Avenue Général Harris, 
14076 Caen Cedex, France. 4Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, 
Hassan II University of Casablanca, B. P 7955, Casablanca, Morocco. 5Faculty of Pharmacy, University of Jerash, 
Jerash, Jordan. 6Department of Chemistry, College of Science, UAEU, P.O. Box No. 15551, Al Ain, UAE. *email: 
ashtaiwi@meu.edu.jo; samadi@uaeu.ac.ae

http://orcid.org/0000-0001-6081-7440
http://orcid.org/0000-0001-9231-1831
http://orcid.org/0000-0003-2344-5101
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-57702-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7098  | https://doi.org/10.1038/s41598-024-57702-x

www.nature.com/scientificreports/

resistance has been detected from numerous sources, likely to increase further with  time12,13. Therefore, it is 
of utmost importance to discover a new lead with potential activity against these resistant bacteria, where the 
unique potential target could be the MurG  glycosyltransferase14–18. This enzyme is crucial for synthesizing the 
cell wall of E. coli bacteria, and thus inhibitors for glycosyltransferases would be effective bactericidal  agents19–24.

Peptidoglycan constituents are produced in the cytoplasm and are relocated through the membrane for 
glycan polymerization via a peptidoglycan constituent synthesis (PCS) cycle that spans the plasma membrane 
as shown in Fig. 1 25,26.

MurG is an enzyme that is essential for the synthesis of peptidoglycan, a structural component of bacterial 
cell walls. It transfers a GlcNAc molecule from UDP-GlcNAc to lipid I to form lipid II, which is the next step in 
the synthesis of  peptidoglycan27,28. The crystal structures of MurG from E. coli and Pseudomonas aeruginosa 
have been resolved, and it has been reported that both are quite similar in structure as shown in Fig. 2 29–31. The 
UDP-GlcNAc molecule is bound tightly to the enzyme in the carboxy-terminal domain, and lipid I interacts 
with the N-terminal  domain32. The enzymes from the two species have different conformations around the hinge 
domain, but the UDP-GlcNAc scaffold is bound in the same way in both  enzymes32,33.

Several agents have been developed to inhibit glycosidase enzymes, but there are only a few uridyl peptide 
inhibitors available which are summarized in Table 1 34–42. These agents are effective against MraY, an enzyme that 
is essential for bacterial cell wall synthesis. However, some of these agents, such as tunicamycin, are not selective 

Figure 1.  Peptidoglycan component synthesis (PCS) cycle catalyzed by MraY, MurG and penicillin-binding 
proteins. Numbers from (1–8) represent common antibiotics targeting the synthesis of bacterial cell walls.
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and can also affect human glycol-protein  synthesis43. Newer uridyl peptide inhibitors, such as liposidomycins 
and mureidomycins, are more selective for bacterial glycoprotein biosynthesis. These agents have the potential 
to be used as new antibiotics for the treatment of bacterial  infections34,44.

Many different types of antibiotics such as mannopeptimycins, lantibiotics like ramoplanin, nisin and mer-
sacidin, and defensins like plectasin are also effective by targeting lipid II peptide, an essential component of 
the bacterial cell  wall35,37,38.

Ramoplanin is a lipodepsipeptide that binds to lipid II peptide and inhibits its synthesis. This agent has 
broad-spectrum activity against methicillin-resistant and vancomycin-resistant gram-positive  bacteria45. Unlike 
glycopeptides, ramoplanin does not bind to d-alanine-d-alanine arrangement in the cell wall  precursors36,46.

Beta-lactam antibiotics are among the most commonly used antibiotics, and they work by inhibiting the 
synthesis of cell walls by interacting with penicillin-binding proteins (PBPs)47. PBPs are enzymes that are found 
in both gram-negative and gram-positive bacteria cells and play a role in peptidoglycan transpeptidase and 
transglycosylase  action48. There are several mechanisms by which bacteria can develop resistance to beta-lactam 
antibiotics. The most common mechanism is the production of β-lactamase enzymes, which can break down the 
beta-lactam ring in the antibiotic molecule, rendering it  ineffective49. Other mechanisms of resistance include 
alteration of enzyme PBPs, decreased diffusion of the drug to target PBPs, and efflux  pumps40,41. There are a few 
antibiotics that target other steps in the cell wall synthesis pathway. Moenomycin inhibits the transglycosylase 
enzyme, but it is not absorbed well and is not clinically  useful39,50. Bacitracin inhibits dephosphorylation of 
C55-isoprenyl pyrophosphate, but it is too toxic for widespread  use42,51.

