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An efficient intrusion detection 
model based on convolutional 
spiking neural network
Zhen Wang 1,2, Fuad A. Ghaleb 3, Anazida Zainal 1, Maheyzah Md Siraj 1 & Xing Lu 2*

Many intrusion detection techniques have been developed to ensure that the target system can 
function properly under the established rules. With the booming Internet of Things (IoT) applications, 
the resource-constrained nature of its devices makes it urgent to explore lightweight and high-
performance intrusion detection models. Recent years have seen a particularly active application of 
deep learning (DL) techniques. The spiking neural network (SNN), a type of artificial intelligence that is 
associated with sparse computations and inherent temporal dynamics, has been viewed as a potential 
candidate for the next generation of DL. It should be noted, however, that current research into SNNs 
has largely focused on scenarios where limited computational resources and insufficient power sources 
are not considered. Consequently, even state-of-the-art SNN solutions tend to be inefficient. In this 
paper, a lightweight and effective detection model is proposed. With the help of rational algorithm 
design, the model integrates the advantages of SNNs as well as convolutional neural networks 
(CNNs). In addition to reducing resource usage, it maintains a high level of classification accuracy. The 
proposed model was evaluated against some current state-of-the-art models using a comprehensive 
set of metrics. Based on the experimental results, the model demonstrated improved adaptability to 
environments with limited computational resources and energy sources.

Keywords Spiking neural network, Convolutional neural network, Intrusion detection, Cyber security, Deep 
learning, Artificial intelligence

Human society and Internet technology have become increasingly integrated. It is indisputable, however, that 
cyber-attacks are increasing for the current network  environment1,2. Securing IoT systems is even more chal-
lenging. Energy, memory, communication, and computation power are often constrained on IoT devices and 
networks. Which makes them more vulnerable to cyberattacks. Cyber-attacks can cause serious damage, from 
financial losses to the disruption of critical services. Governments and organizations must take steps to ensure 
their systems are secure and their data is protected. To this end, the development and implementation of defense 
systems and strategies are necessary. Fortunately, security products for computers and networks are constantly 
evolving and expanding to ensure that they can adapt and reflect the risks they face. One of the most important 
products among all of these is intrusion detection systems (IDSs)3. An IDS monitors network traffic to detect 
suspicious activity and threats. Upon identifying potentially malicious activity, IDS alerts the IT manager to the 
possibility of a network intrusion. Since there is a large amount of network data available, the intrusion detection 
problem is well suited to DL  methods4.

Artificial neural networks (ANNs) have been energized by a great deal of potential in the last decade, from 
multi-layer perceptron (MLP) in the first generation to deep neural networks (DNNs) in the second genera-
tion. Even with this great advancement, ANNs still lack the energy efficiency and online learning capabilities of 
biological neural  networks5. Traditional deep learning models have been subjected to many attempts to reduce 
their power consumption. Numerous techniques have been developed to find more compact networks with 
similar performance fewer parameters and less complexity than the original network. These techniques include 
 quantization6,  pruning7, and knowledge  distillation8. However, all these methods are just patching on top of the 
original and do not get to the root of the problem.

Though ANNs and DNNs are historically based on neural networks, they differ fundamentally in their 
structure, neural computations, and learning rules in comparison with biological neural  networks5. In SNNs, the 
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model closest to the biological neuron mechanism is  used9. The SNN accumulates the input to the membrane 
voltage via the pulse neurons, and when the threshold has been reached, the pulse is then emitted to enable 
event-driven computations to take place. As a result of the sparse nature of pulse events and the event-driven 
manner in which they are computed, SNNs are capable of providing a higher level of energy  efficiency10. Since 
SNNs have similar functional characteristics to biological neural networks, they can accommodate sparsity found 
in biological systems and are highly compatible with temporal  codes11.

1. A time-value algorithm is proposed to encode the spike information triggered by the data. By using this 
encoding, complex spike trigger patterns can be mapped to a value that can be uniquely determined. Infor-
mation can be provided more comprehensively to the processing processes without increasing model data 
transfer complexity.

2. A loss function is tailored to the proposed model. From metrics such as the accuracy of the current classifi-
cation to the ranking of the correct classification in the inferred results, it can provide supervision to ensure 
the model approximates the correct result in several directions.

3. A dynamic thresholding strategy is developed for the model during gradient backpropagation. This is because 
the change in the amount of membrane potential in a neuron can reflect, to some extent, the degree of change 
in the input data. Therefore, in this paper, the slope of the fitted curve after cubic spline interpolation of this 
variable is used as the dynamic threshold for gradient in the subsequent backpropagation process.

4. A novel intrusion detection model based on SNNs and CNNs is proposed and implemented. It can be specu-
lated that the model is capable of better adapting to resource-constrained environments and can continue 
to provide security to the target device in arduous conditions, based on the results of the experiments that 
have been conducted.

The remaining portions of this paper are organized as follows. A description of the related work is provided 
in “Related work”. In “Proposed scheme”, we describe our proposed solution. “Performance evaluation and dis-
cussion” evaluates the performance of the adopted models and discusses the results. In “Conclusions and future 
work”, the results of the experiments are summarized, and feasible directions for future research are suggested.

Related work
Various types of models can be used for intrusion detection. In this paper, the focus is on the most relevant 
part, i.e., detection models associated with CNNs or SNNs. Of course, a comprehensive study of the model’s 
performance is another important consideration. This section reviews the results of research in these directions 
in recent years and provides a summary of the status of these studies.