In summary, cell wall drugs are significant antimicrobial agents, and it is important to find new agents for this 
class to prevent the modification of resistance to these inhibitors. Currently, only a few methods can be used to 
treat infections caused by highly resistant gram-negative strains. Thus, we aimed to search novel MurG enzyme 
inhibitors employing a structure based virtual screening method from databases, pursued by ADMET estimation 
and MD simulations via in silico methods.

Figure 2.  Overlays of the crystal structures of the MurG enzyme from E. coli (magenta, PDB code: 1nlm) and 
Pseudomonas aeruginosa (orange, pdb: 3s2u) complexed with UDP-GlcNAc (grey) in the gorge region.

Table 1.  Cell wall biosynthetic antibiotics and their potential targets.

No Antibiotics Target References

1 Uridyl peptides (Mureidomycin A) MraY 34

2 Ramoplanin MurG, lipid II 35

3 Glycopeptides Lipid II 36

4 Lantibiotics (nisin) Lipid II 37

5 Defensin (plectasin) Lipid II 38

6 Moenomycin Transglycosylase 39

7 β-Lactams PBPs 40,41

8 Bacitracin Undecaisoprenyl pyrophosphate 42
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Materials and methods
Preparation of the database
The NPASS (Natural Product Activity and Species) database version 1.0 was selected to determine new inhibitors 
against MurG  enzyme52,53. NPASS comprised of 35 thousand natural  compounds54. All biological compounds 
were downloaded in SDF file and used for optimization for a new virtual testing process.

Figure 3 illustrates the general method used in this study. We conducted a structure based virtual screen-
ing method to choose potential MurG inhibitors from a database consisting of ~ 30,900 uncommon biological 
structures utilizing the NPASS version 1.0.38. The NPSS search database was selected because the compounds 
were extracted from 25 thousand of different natural sources. All data were determined and incorporated with 
ChEBI, TCMID, UNPD TCM@TaiWan, TCMSP, TM-MCTTD, HerDing, and StreptomeDB. First, biological 
structures from the NPASS database were saved as SDFs. OMEGA default forcefield mmff94s were then used 
for conformer construction and energy minimization. Finally, the best compounds with low energy structures 
were tested through the subsequent virtual testing methods.

NPASS compounds was designed using Discovery Studio, OpenEye, and YASARA software. The 3D opti-
mization of the compounds was performed using Discovery Studio software, followed by energy minimization 
utilizing YASARA  Structure55,56.

Screening and docking studies
The study utilized a molecular docking method for Virtual Screening. Specifically, the bioactive compounds 
were prepared and subjected to molecular docking employing FRED program version3.2.0 available in OpenEye 
 software57–59. Prior to docking study, the MurG enzyme was prepared utilizing the pdb2receptor program within 
OEDocking, and optimization was performed at a neutral pH of 7.0. Subsequently, OMEGA 2.5 was employed 
to form 200 conformers for each compound through standard  settings60. The cocrystal ligand was used to define 
the active site within a 10 Å radius during the docking calculations. Then, the FRED default parameters were 
employed to calculate the binding energies of the compounds against the MurG enzyme. Ten docked conforma-
tions were generated for each ligand using the above-mentioned docking procedure. Finally, the best five hit 
compounds with the lowest binding energy were selected for molecular simulation study.

E. coli glycosyltransferase (MurG) was determined from the (pdb crystal: 1nlm) of E. coli K-12 MurG strain 
complexed to the UDP_GlcNAc. It has been observed that the UDP_GlcNAc and the natural compounds interact 
with the MurG catalytic site in a cleavage formed between two domains and consisting of two adjacent pockets: 
The N-acetylglucosamine ring is accommodated in pocket B, while the uridine forms hydrophobic interac-
tions with pocket A, as depicted in Fig. 4. To validate the procedure, the docking was conducted utilizing the 
UDP_GlcNAc substrate as a reference. Additionally, for increased result reliability, the size of the docking box was 
expanded to encompass both the A and B pockets. The FRED docking approach was employed to optimize MurG, 
aiming to achieve a lower energy level. The crystal structure of UDP_GlcNAc-MurG complex, PDB ID 1nlm, 
was prepared for docking using Spruce v1.5.2.1 tool in OpenEye Scientific software, with default  parameters61,62. 
Before running Spruce, the homodimer Chain B from protein structure was removed. This was done to isolate the 
active site of the protein, which is the region where the substrate, UDP_GlcNAc, binds. Spruce effectively splits 
existing protein–ligand complex and isolates active sites where small molecules are bound to macromolecules. 
Spruce performs prerequisite preparation of protein structure, including: adding hydrogen atoms to the protein 
structure to complete its chemical makeup. Optimizing the placement of hydrogen atoms to improve the accu-
racy of the structure. Expanding the asymmetric unit to its biological counterpart for the X-ray crystallography 
structures. This ensures that the active site is properly represented in the docked molecule. After completing 
these tasks, Spruce created a docking-ready receptor. The generated grid box upon the active site had a dimen-
sion of 37.884282, − 3.588333, and 20.849103 in XYZ dimensions from the obtained design units for the target 
UDP_GlcNAc-MurG  complex63. Following this prerequisite step, validation of docking method was performed 
by redocking of co-crystalized substrate, UDP_GlcNAc and found to have an RMSD value lower than 2 Å. After 
though assessment of redocking and validation, all-natural products were subjected to screening. Out of the 
30,926 docked natural products, they were sorted based on the binding energies of Fred ChemGuass4, and the 
best 500 compounds that successfully docked in the MurG binding site were chosen for the next ADMET study.