CNN-based models
Deep learning algorithms are widely used in IDSs, and one of the most popular models is the CNN. Several stud-
ies have demonstrated that CNN models can be used to achieve good detection accuracy.  In12, it recommends the 
use of a new CNN architecture type called mean convolution layer (CNN-MCL), which was developed for learn-
ing the content features of anomalies and identifying the anomaly. The CNN-MCL can be used in conjunction 
with an innovative form of convolutional layer that enables the education of low-level abnormal characteristics 
to design a strong network intrusion detection system. Testing the proposed model on the CICIDS2017 dataset 
produced favorable results regarding the detection of anomalies with high accuracy and low false alarm rates in 
comparison to other models.  In13, using the minimum protocol information, field size, and offset, the authors 
propose the first preprocessing method, called "direct", for network IDS. Apart from direct preprocessing, they 
also propose two other techniques known as "weighted" and "compressed". Due to the requirement for additional 
network information, the direct conversion was compared with similar studies. In addition to direct, the proposed 
preprocessing methods are based on a field-to-pixel philosophy that exploits the convolutional features of each 
pixel to achieve the advantages of CNN. When evaluating the direct method, weighted and compressed conver-
sion methods are used. As a result, the proposed direct preprocessing method coupled with a CNN produced a 
meaningful IDS in the NSL-KDD dataset. As opposed to focusing on broad categories of attacks, authors discuss 
various attacks within the same  category14. DoS is different from other categories of KDD in that it has sufficient 
samples for training each attack. The authors also use CSE-CIC-IDS2018, which is one of the most recent IDS 
datasets. CSE-CIC-IDS2018 includes more sophisticated DoS attacks than KDD. Numerous experiments were 
conducted to determine the optimal CNN design for better performance. Evaluations of the performance of the 
models were conducted based on a comparison between CNNs and Recurrent Neural Networks (RNNs). It was 
proposed in the  paper15 to use a fusion method of multi-convolutional neural networks (multi-CNN) to detect 
intrusions. Following the correlation, the feature data are divided into four parts, which are then converted into 
grayscale graphs based on the one-dimensional feature data. In the intrusion detection problem, CNN is intro-
duced through the flow data visualization method, and the most effective of the four results is identified. As a 
result of the experiments, the multi-CNN fusion model was successfully demonstrated to provide a method for 
classifying the NSL-KDD dataset that is highly accurate and low in complexity. There were two models proposed 
by the  authors16 based on deep learning for the classification of binary and multiclass network attacks. To develop 
our models, they use a convolutional neural network architecture. Moreover, a hybrid two-step preprocessing 
approach is presented to generate meaningful features. Feature engineering and dimensionality reduction are 
combined in the proposed approach. Two benchmark data sets are used to appraise the models’ performance. 
A comparison is made between the performance of the proposed system and that of similar deep learning 
approaches published in the literature, as well as state-of-the-art classification models. Results from their experi-
ments indicate that their models are accurate and recall well, outperforming similar models in the literature. A 
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CNN intrusion detection model based on attention is proposed in the  study17. The combination of the image 
generation methods presented in this paper results in a processing flow that is efficient and accurate. The experi-
mental images were arranged according to the results of the importance analysis of the feature fields to optimize 
the use of the feature information in the experiments. As part of the process of building the detection model, a 
more integrated attention mechanism has been applied to CNN. On a subset of the CSE-CIC-IDS2018 dataset, 
a series of comparative experiments have been conducted, and the results indicate that the proposed detection 
process and model can rapidly complete the detection procedure while maintaining a high level of accuracy.

In addition, CNNs are often used in combination with other models to extract more features from the data-
set, such  as18–24. However, these models have the disadvantage of being significantly more complex and are not 
conducive to real-time, efficient data processing.

SNN-based models
Current research related to SNN models is mainly focused on computer vision, such as image  classification25–27 
and object  detection28–30, and there is little research for intrusion detection. The use of SNNs for intrusion detec-
tion is therefore of great importance to subsequent researchers.

The authors investigated the feasibility of using SNNs to detect cyberattacks in  vehicles31. An autoencoder 
model is converted into spiking form to show exemplary results. Their comparison of SNN autoencoders with 
One-Class Support Vector Machines and Isolation Forests demonstrates that they outperform both models. The 
Gryphon advanced intelligence system is  presented32. An evolving Spiking Neural Network One-Class Classifier 
(eSNN-OCC) is being used in the Gryphon System to detect unary anomalies in big industrial data. An advanced 
persistent threat (APT) is a type of cyberattack that is characterized by divergent behaviors and abnormalities. The 
machine learning algorithm corresponding to this algorithm can detect these abnormal behaviors and divergent 
behaviors very rapidly and efficiently. IDS-SNNDT is a new intrusion detection system that is based on spike 
neural networks and decision  trees33. To reduce latency and minimize device power consumption, the non-leaky 
integrate neurons fire (NLIF) model was used in the SNN to select the optimal samples for input. To detect cyber-
attacks, Rand order code (ROC) is also used with SNN. Based on three performance metrics: detection accuracy, 
latency, and energy consumption, the proposed method is compared with two other methods: IDS-DNN and 
IDS-SNNTLF. Simulation results indicate that the IDS-SNNDT method uses less power and has lower latency 
than IDS-DNN and IDS-SNNTLF. To analyze the input–output expressions of both leaky and nonleaky neurons, 
they consider a general class of single-spike temporal-coded integrate-and-fire  neurons34. Using leaky neurons, 
authors show that SNNs are prone to overly nonlinear and complex input–output responses, which is a major 
cause of their difficulty in training and poor performance. In contrast to the widely held belief that spikes cannot 
be differentiated; this reason is more fundamental. In support of this claim, they demonstrate that SNNs built 
with nonleaky neurons can exhibit a simpler input–output response that is less complex and nonlinear. It has 
been demonstrated that SNNs can easily be trained and can perform better than other algorithms, as evidenced by 
experiments conducted with the SNNs over two popular datasets for network intrusion detection, the NSL-KDD, 
and the AWID. Based on their experiments, they demonstrate that the proposed SNNs outperform a compre-
hensive list of DNN models as well as classic machine learning models. According to this study, SNNs are both 
promising and competitive, contrary to the belief of many. Although many researchers have claimed that SNNs 
can improve performance in a wide range of areas, current research is not sufficiently exploiting these benefits.