Figure 3.  In silico screening method utilized in the study.
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ADMET studies
The SwissADME and admetTSAR2 was employed to calculate the drug-likeness and ADMET properties of the 
top docked natural product detected from the virtual screening experiment against MurG  enzyme64,65.

Molecular dynamics simulation
The dynamic activity of the compound with the lowest two binding energy NPs, NPC727174, NPC170742, and 
the fifth one NPC259098, in complex with the Glycosyltransferase enzyme MurG (pdb:1nlm), was analyzed 
through 300 ns simulation. The GROMACS 5.1.4 software  program66–68 was utilized for conducting the MD simu-
lation, employing the AMBER-FF99SB-ILDN force  field69. The GROMACS program was employed to generate 
topology parameters for the MurG receptor, while the small ligands (NPC727174, NPC170742, NPC259098 and 
the standard UDP_GlcNAc topology parameters were created using ACPYPE from the Amber-Tools  package70. 
The systems were placed to periodic cubic box spacing distance of 1.2 nm around the surface and solvated using 
the TIP3P solvation process at 295 K. To neutralize the systems, counter ions were added to balance the charge 
of the enzyme. Structural minimization was carried out for 15 thousand steps using the steepest descent proto-
col under consistent pressure and 295 K, followed by the Berendsen thermostat equilibration run in the NVT 
(constant number of particles, temperature and volume) ensemble for 200 ps at 300 K. Then, the production 
runs were performed using the Parrinello–Rahman barostat in the NPT ensemble (constant number of parti-
cles, temperature and pressure) for 1 ns at 1 bar and 300  K71. After the temperature and pressure adjustments, 
MD simulation runs were performed for the four different systems for 100 ns and a total of 400 ns. VDW and 
Coulomb interaction cutoffs were adjusted to 12.0 Å and corrected every 2 fs. Moreover, the particle mesh Ewald 
(PME) protocol was applied to correct ionic  contacts72. Bond constraints with hydrogen atoms were maintained 
using LINCS  algorithm73. The simulations were conducted with time step of 2.0 femtosecond, and coordinates 
were recorded at intervals of every 500 step. MD simulation results were analyzed by RMSD, RMSF, structure 
stability, transition path analysis, and free energy calculations. The visualizations were produced using PyMOL, 
Discovery Studio and Chimera  programs55,74,75.

Free energy calculations
Free energy calculations were performed using the molecular mechanics Poisson–Boltzmann surface area (MM-
PBSA) method of the GROMACS software prepared using the gmx_mmpbsa  tool76. In this study, the last 20 
ns of the simulations trajectories of the standard UDP_GlcNAc, and three NPs from the top five structures 
(NPC727174, NPC170742, and NPC259098) complexes were chosen for energy analysis. MM-PBSA was applied 
to predict the average binding free energies using a Python script, MmPbSaStat.py. Moreover, the output file 
summary_energy.dat was obtained and contains the total binding energy of all energetic components (ΔGTotal) 
including the polar solvation energy, ΔEPSE, solvent-accessible surface area (SASA), ΔESSASA, electrostatic interac-
tion, (ΔEele), and van der Waals interaction, (ΔEvdW). On the other hand, to calculate the average contribution of 
the residues to the binding energy, the Python script MmPbSaDecomp.py was used, and the results, including 
the binding energy for each residue, were plotted to show the energy contribution of each significant amino acid 
residue with its energy. The "Supplementary Python scripts S1 and S2" provide details on the average binding 
energy calculation and contribution of residues to the binding energy, respectively.