Additionally, SNNs can be applied to relevant nonlinear regression studies. An integrated-and-fire neural 
network architecture combined with delays is presented to approximate real-valued function mappings within 
a specified degree of accuracy by using spiking neural  networks35. An explicit numerical scheme based on the 
Spiking Neural Network (SNN) has been proposed to integrate time-dependent ordinary and partial differential 
equations (ODEs and PDEs) in a long time  period36. A spike-encoded initial condition can be used to compute 
the solution at future timesteps after the network has been trained as an explicit numerical scheme. In this  study37, 
an artificial intelligence algorithm is presented that can be applied to Engineering Mechanics Boundary Value 
Problems via neural computing. To calculate the nonlinear (physically and geometrically) response of shock 
wave-loaded plate elements, they propose a hybrid model combining the Legendre Memory Unit (LMU) with 
spiking recurrent cells and classical dense transformations.

Performance studies of models
Despite the numerous studies claiming that SNNs are  efficient38–40, a lot of effort is still needed to exploit this 
efficient performance of them. In comparison, a human brain operates within a power budget of approximately 20 
watts, while artificial neural networks incur huge costs in terms of processing power, memory performance, and 
energy  consumption41. This could also indicate that current neural network models still have a lot of untapped 
potential.

To enhance the storage and computing efficiency of TSR, the authors propose a hybrid SNN-CNN network 
with weights implemented in  RRAM42. Comparing the SNN-CNN hybrid network with state-of-the-art CNN 
methods, the hybrid network achieves similar accuracy with 69.21% less weighted parameters and 81.55% lower 
power consumption. Using the Differentiation on Spike Representation (DSR) method, high performance com-
parable to ANNs is achieved with minimal  latency43. The study shows that on both static and neuromorphic 
datasets, DSR can achieve state-of-the-art SNN performance with low latency. SNNs are utilized to build an 
ultra-low-power radio frequency fingerprinting identification (RFFI)  system44. Spiking neurons are optimized 
so that high accuracy is achieved with very few spikes. Additionally, attention mechanisms are utilized to further 
improve RFFI performance by addressing signals in multiple dimensions. In comparison to ANNs of comparable 
accuracy, the SNN-based RFFI system consumes 64% less power. It is proposed that Activation Consistently 
Coupled ANN-SNNs ( AC2AS ) can be trained in a fast and memory-efficient  manner45. To reduce the occurrence 
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of noisy spikes, the researchers designed an adaptive threshold adjustment algorithm (ATA). Experiments show 
that their ( AC2AS)-based models exhibit good performance on benchmark datasets. An adaptive threshold 
mechanism has been proposed for improving the balance between the weight and threshold of SNNs by analyzing 
the differences between analog neurons and spiking  neurons46. On CIFAR10, this mechanism outperformed most 
of the recently proposed SNNs in terms of accuracy, accuracy loss, and network latency, and achieved state-of-
the-art results on CIFAR100. It is proposed to employ a Dynamic Threshold Integrate and Fire (DTIF) model 
that exploits the variability in thresholds of biological neurons to increase spike  activity47. To reduce latency, 
the threshold is dynamically adjusted at each simulation time step to increase spike activity. In contrast to state-
of-the-art conversion methods, the ANN-to-SNN conversion using the DTIF model offers lower latency and 
competitive image classification accuracy. The findings of these studies also provide insights into ways in which 
energy-efficient models may be  designed48–50. In summary, current research is focused on the following aspects. 
One is in the training phase to minimize the cost of model training. Several others are in the validation phase, 
improving model accuracy, execution efficiency, and energy consumption metrics.

Proposed scheme
A lightweight efficient intrusion detection model based on convolutional spiking neural networks is proposed 
in this paper. To achieve excellent results in terms of processing performance, we must exploit the strengths of 
both spiking neural networks and convolutional neural networks throughout the process of creating the pro-
cessing framework. Of course, the complexity of the model has been reduced as much as possible to allow the 
final model to achieve the goal of working accurately and efficiently even in environments where computational 
resources are limited. The design of the entire model was a result of this balance between the need for simplicity 
and efficiency and the need for accuracy.

Data pre-processing
The data samples used during the experiments were constructed based on CSE-CIC-IDS201851 and CIC-
DDoS201952, respectively. These two datasets consist of information about packets captured on the network. Each 
sample consists of features extracted from a network data packet used to distinguish between different data types. 
The construction process of the experimental samples is shown in Fig. 1. Since neither software nor hardware 
can handle all exception scenarios effectively, a small number of invalid field values will have to be generated. To 
counter this, data entries containing invalid field values are removed from the dataset. Then remove fields that 
are not relevant to the specific classification: such as source port, source IP address, timestamp, etc. A further 
reduction in computational costs and complexity was achieved by filtering 64 features using the SelectKBest 
method in the Sklearn library. Thereafter it is necessary to develop appropriate coding rules by analyzing each 
feature on a case-by-case basis.

For each feature field, for which information is extracted, 16 bits of space will be allocated for storing the 
results. Each feature is represented as a binary matrix in the form of a 4 × 4 matrix. In total, 64 features are selected 
(arranged 8 × 8), which will be represented by a 32 × 32  matrix17.

Some fields correspond to fewer instances of taking values that are encoded directly using one-hot coding; for 
fields with integer discrete values with a moderate range, encode its value in binary; With discrete-value fields 
in a wide range, the values are sorted in ascending order first, and then the original value is replaced with the 
sorted number. It is equivalent to translating these values and unifying their differences. An analysis of outliers 
is then performed on these fields, which have a wide range of discrete and continuous values. These values that 
are determined to be outliers are replaced by the nearest normal values. Then each of these fields will be scaled 
to [0, 100]. The scaled values were then one-hot encoded. In other words, when the value reaches a certain level, 
the binary bit corresponding to the level changes to 1, while all other bits are zeros.

After these processes, the network traffic data information will be converted into a binary matrix of 0 and 1 
elements. It is like doing a spike calculation operation on text info and getting their corresponding spikes. To 
facilitate categorical storage and visual observation, these matrix elements will be uniformly multiplied by 255, 
and then each matrix will be converted to a greyscale image. During the experiments, two datasets, CSE-CIC-
IDS2018 and CIC-DDoS2019, were used with 6 and 10 data types, respectively. For clarity and efficiency, 5000 
samples of each type will be selected for subsequent experiments in the order in which they appear in the dataset.

Spiking neuron model
In a SNN, the most basic functional unit is the spiking neuron. Each layer of the SNN has one or more neurons. 
Information is processed within a certain window of time by these neurons. Assume that t  is the current time 
window. Then, each neuron will have t  chances to calculate the recharge potential based on the input data and 
attempt to generate spiking. All neurons began with a membrane potential of zero. The membrane potential of 
the i th neuron is updated at every time step in the following manner:

Vi(t) and Vi(t − 1) denote the membrane potentials of the i th neuron at time step t  and, t − 1 respectively. 
Calculated from the input and connection weights, Ii(t − 1) represents the increment in membrane potential 
at time step t − 1.

where Wji denotes the weights connected to the i th neuron; Jj(t − 1) denotes the value passed to i th neuron from 
the j th input of the previous layer at time step t − 1.

(1)Vi(t) = Vi(t − 1)+ Ii(t − 1)

(2)Ii(t − 1) =
∑

j
WjiJj(t − 1)
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A spike is generated when Vi exceeds its threshold, Vthr , and Vi is reset:

Here α ∈ (0, 1) denotes the attenuation factor. That is, when a spike is triggered, the potential of Vi is reset to 
a value that is the product of the portion of the spike threshold that is exceeded and α . Here, to distinguish the 
difference in membrane potentials held by the neurons during excitation of the spike signal, the reset was not 
uniformly set to 0. It will then be possible for the potential built up during the previous spike to play a role in 
triggering the spike when it occurs next. Si(t) indicates the spike triggering of the i th neuron at the time step t  . 
A value of 1 means that it is triggered, and the default is 0. The spiking information generated by these neurons 
in the time window t will be further encoded and provided as input information to the next neural network layer. 
To put it another way, the sequence of 0’s and 1’s obtained from each neuron in chronological order is encoded 
using some form of rule and transmitted to the next layer of the neural network. Coding methods such as rate 
coding and temporal coding are widely and commonly used.

(3)Vi(t) = (Vi(t)− Vthr) ∗ α and Si(t) = 1, if Vi(t) > Vthr

Figure 1.  Data pre-processing.
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Detection model
In Fig. 2, an example architecture of the proposed convolutional spiking neural network is shown with two con-
volutional spiking layers. Depending on the desired recognition task, the architectural properties of a network 
(e.g., the number of layers and receptive field sizes) as well as learning parameters should be optimized.

The convolutional spiking layer is the model’s primary functional layer, which contains both convolutional 
computation and spike triggering. Equation (1) illustrates the logic of the convolution calculation.

Here x is the values of the input, e.g. a part of the matrix; K denotes the convolution kernel; ⊙ denotes the 
operation of multiplying the elements of two matrices in the same position and accumulating their products. b 
stands for bias and can be set to 0 if not required. σ is then the activation function, e.g. sigmoid, applied to the 
above calculation, but it also can be no operation. The internal potential of the i th neuron is updated at every 
time step in the following manner:

Vi(t) and Vi(t − 1) denote the internal potentials of the i th neuron at moments t  and t − 1 , respectively. As 
soon as the membrane potential has been updated, determine whether it is time to trigger the spike signal and 
how to reset the membrane potential once the spike signal has been triggered as described in Eq. (3).

The signal associated with the last convolutional spiking layer will be encoded using the "time-value", where 
spikes triggered first will be considered to have a higher value than spikes triggered later. The specific rules are 
shown in Algorithm 1.

(4)y = σ(K ⊙ x + b)

(5)Vi(t) = Vi(t − 1)+ y

Figure 2.  An example architecture of the proposed convolutional spiking neural network. (a) An overview 
of the functional layers in the model and how they are organized; (b) the computational procedure for the 
convolutional spiking layer is explained. In the example, the convolution kernel size is 3*3, the step size is 1, the 
spiking threshold is 1.2 and time window is 3; (c) demonstrates the spiking patterns exhibited by the neurons 
during computation. Based on these patterns it is possible to classify the data currently being processed.
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Input: Number of values → n
Output: A list of values used for time-value encoding

1 n ← ℎ 0

2 list_n ← []
3 ← 1

4    for i←1 to n do :
5        list_n.append( )
6 ← 2 ∗

7 end for
8 list_n. reverse()
9 list_reslut ← []
10 for item in list_n do :
11 list_reslut.append(item / sum(list_n))
12   end for
13 return list_reslut

Algorithm 1: Time-value encoding for the last convolutional spiking layer.