Results and discussion
Binding interactions MurG receptor
The free binding energies of the top 20 MurG-selective natural products were determined and organized based 
on their ChemGuass4 scores. The FRED binding results were calculated in kcal/mol and presented in (Table 2). 
In this study, the ChemGuass4 scores exhibit a consistent range for the binding free energies of the 20 NPs to 

Figure 4.  Superimposition of the UDP_GlcNAc native ligand and the top five hits interacted in the MurG 
active site, pdb:1nlm. Showing the binding poses in a groove between the two domains.
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MurG, falling within − 9.70 ± 0.50 kcal/mol, the compound NPC272174 inhibitor (− 10.23 kcal/mol) displays best 
binding affinity, while compound NPC154741 (− 9.12 kcal/mol) exhibits the lowest affinity. Later, the potential 
5 natural compounds which showed the best ChemGuass4 score are considered for the further studies. The 
chemical structure, source name and ChemGuass4 score are shown in Table 3. Conversely, Table 4 illustrates the 
significant binding interactions of the best five compounds with the active site amino acids of MurG enzyme. 
Additionally, Supplementary (Table S1) provides details on the H-bond donor and acceptor pairs for the best 
NPs, along with their corresponding lengths.

Table 2.  FRED binding energies of the top twenty natural compounds used in this study.

No Name FRED Chemgauss4 score

1 NPC272174 − 10.2568

2 NPC170742 − 10.0554

3 NPC117260 − 9.96509

4 NPC277205 − 9.96279

5 NPC259098 − 9.81826

6 NPC148409 − 9.8013

7 NPC45400 − 9.74282

8 NPC245014 − 9.62971

9 NPC265454 − 9.58556

10 NPC252590 − 9.55989

11 NPC307938 − 9.53453

12 NPC308931 − 9.4984

13 NPC214729 − 9.43665

14 NPC124300 − 9.41008

15 NPC314573 − 9.37501

16 NPC119767 − 9.36645

17 NPC263940 − 9.26997

18 NPC18185 − 9.19354

19 NPC298778 − 9.18163

20 NPC154741 − 9.12232

Standard UDP_GlcNAc − 6.29873

Table 3.  Detailed information of the top five natural compounds identified used in this study.

No Code Chemical structure Common name Sources References

1 NPC272174 Okaramine I Aspergillus aculeatus 82

2 NPC170742 Alpha, Beta,3,4,5,2′,4′,6′-
Octahydroxydihydrochalcone Sapium haematospermum 83

3 NPC117260 Patulitrin Artemisia annua L 84

4 NPC277205 Quercimeritrin Hyrtios erecta 85

5 NPC259098 Aflaquinolone F Aspergillaceae 86
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Drug-likeness and physicochemical analysis
ADMET study, absorption-distribution-metabolism-excretion-toxicity, was employed on the 500 natural prod-
ucts to estimate their Drug-likeness properties. This involved the assessment of their physicochemical properties 
by evaluating Lipinski, Ghose, Veber, and Egan rule  violations77,78. According to ADMET criteria, favorable oral 
bioavailability is indicated by logP less than five, rotatable bonds less than ten, molecular weight less than 500, 
and TPSA less than 100, while good intestinal bioavailability is suggested by the number of H-bond donors less 
than five and acceptors less than ten. The SwissADME  tool64 was utilized for in-depth analysis of these predic-
tions, and the summarized results are presented in Table 5. Notably, 20 hits from the virtual screening results 
fell within the acceptable range of drug-like properties based on the Lipinski, Egan, Veber, and Ghose rules. 
Additionally, the in-silico assessment of these hits based on their physicochemical values indicated favorable 
pharmacokinetic  properties79. All parameters are such as Molecular weight = (161–494 g/mol), Flexibility = (0–6) 
lie within the acceptable range. The number of hydrogen bond acceptors and donors measures the compound’s 
hydrophilicity. A greater value represents increased hydrophilicity, which leads to poor penetration and absorp-
tion. On the other hand, the number of hydrogen bond donors less than five and hydrogen bond acceptors 
less than ten suggests the higher penetration which would improve the absorption. All the compounds except 
NPC117260 lie within the acceptable number of hydrogen bonds. The (TPSA) Topological Polar Surface Area is 
used to measure the polar atom’s surface area for the compounds. Poorly absorbed compounds and limited cell 
membrane permeability have been identified as those with a TPSA > 140 Å2, while orally rout of administration 
drugs that undergo transcellular transport should generally not exceed a TPSA of about 140 Å2. Therefore, a 
lower TPSA is considered advantageous for drugs intended for oral administration that undergo transcellular 
 transport80. Additionally, a compound with stronger CNS penetration is associated with toxicity and predicted to 
have a lower TPSA  value81. The studied compounds show values in the range of (53–219) and four of them show 
high TPSA value greater than 140 Å2, NPC298778, NPC277205, NPC170742, and NPC117260 are considered 
to be poorly absorbed compounds and unable to penetrate the CNS, whereas those with TPSA values less than 
140 Å2 are considered to increase the membrane permeability.