The main calculation logic involved is shown in the following equation:

As can be seen, the last occurrence of Mmt is the smallest, and its value can be considered the unit 1. Forward 
moments correspond to 2 times the value of the subsequent moment. The value of Pt is the value that can be 
obtained by generating a spike at moment t  . That is, it represents the proportion of Mt in the total sum of Mj . 
Clearly, 

∑

Pt is convergent and does not change as the time window floats.
For better training, a loss function is also designed for the proposed model. Algorithm 2 illustrates its main 

logic. As shown in the algorithm, the final loss value is mainly determined by two factors, α and β . α factor indi-
cates the difference between the type predicted by the model and the correct type. α is scaled up by multiplying it 
by the number of classifications, n_class, since a higher number of classifications tends to result in smaller values. 
The task of the β-indicator is to haul the probability of correct classification towards its maximum value. It also 
takes into account the ranking of the correct classification in the model prediction results. The reason for adding 
1 to ids is that the ranking starts at 0. Even if the current ranking is 0 (i.e. first place), as long as its probability 
value has not reached its maximum value, it means that there is still room for optimization.

(6)

{

Mt = 2 ∗Mt+1, if mt = max(t),Mmt = 1

Pt =
Mt

∑

jMj
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Input: Number of classifications, an integer greater than 0 → n_class

Model prediction results → ∈ ℝ
_ × _

True classification of the samples → ∈ ℝ
_ × _

Output: Loss value between model prediction and real classification
1    # Do the multiplication of elements in corresponding positions for and 

and obtain the maximum value of each row
2 , _ ← . ( ).max(1)

3 # Get the value of the classification probability to which the model prediction 
belongs

4    , _ ← . (1)

5    # Get the ranking of the correct classification in the prediction
6    , ← . (1)

7    ← . ℎ ()

8 ← . ()

9 for i in range(len( )) do :
10   [ ] ← [ , [ ]]

11   [ ] ← [ ]. ( [ ]). (). ()

12   end for
13 ← −

14 ← 1−

15 return ( _ ∗ + ( + 1) ∗ )

Algorithm 2: Loss function designed for the proposed model.

For better results when using gradient backward propagation for model training, gradient screening is also 
required. Due to the discrete nature of spike signals, it is not directly possible to determine their gradient values. 
When gradients with too large absolute values are used for model parameter tuning, they are prone to caus-
ing perturbations that interfere with the training process. Therefore, it is common to limit the gradient range 
when backpropagating. A fixed threshold can only be determined by considering the whole dataset. Dynamic 
thresholds can, on the other hand, be adjusted for each batch of training data. This results in a finer adjustment 
of the gradient range, allowing the model to be more flexible in finding optimal results in the solution space. 
Cubic spline  interpolation53 is used to curve fit the amount of membrane potentials in neurons. The slope of the 
corresponding position is used as the final threshold for gradient back propagation. This is because the change 
in the amount of membrane potential in a neuron can reflect, to some extent, the degree of change in the input 
data. Basically, the algorithm fits a piecewise function in the form of:

Here si is a polynomial of third degree defined as follows:

In this process, it is essential for the first and second derivatives of these n-1 equations to be known, and 
they are as follows:

The spline needs to meet the following qualifications:

• The interpolation will be performed on all data points by S(x).
• During the interval [x1, xn]S(x) will be continuous.
• During the interval [x1, xn]S′(x) will be continuous.
• During the interval [x1, xn]S′′(x) will be continuous.

(7)S(x) =











s1(x), if x1 ≤ x < x2
s2(x), if x2 ≤ x < x3

. . .

sn−1(x), if xn−1 ≤ x < xn

(8)si(x) = ai(x − xi)
3
+ bi(x − xi)

2
+ ci(x − xi)+ di for i = 1, 2, . . . , n− 1

(9)s′i(x) = 3ai(x − xi)
2
+ 2bi(x − xi)+ ci

(10)s′′i (x) = 6ai(x − xi)+ 2bi , for i = 1, 2, . . . , n− 1
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The curve to be fitted S(x) can be determined based on these constraints. After calculating the slope of the 
corresponding point on S(x) , the gradient backpropagation threshold can be identified. The calculated slope 
can be normalized to ensure that the threshold is within a reasonable range. Several experiments have found 
that computing the slope only from one of a batch of training samples mitigates overfitting and reduces com-
putational complexity.

During model training, the learning rate is adjusted with the following strategy:

η1 is the initial learning rate set by the model during the first epoch of training. Tmax is the total number of epochs 
the model has to be trained for and t  is the current number of training rounds.

Evaluation metrics
In the experiments, each model was evaluated in several dimensions, and the main evaluation criteria are as 
follows:

(1) Detection accuracy, which measures a model’s basic capability. In this study, the following evaluation 
indicators were used:

A true positive is indicated by the letter TP. A true negative is indicated by the letter TN. False positives and 
false negatives are indicated by the letters FP and FN, respectively.

(2) Model complexity is characterized by the number of parameters and computation required.
(3) Execution speed, as measured by the number of samples processed every second.
(4) Energy consumption is calculated as the average power consumption per 10,000 samples.
As a result of these metrics, a more comprehensive picture of the overall performance of the model can be 

obtained concerning accuracy, computational resource consumption, energy consumption, etc.
The efficiency metrics are demonstrated in Table 1. Energy consumption here is a count of the model’s elec-

trical energy consumption after processing 10,000 samples. Samples/s quantifies the rate at which the model 
processes experimental samples. The number of parameters of the model is mainly indicative of the complexity 
of the model. Floating-point operations (FLOPs) indicate the amount of floating-point computation required 
by the model. Model size reflects the amount of space occupied by the model after training is complete. This 
metric directly affects the model’s space footprint at storage and runtime. The experimental setting for obtaining 
these data is as follows:

(11)

{

η1 = 0.001

ηt = 0.5 ∗ η1

(

1+ cos
(

t
Tmax

π

))

, 2 ≤ t ≤ Tmax

(12)True Positive Rate =
TP

TP+ FN

(13)False Positive Rate =
FP

FP+ TN

(14)Accuracy =
TP+ TN

TP+ FP+ TN+ FN

(15)Precision =
TP

TP+ FP

(16)F1− score =
2× Precision× True Positive Rate

Precision+ True Positive Rate

Table 1.  Efficiency metrics.

Model Energy consumption (kWh ×10
−4) Samples/s Parameters FLOPs Model size (MB)

CIFARNet-GLIF 277.06228 6 45,028,352 4,972,892,160 180.16

ResNet18-LGLIF 368.12367 4 11,175,239 7,048,941,568 44.87

ResNet18-GLIF 373.16147 4 11,346,304 7,049,455,616 45.55

SpikeDHS 631.76467 6 14,777,148 11,987,675,136 183.88

SpikingGCN 19.56754 74 273,130 3,156,111,360 1.1

NAS-SNN 1455.09684 3 44,023,140 24,891,346,944 364.92

Spikformer 179.32850 9 9,330,010 3,743,420,160 37.54

CNN 8.19181 264 17,189,450 149,492,736 68.77

Our model 1.77497 5333 7482 204,800 0.03363
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• Operating system: Linux-5.15.120 + -x86_64-with-glibc2.31.
• CPU: Intel(R) Xeon(R) @ 2.20 GHz, 4 Core(s), 120.00 W.
• RAM: 32 GB, 11.76 W.

A GPU was used for acceleration during the comparison models training. This GPU was configured as follows:

• NVIDIA Tesla P100 (16 GB) GPU.

Performance evaluation and discussion
For evaluation, the following comparison models were used in the experiments.

GLIF54 is a unified spiking neuron that fuses different bio-features in different neuronal behaviors, expanding 
the representation space of spiking neurons. It is possible to learn gate factors in GLIF during training, which 
determine the proportion of fused bio-features. By combining all learnable membrane-related parameters, this 
method can generate spiking neurons that are constantly changing, increasing their heterogeneity as well as 
their adaptability.

• CIFARNet-GLIF54: CIFARNet uses GLIF neurons.
• ResNet18-LGLIF54: ResNet18 uses GLIF with a layer-wise parameter-sharing scheme.
• ResNet18-GLIF54: ResNet18 uses GLIF neurons.
• SpikeDHS55: The spike-based computation is performed not only at the cell level but also at the layer level.
• SpikingGCN56: A framework that integrates the embedding of Graph Convolutional Networks (GCNs) with 

the bio fidelity characteristics of SNNs ends-to-end.
• NAS-SNN57: As in recent NAS approaches, this algorithm selects an architecture that represents diverse spike 

activation patterns across different data samples without training.
• Spikformer58: Based on leveraging the self-attention capabilities and biological properties of SNNs, a novel 

Spiking Self-Attention (SSA) algorithmic framework is developed.
• CNN59: Optimized convolutional neural network model.

The correspondence of data types and category numbers in dataset CSE-CIC-IDS2018, from 0 to 5, is Benign, 
DoS, DDoS, Botnet, Infiltration, and Brute Force. The data types represented by the classifications 0 to 9 in the 
CIC-DDoS2019 dataset are Benign, DrDoS_SNMP, TFTP, DrDoS_UDP, DrDoS_NetBIOS, DrDoS_MSSQL, 
Syn, DrDoS_SSDP, DrDoS_DNS, and UDP-lag, respectively.

After experimenting with layers between 1 and 5, it was ultimately determined that two layers provide the best 
combination of accuracy and efficiency of the spiking neural network. Therefore, the proposed model consists 
of 2 convolutional spiking layers and 1 linear layer. The time window for these 2 convolutional spiking layers 
was set to 4. The batch size for training is 40. Where the input shape of the first layer is (40, 1, 32, 32). These 
four values indicate the batch size, the number of channels, and the number of rows and columns in the input 
matrix. The convolutional kernel size of the layer is 4*4, the step size is 4 and the padding strategy is “valid”. The 
output shape of the first layer is (40, 16, 8, 8) as is the input shape of the second layer. The second layer convolu-
tion kernel size is 2*2, step size is 2 and padding strategy is “valid”. The output shape of the second layer is (40, 
32, 4, 4). The number of neurons per layer is determined according to the minimum value of the input shape. 
As the output of the convolutional spiking network layer consists of a sequence of 0 s and 1 s that is encoded by 
the "time-value" algorithm at the end, no other regularization operations are applied. The preset spike trigger 
threshold is 0.3. The initial learning rate during training was 0.001. The total number of training rounds is 50. 
According to Eq. (11), the learning rate per round is adjusted.

The remarkable advantages of the proposed model can be seen in the experimental results. The first metric 
records the power consumption of the model after processing 10,000 samples. The consumption of energy is 
particularly important for equipment that has a limited supply of energy (e.g., devices using mobile power or 
batteries) since energy indicates the equipment’s long-term viability. It is evident from the experimental results 
that the proposed model can reduce energy consumption at least by 70% or more compared to the other models, 
and even by more than 90% compared to the energy-consuming model. For the same amount of power supply, 
the model proposed in the paper can benefit from lower energy consumption. This will enable the host equip-
ment to operate for a longer period, while providing more durable protection.

The Samples/s indicator reflects the efficiency of the model in processing samples, which mainly reflects the 
response speed of the model. More samples processed per second indicate a quicker response time and the ability 
to provide timely feedback regarding potential risks. As can be seen from the above results, the model proposed 
in this paper is at least 20 times faster than other models. It is even more than 500 times faster than most models.