In the process of drug discovery, a variety of physicochemical properties, collectively known as ADMET 
properties, play a crucial role in determining the likelihood of a compound entering clinical trials and ultimately 
becoming a successful drug. These properties encompass Molecular Weight (MW), which assesses a compound’s 
size and its ability to cross biological membranes; Number of Rotatable Bonds (nRot), which evaluates a com-
pound’s flexibility and its susceptibility to unwanted transformations in the body; Number of Hydrogen Bond 
Acceptors (nHBacc), which gauges a compound’s capacity to interact with and bind to proteins; Number of 
Hydrogen Bond Donors (nHBDon), which predicts a compound’s potential to be metabolized by enzymes; 
and Topological Polar Surface Area (TPSA), which measures a compound’s overall polarity and its ability to 
interface with water and other polar molecules. Generally, compounds with values within the following accept-
able criteria are considered to have a higher likelihood of proving successful drug candidates: MW < 500 g/mol, 
nRot < 10, nHBacc < 10, nHBDon < 5, TPSA < 140 Å2. These criteria serve as valuable guidelines for early-stage 

Table 4.  Binding interaction types between the amino acid residues in the MurG active site and the best five 
natural products.

NPs Interactions Amino acids

NPC272174

H- Bond ARG164, SER192, THR266, GLU269

Pi-Donor H-Bond ASN128

Pi–Pi T-shaped HIS19

Amide-Pi Stacked GLY191, SER192

Pi-Alkyl ALA264

NPC170742

Hydrogen Bond ARG164, SER192, THR266, ILE245, SER192, GLU269

Pi-S MET248

Pi–Pi stacked PHE244

Pi-Alkyl LEU265

NPC117260

H-Bond SER192, ALA264, GLN288, GLU269, GLN289

Pi-Donor Hydrogen Bond THR266, THR266

Pi-S MET248

Pi–Pi stacked PHE244

Pi-Alkyl LEU265

NPC277205

H-bond SER192, ALA264, GLU269, GLN289

Pi-donor Hydrogen bond THR266

Pi–Pi stacked PHE244, MET248, LEU265

NPC259098

Hydrogen Bond ARG164, THR266, GLU269

Pi–Pi Stacked PHE244

Pi-Alkyl ILE245, ILE245, MET248
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drug discovery efforts, helping researchers identify compounds with favorable physicochemical properties that 
are more likely to progress through the drug development pipeline and ultimately reach patients.

Detailed ADMET analysis of top20 compounds are shown in Table 6. NPC105415 exhibits generally favour-
able ADME properties, with several desirable characteristics and minimal potential for adverse effects. It is 
not predicted to cause skin irritation or sensitization, and it exhibits a low likelihood of carcinogenicity and 
CYP enzyme inhibition. Additionally, its biodegradability and human intestinal absorption are both favorable. 
However, despite its overall positive profile, NPC105415 raises some concerns regarding its Ames mutagenicity, 
nephrotoxicity, reproductive toxicity, and plasma protein binding. These properties warrant further investiga-
tion to assess their potential impact on human health. NPC105415 exhibits a blend of favorable and potentially 
concerning ADME properties. While its low acute oral toxicity, low water solubility, and moderate plasma protein 
binding suggest a low likelihood of adverse effects, its Ames mutagenicity, nephrotoxicity, reproductive toxic-
ity, and respiratory toxicity warrant further investigation. Additional studies are required to fully characterize 
NPC105415’s ADME profile and assess its potential impact on human health. Contrary to the compound with 
the highest binding affinity in terms of molecular docking and MD simulation, further in-depth analysis of the 
ADME assessment of other compounds revealed that the other top compounds NPC117260 and NPC148409 
possessed favorable properties in terms of Ames mutagenicity, nephrotoxicity, reproductive toxicity, and plasma 
protein binding. These findings suggest that the compound at the top of the list may have superior activity but 
may face challenges in advancing to the next phase due to ADME concerns, requiring optimization to enhance 
ADME properties.

The analysis of the binding modes for the top five natural compounds interacting with the MurG binding 
site was conducted to uncover their interactions. Notably, ARG164, SER192, THR266, and GLU269 emerged as 
crucial key residues involved in hydrogen bond interactions. Conversely, PHE244, LEU265 and MET248 amino 
acid residues are essential for hydrophobic interactions, namely pi-alkyl and pi-pi stacked interactions for all 
ligands except the top hit NPC272174, which involved in the hydrophobic interactions with surrounding amino 
acid residues HIS19, GLY191, SER192 and ALA264. Moreover, NPC170742 and NPC117260 ligands forms pi-
sulfur interaction between MET248 and the aromatic ring of the ligand as shown in Fig. 5.