The size of the number of parameters of the model is an important reference for the complexity of the model. 
Since most of the parameters are required to be trained to fit the target dataset. Therefore, the cost of the model 
in the training process, such as computational resources and time, can be largely reflected in this metric. In this 
regard, the proposed model still has a significant advantage. This means that the model can complete training and 
validation faster. This feature is especially important during the model development phase, allowing designers 
to put their ideas into practice and get feedback sooner.

FLOPs are mainly concerned with how much computation was performed by the model during the sample 
processing. It is a good reflection of the occupancy of computational units by the corresponding model in pro-
cessing the samples. The fewer computing units the model needs to occupy, the less impact it will have on the 
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original functionality of the device. Especially for computing resource-poor devices, adding new applications 
may even lead to intermittent failure of its original functionality. It is therefore necessary to reduce this indicator 
as much as possible, which is more conducive to maintaining the proper functioning of the original function. In 
Table 1, shows the total amount of computation required by the model to process one sample. In this respect, the 
proposed model still has a notable advantage. Compared to other models, it can be reduced by more than 90%.

The proposed model also has an obvious advantage as far as the indicator of model size is concerned. The 
data presented in the above table is the space required to be occupied in the storage medium after the model has 
been trained. For a model to provide protection on a target device, it necessarily requires the device to be able 
to store, load and run the model. The smaller the metric, the lower the corresponding model’s demand for stor-
age resources. Other models with even the smallest volume are more than 30 times larger than the model being 
proposed. With this feature, the proposed model has the potential to better accommodate storage-poor devices.

Of course, it is not enough to focus only on efficiency metrics; comparing efficiency among them needs to be 
based on the same level of correctness. Table 2 demonstrates the multi-classification accuracy of these models 
in different datasets.

Where Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11 and Figs. 3, 4, 5, 6, 7, 8, 9, 10 and 11 show the detailed experimental 
results for each model, respectively.

All the SNN models and CNN structure used in the experiments were published in authoritative publications 
in recent years. As can be seen from the accuracy results of the experiments, the classical CNN is still slightly 
higher than most of the SNN models. It shows that in the current research process, SNNs are not yet able to 
completely replace CNNs in terms of accuracy. At the same time, the model proposed in this paper can achieve 
the same level of accuracy as these state-of-the-art models. Moreover, it comprehensively outperforms these 
models in terms of efficiency metrics, which shows that the overall practical capability of the model is excellent. 
Finally, the models’ ability to cope with novel attacks was tested using DrDoS_LDAP, an attack type that was not 
present in the training set. The number of samples used for validation was 5000. The detection accuracies of the 
models trained on the CSE-CIC-IDS2018 dataset and CIC-DDoS2019 dataset are 95.06 and 99.56, respectively. 
It can be seen that the trained model has a high level of recognition capability even when it encounters unknown 
types of attacks. They can provide valuable information for security managers.

All the SNN models and CNN structure used in the experiments were published in authoritative publications 
in recent years. As can be seen from the accuracy results of the experiments, the classical CNN is still slightly 
higher than most of the SNN models. It shows that in the current research process, SNNs are not yet able to 
completely replace CNNs in terms of accuracy. Moreover, some SNN models do not dominate over CNNs in 
the performance metrics for which SNNs are so highly sought after. At the same time, the model proposed in 

Table 2.  Classification accuracy. Significant values are in bold.

Model CSE-CIC-IDS2018 CIC-DDoS2019

CIFARNet-GLIF 98.82 99.86

ResNet18-LGLIF 98.82 99.88

ResNet18-GLIF 98.77 99.86

SpikeDHS 98.78 99.89

SpikingGCN 98.75 99.86

NAS-SNN 90.82 98.08

Spikformer 98.67 99.64

CNN 98.88 99.90

Our model 98.82 99.86

Table 3.  CIFARNet-GLIF validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.985 0.999 0.011 0.000 0.998 1.000 0.95 1.00 0.97 1.00

1 0.999 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

2 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

3 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

4 1.000 0.998 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

5 0.944 0.997 0.003 0.000 0.998 0.999 0.98 1.00 0.96 1.00

6 – 0.999 – 0.000 – 1.000 – 1.00 – 1.00

7 – 0.995 – 0.000 – 0.999 – 1.00 – 1.00

8 – 0.999 – 0.000 – 1.000 – 1.00 – 1.00

9 – 0.999 – 0.000 – 1.000 – 1.00 – 1.00
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this paper can achieve the same level of accuracy as these state-of-the-art models. Moreover, it comprehensively 
outperforms these models in terms of efficiency metrics, which shows that the overall practical capability of the 
model is excellent.

Conclusions and future work
A total of eight spiking neural network models and one deep convolutional neural network model were used 
in the experiments. Many IoT devices do not have sufficient computing resources or energy supply due to cost, 
working environment and other factors. This causes great inconvenience to them in self-protection. Many strat-
egies have been developed to address this challenge through cloud computing  services60–62, but this inevitably 
introduces new information security  concerns63, as well as increasing the burden on networks. The model pro-
posed in this paper is significantly higher in all efficiency metrics, while maintaining a high detection accuracy 
level. The proposed model also enhances the ability to work properly on devices with limited computational 

Table 4.  ResNet18-LGLIF validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.984 0.999 0.011 0.000 0.988 1.000 0.95 1.00 0.97 1.00

1 0.999 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

2 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

3 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

4 1.000 0.998 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

5 0.946 0.997 0.004 0.000 0.988 0.999 0.98 1.00 0.96 1.00

6 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

7 – 0.994 – 0.000 – 0.999 – 1.00 – 1.00

8 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

9 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

Table 5.  ResNet18-GLIF validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.981 1.000 0.011 0.000 0.988 1.000 0.95 1.00 0.97 1.00

1 0.999 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

2 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

3 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

4 1.000 0.997 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

5 0.946 0.995 0.004 0.000 0.988 0.999 0.98 1.00 0.96 1.00

6 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

7 – 0.995 – 0.000 – 0.999 – 1.00 – 1.00

8 – 0.999 – 0.000 – 1.000 – 1.00 – 1.00

9 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

Table 6.  SpikeDHS validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.989 1.000 0.012 0.000 0.988 1.000 0.94 1.00 0.97 1.00

1 0.999 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

2 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

3 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

4 1.000 0.998 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

5 0.938 0.997 0.002 0.000 0.988 0.999 0.99 1.00 0.96 1.00

6 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

7 – 0.994 – 0.000 – 0.999 – 1.00 – 1.00

8 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

9 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00
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resources and insufficient energy supply. The lack of computing resources and power supply is exactly the 
dilemma that many IoT devices are currently facing.

Although the proposed model outperforms the existing solutions in terms of efficiency, there is a slight 
decrease in classification accuracy compared to the most accurate model. As measured by metrics such as clas-
sification accuracy, execution efficiency and energy consumption, the spiking neural network models still do not 
perform as well as deep convolutional neural networks in most cases. The reason for this is primarily due to the 
complexity of the design of these SNN models, and the presence of this complexity did not lead to an improve-
ment in accuracy. It can be seen that the spiking neural network models still have a lot of work to do to catch up 
with the classical deep neural networks with regard to overall performance.

In future work, attempts will be made to unite many resource-poor devices and get them to help each other, 
resulting in a stronger defense system. As a single device has very limited resources, if the resources of many 
devices are dispatched in an intelligent, efficient, and reasonable fashion, they will be able to address various 

Table 7.  SpikingGCN validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.980 1.000 0.011 0.000 0.988 1.000 0.95 1.00 0.96 1.00

1 0.999 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

2 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

3 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

4 1.000 0.999 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

5 0.946 0.993 0.004 0.000 0.988 0.999 0.98 1.00 0.96 1.00

6 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

7 – 0.995 – 0.001 – 0.999 – 0.99 – 0.99

8 – 0.999 – 0.000 – 1.000 – 1.00 – 1.00

9 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

Table 8.  NAS-SNN validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.913 0.998 0.078 0.000 0.920 1.000 0.71 1.00 0.80 1.00

1 0.945 1.000 0.000 0.000 0.992 1.000 1.00 1.00 0.97 1.00

2 1.000 1.000 0.001 0.000 1.000 1.000 1.00 1.00 1.00 1.00

3 1.000 1.000 0.002 0.000 0.998 1.000 0.99 1.00 1.00 1.00

4 0.981 0.998 0.001 0.000 0.997 1.000 1.00 1.00 0.99 1.00

5 0.607 0.833 0.029 0.001 0.913 0.982 0.80 0.99 0.69 0.91

6 – 0.998 – 0.000 – 1.000 – 1.00 – 1.00

7 – 0.990 – 0.019 – 0.982 – 0.85 – 0.92

8 – 0.995 – 0.000 – 1.000 – 1.00 – 1.00

9 – 0.996 – 0.000 – 1.000 – 1.00 – 1.00

Table 9.  Spikformer validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.976 0.999 0.011 0.000 0.986 1.000 0.95 1.00 0.96 1.00

1 0.998 0.999 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

2 1.000 1.000 0.000 0.001 1.000 0.999 1.00 0.99 1.00 1.00

3 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

4 1.000 0.999 0.000 0.001 1.000 0.999 1.00 0.99 1.00 1.00

5 0.946 0.982 0.005 0.000 0.987 0.998 0.97 1.00 0.96 0.99

6 – 0.994 – 0.000 – 0.999 – 1.00 – 1.00

7 – 0.994 – 0.002 – 0.998 – 0.99 – 0.99

8 – 0.997 – 0.000 – 0.999 – 1.00 – 1.00

9 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00
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problems more effectively. A suitable distributed scheduling algorithm will be developed so that, as a whole, these 
devices with unified resource scheduling will perform better than when they operate independently.

Table 10.  CNN validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.987 0.998 0.011 0.000 0.989 1.000 0.95 1.00 0.97 1.00

1 0.999 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

2 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

3 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

4 1.000 0.998 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

5 0.946 0.997 0.003 0.000 0.989 0.999 0.99 1.00 0.97 1.00

6 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

7 – 0.997 – 0.000 – 0.999 – 1.00 – 1.00

8 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

9 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

Table 11.  Our model validation.

Category

True positive rate False positive rate Accuracy Precision F1-score

IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019 IDS-2018 DDoS-2019

0 0.988 1.000 0.012 0.000 0.988 1.000 0.95 1.00 0.97 1.00

1 0.999 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

2 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

3 1.000 1.000 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

4 1.000 0.999 0.000 0.000 1.000 1.000 1.00 1.00 1.00 1.00

5 0.941 0.994 0.003 0.001 0.988 0.999 0.99 1.00 0.96 0.99

6 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

7 – 0.993 – 0.001 – 0.999 – 0.99 – 0.99

8 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

9 – 1.000 – 0.000 – 1.000 – 1.00 – 1.00

Figure 3.  CIFARNet-GLIF validation.
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Figure 4.  ResNet18-LGLIF validation.

Figure 5.  ResNet18-GLIF validation.
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Figure 6.  SpikeDHS validation.

Figure 7.  SpikingGCN validation.
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Figure 8.  NAS-SNN validation.

Figure 9.  Spikformer validation.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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