It’s noteworthy that among all the binding site residues, Gln289, GLN288, ARG164, and GLU269 of E. coli 
MurG play a significant role in the interaction with UDP_GlcNAc  substrate46,87. Additionally, observations 
indicate that the MurG active site features a conserved pocket as shown in Fig. 5F 29,30. This implies that the 
frameworks of the top five NPs form similar binding interactions as the UDP_GlcNAc substrate, as illustrated in 
Fig. 5. Comparing the interacting residues involved in binding interaction for the top five compounds, we observe 
some similarities and differences. Both NPC272174 and NPC170742 interact with ARG164, SER192, THR266, 
and GLU269 via hydrogen bonds, but NPC170742 also has additional interactions with ILE245 and a pi-sulfur 
bond with MET248. In contrast, NPC272174 has a pi-donor H-bond with ASN128 and π–π T-shaped interac-
tion with HIS19. Both NPC117260 and NPC277205 interact with SER192, ALA264, GLU269, and THR266 (via 
pi-donor hydrogen bonds), as well as PHE244 via π–π stacked interactions, but NPC117260 also interacts with 
GLN288 and GLN289 via hydrogen bonds and MET248 via a π-sulfur bond. NPC277205 has an additional π–π 

Table 5.  Drug likeness analysis and physicochemical results of the best 20 natural products.

Compound Molecular weight Rotatable bonds H-bond acceptors H-bond donors TPSA

Violations

Lipinski Ghose Veber Egan

NPC105415 382.45 5 5 3 86.99 0 0 0 0

NPC117260 494.40 5 13 5 219.74 1 1 1 1

NPC119767 390.34 4 7 3 121.13 0 0 0 0

NPC124300 400.38 4 9 3 131.23 0 0 0 0

NPC148409 271.22 0 6 3 92.04 0 0 0 0

NPC170742 338.27 4 9 8 178.91 1 0 1 1

NPC214729 328.32 4 6 3 96.22 0 0 0 0

NPC223136 302.32 5 5 3 79.15 0 0 0 0

NPC252590 161.16 0 3 2 53.35 0 1 0 0

NPC259098 255.27 1 4 3 73.05 0 0 0 0

NPC265454 330.37 8 5 4 97.99 0 0 0 0

NPC272174 452.50 0 3 3 88.67 0 1 0 0

NPC276930 260.20 0 6 4 111.13 0 0 0 0

NPC277205 464.38 4 10 4 210.51 1 1 1 1

NPC298778 486.47 6 10 3 148.82 0 1 1 1

NPC308931 328.37 2 2 3 73.04 0 0 0 0

NPC314573 348.44 5 4 2 66.24 0 0 0 0

NPC329077 246.22 2 7 4 122.82 0 1 0 0

NPC44530 302.28 0 6 5 110.38 0 0 0 0

NPC470802 426.50 6 6 5 110.38 0 0 0 0
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stacked interaction with MET248 and π-alkyl interactions with LEU265. NPC259098 interacts with ARG164, 
THR266, and GLU269 via hydrogen bonds, and PHE244 via π–π stacked interactions, as well as π-alkyl contacts 
with ILE245 and MET248.

Although the binding scores for the top five compounds are relatively close, ranging from − 10.257 to − 9.818, 
the differences in their specific interactions with amino acid residues may account for differences in their overall 
binding and biological activities. The various types of interactions play significant roles in ligand–protein binding, 
contributing to the specificity and strength of the interaction. Hydrogen bonds, which are relatively common, 
help stabilize the complex and contribute to the specificity of the interaction. Π–π stacking contributes to the 
strength of the interaction and helps to orient the ligand in the binding site. π-alkyl interactions help increase 
the affinity of the ligand for the protein by reducing the overall energy of the complex. π-donor hydrogen bonds 
contribute to the specificity of the interaction and stabilize the complex, while π-sulfur interactions aid to orient 
the NPs in the binding site and contribute to the strength of the interaction.

MD simulation analysis
Promising natural products (NPC727174, NPC170742, and NPC259098) and the standard UDP_GlcNAc stabili-
ties within the active site of the MurG receptor were evaluated through a 100 ns MD simulation for each until 
the system reached convergence. The resulting total 400 ns trajectory was analyzed using root mean squared 
deviation (RMSD) to evaluate the dynamic behavior and stabilities of the standard and NPs-1nlm complexes, 
radius of gyration (Rg), root means square fluctuation (RMSF), transition path analysis, and free energy calcula-
tions. The “Supplementary video S1” provides details on the 100 ns MD simulations of the best-hit NPC272174 
during the complexation with the MurG enzyme in Escherichia coli.

Root means squared deviation
Following the MD simulation, structural changes and stability were assessed by studying the root mean squared 
deviation from the start of the simulation runs and the initial conformational structures. RMSD calculates the 
deviation in the complex conformation compared to its initial conformation, providing insight into any changes 
in the structures during the complexation of ligands-MurG systems. Figure 6 illustrates the RMSD curve during 
the time for the (NPC727174, NPC170742, NPC259098, and standard UDP_GlcNAc) with MurG complexes. 
Throughout the experiment, it can be observed that the NPC727174-MurG complex undergoes a relative increase 
in RMSD values from the start of simulation to 0.35 nm within the first 10 ns as shown in Fig. 6a as compared 
to the standard UDP_GlcNAc. The high RMSD fluctuation from 0 to 30 ns appears to have happened due to 
the conformational change of the NPC272174 compound inside the MurG active site. Then, the plot began to 
stabilize after 30–100 ns. This result indicates that NPC272174 encourages the stability of the NPC272174-
MurG complex. In addition, the NPC170742 complex behaves with the same increased fluctuation at the first 

Figure 5.  Docking structures of the best five NPs interacted with MurG binding site of E. coli. Ligands are 
presented in stick, while MurG residues are depicted in thin-stick with olive colour. The structures of A, B, 
C, D, E and F are NPC272174, NPC170742, NPC117260, NPC277205, NPC259098 NPs and UDP_GlcNAc, 
respectively. Important hydrogen bonds are highlighted.
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30 ns, Fig. 6b, while the NPC259098 complex behaves with constant fluctuations with an RMSD value of 0.2 
nm. However, the overall RMSD for the NP complexes was consistently lower over the simulation time, indica-
tive of the fact that the complexes after 30 ns simulation time remained largely unchanged from the original 
input structure and were reasonably stable and capable of maintaining its conformation, specifically the best-hit 
NPC727174-MurG complex structure.

Radius of gyration
The radius of gyration (Rg) serves as an indicator of the folding stability of the MurG receptor during the interac-
tion of NP compounds. High folded enzyme conformation is reflected in greater compactness, resulting in a lower 
Rg value. Conversely, an increasing Rg value suggests less compactness and indicates an unfolded structure. In the 
present study, Rg was employed to assess the compactness of the systems throughout the simulations, and the Rg 
plots are shown in Fig. 7. The findings reveal Rg scores ranging between 2.15 and 2.25 nm for NPC727174-MurG 
complex, Fig. 7a. The reported Rg value for the MD simulation was 2.17 nm over the simulation time. While 
minor flexibility was observed at the beginning of the MD simulation, the values quickly became constant and 
fluctuated within a permitted range after 30 ns. NPC170742 and NPC259098 complexes behaved as NPC727174 
complex with Rg scores ranging between 2.12 and 2.24 nm as shown in Fig. 7b.

Root mean squared fluctuations
To describe the fluctuations and structural changes within the NP-MurG complexes, root mean square fluctua-
tions (RMSF) were studied and the results are depicted in Fig. 8. Investigation of the RMSFs indicates that the 
most elevated fluctuation, approximately 0.30 nm, occurred consistently throughout the simulation period for 
NPC727174 and the standard UDP_GlcNAc. This high fluctuation was associated with amino acid residues 
ALA76, Ile75, ALA77, Arg180, and GLU181, Fig. 8a, which were observed in the N-terminal region and the 
loop in the carboxy-terminal side as shown in Fig. 8c. In addition, it has been observed that the NPs NPC170742 
and NPC259098 have the same fluctuation regions in the MurG enzyme. This observation agrees with a prior 

Figure 6.  RMSD curve of the complexes of (a) NPC272174 and standard UDP_GlcNAc. (b) NPC170742, 
NPC259098, and standard UDP_GlcNAc backbone atoms complexed with MurG enzyme of E. coli.

Figure 7.  Rg profile of the compounds (a) NPC272174 and standard UDP_GlcNAc. (b) NPC170742, 
NPC259098, and standard UDP_GlcNAc complexed with MurG enzyme of E. coli.
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study including the crystal of MurG, which identified flexible areas in the carboxy-terminal and N-terminal 
amino acid  residues31,87.

Free energy analysis
The MM-PBSA method has been applied to predict binding free energy and to evaluate the relative stability of 
the NPC727174, NPC170742, NPC259098, and the standard UDP_GlcNAc complexed with the MurG enzyme. 
The calculated total binding energy for MD trajectories and the obtained binding free energy components are 
shown in Table 7. As can be seen, the calculated free energies, ΔGTotal, of MurG enzyme towards the different 
NPs and the standard are in the order of NPC259098, − 15.64 kJ  mol−1 > NPC170742, − 20.72 kJ  mol−1 > NPC72
7174, − 33.64 kJ  mol−1 > UDP_GlcNAc, − 40.57 kJ  mol−1.

From the contribution of the calculated energy components of the binding free energies in the NPC727174, 
NPC259098, and the standard UDP_GlcNAc as shown in Table 7, the main driving force for the binding 

Figure 8.  Fluctuation profile (a) RMSF plot of the NPC272174 and standard UDP_GlcNAc compounds. (b) 
RMSF plot of the NPC170742, NPC259098, and standard UDP_GlcNAc compounds complexed with MurG 
enzyme during the simulation time. (c) Amino acid residues involve the highest RMSF value in the ligands-
MurG complex structures.

Table 7.  Calculated binding free energies (in kJ  mol−1) and their components based on the MM-GBSA 
method for the three MurG-NPs complexes and the standard UDP_GlcNAc-MurG complex.

Energy components NPC727174 NPC170742 NPC259098 UDP_GlcNAc

van der Waals (ΔEvdW) − 21.31 − 21.98 − 26.19 − 51.68

Electrostatic (ΔEele) − 60.88 − 67.51 − 7.8 − 71.39

Polar solvation (ΔEPSE) 56.40 72.78 21.37 89.77

SASA (ΔESSASA) − 3.88 − 4.01 − 3.01 − 7.27

Total binding energy (ΔGTotal) − 33.64 − 20.72 − 15.64 − 40.57
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interactions is electrostatic and van der Waals interactions. The polar solvation contributed unfavourably to the 
binding of the ligand to MurG enzyme. Indeed, the electrostatic, van der Waals non polar, and SASA interac-
tions contribute favourably towards the binding of all ligands to MurG enzyme and are compensated by the 
large polar solvation energy.

A detailed analysis of the binding energy contributions was analysed using the MM-PBSA method. Figure 9 
shows the energy contributions in kcal  mol−1 of the ligand–receptor per-residue interaction for the standard 
UDP_GlcNAc and NPC727174 ligand systems. During the simulation of the standard UDP_GlcNAc complex, the 
energy appears mainly from the binding with the polar Glu269 amino acid residue and nonpolar Phe244, Ile245 
and Met248 amino acid residues, Fig. 9a. On the other hand, the nonpolar amino acid residue of the NPC727174 
complex interactions mainly arose from Phe21, Phe244 and Met248 Leu265, with the strongest interactions 
from Leu265 amino acid residue as shown in Fig. 9b. In addition, amino acid residues Glu269 made obvious 
polar contributions to NPC727174 with lowest binding energy value and strongest interaction as compared to 
the standard UDP_GlcNAc complex. This indicates that the polar amino acid residue interaction stabilizes the 
NPC727174-MurG interaction during the simulation. While the stability of the UDP_GlcNAc ligand in the 
MurG active site is achieved via hydrophobic and polar interactions.

Analysis of the complex transition path
The motions of NPC272174 and MurG enzyme complex at different simulation periods were investigated and 
shown in Fig. 10. The most changes involve the coil of the C-terminal and hinge regions which move fast at the 
start of the simulation time, and this agrees with the increased fluctuation results obtained from the RMSD plot 
at the first 30 ns, then persistent value was observed for the remaining simulation time till 100 ns. The transition 
path results indicate that NPC272174 natural compound enhances the complex stability along the simulation 
time.

Conclusion
Many studies identified inhibitors for the antibiotic target MurG enzyme. However, the nucleus structure for 
large MurG enzyme inhibitors is restricted to peptidoglycan-mimicking scaffolds, thus simulating the resistance 
of drugs in the E. coli strains. Consequently, the development of new MurG potential inhibitors has increased to 
a favorable approach. We analyzed the best five hits from the NPASS database of natural products as potential 
MurG inhibitors, followed by the drug-likeness assessment using a computational prediction method. The results 
indicated that the promising NPs bind with an increased affinity, mimicking the binding of the UDP_GlcNAc 
substrate. The best five hits form H-bond interaction with important amino acid residues of ARG164, SER192, 

(a)

(b)

Figure 9.  Energetic components per-residue decomposition of (a) the standard UDP_GlcNAc. (b) NPC727174 
complexes with MurG enzyme of E. coli.
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THR266, and GLU269. A molecular dynamics simulation study of the best three candidate natural compounds 
complexed with MurG demonstrated strong stability of NPC272174 to the enzyme structure. In addition, upon 
comparing the MM-PBSA binding free energy values for the three NPs, the results suggest that the complexation 
of NPC272174 to the MurG is more favorable. Therefore, the identified NPs suggest that the potential NPC272174 
compound is a promising novel scaffold inhibitor for the MurG protein in E. coli as an antibacterial agent.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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