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Comparison of the effectiveness 
of different normalization 
methods for metagenomic 
cross‑study phenotype prediction 
under heterogeneity
Beibei Wang 1,2,3, Fengzhu Sun 4 & Yihui Luan 1,2,3*

The human microbiome, comprising microorganisms residing within and on the human body, plays a 
crucial role in various physiological processes and has been linked to numerous diseases. To analyze 
microbiome data, it is essential to account for inherent heterogeneity and variability across samples. 
Normalization methods have been proposed to mitigate these variations and enhance comparability. 
However, the performance of these methods in predicting binary phenotypes remains understudied. 
This study systematically evaluates different normalization methods in microbiome data analysis and 
their impact on disease prediction. Our findings highlight the strengths and limitations of scaling, 
compositional data analysis, transformation, and batch correction methods. Scaling methods like 
TMM show consistent performance, while compositional data analysis methods exhibit mixed 
results. Transformation methods, such as Blom and NPN, demonstrate promise in capturing complex 
associations. Batch correction methods, including BMC and Limma, consistently outperform 
other approaches. However, the influence of normalization methods is constrained by population 
effects, disease effects, and batch effects. These results provide insights for selecting appropriate 
normalization approaches in microbiome research, improving predictive models, and advancing 
personalized medicine. Future research should explore larger and more diverse datasets and develop 
tailored normalization strategies for microbiome data analysis.

The human microbiome is a complex ecosystem of microorganisms that exist in symbiosis with the human 
 body1. Extensive research has established that the human microbiome plays crucial roles in numerous physi-
ological processes, including digestion, metabolism, immune system modulation, and even cognitive functions. 
Disruptions in the delicate microbial balance, known as dysbiosis, have been linked to a wide range of health 
conditions, including  obesity2,3,  diabetes4, inflammatory bowel  disease5,6,  allergies7, and several types of  cancer8,9.

The advent of high-throughput sequencing technologies has revolutionized the field of microbiome research, 
enabling comprehensive profiling of microbial communities and providing insights into their roles in different 
physiological processes and disease  states10. However, the analysis of microbiome data poses significant chal-
lenges due to inherent heterogeneity and variability across samples. Sources of variation can stem from techni-
cal differences in sequencing  protocols11, variations in sample  collection12 and processing  methods13, as well as 
biological diversity among individuals and populations. To extract meaningful insights from microbiome data, 
it is crucial to account for and mitigate these sources of variation.

Normalization methods have emerged as vital tools in addressing the heterogeneity and biases present in 
microbiome data. These methods aim to remove technical and biological biases, standardize data across samples, 
and enhance comparability between datasets. Various normalization approaches have been proposed, ranging 
from simple scaling methods to more advanced statistical techniques. Comparisons of normalization methods 
have been performed in the context of data  distributions14,15 and differential  analysis16–20. Genotype-to-phenotype 
mapping is an essential problem in the current genomic era. In the realm of differential analysis and prediction, 
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the application of normalization methods differs in their objectives. In differential analysis, the main objective 
of normalization among different datasets is to remove or mitigate spurious associations between microbes 
and diseases. On the other hand, the main objective of normalization for phenotype prediction is to increase 
prediction accuracy, robustness, reliability and generalizability of the trained model to the unseen testing data. 
However, the impact of normalization methods on phenotype predictions mainly focused on DNA microarray 
data and RNA-Seq data. Zwiener et al.21 found rank-based transformations performed well in all scenarios in 
real RNA-Seq datasets. Franks et al.22 proposed feature-wise quantile normalization (FSQN) and found FSQN 
successfully removes platform-based bias from RNA-Seq data, regardless of feature scaling or machine learning 
algorithm. Given the central role of normalization in microbiome data analysis and the lack of current methods 
comparison for microbiome data, there is a need to systematically evaluate their performance, particularly in 
the context of disease prediction.

In this paper, we provide a review of existing normalization methods and present a comprehensive evalua-
tion of various normalization methods in predicting binary phenotypes using microbiome data. We examine 
the performance of scaling methods, compositional data analysis methods, transformation methods, and batch 
correction methods across simulated datasets and real datasets. Our analysis includes an assessment of predic-
tion accuracy using metrics such as the area under the receiver operating characteristic curve (AUC), prediction 
accuracy, sensitivity, specificity, and the rank ordering of different methods.

By comparing and contrasting the performance of normalization methods across different datasets and phe-
notypic outcomes, we aim to provide insights into the strengths and limitations of each approach. This research 
will assist researchers and practitioners in selecting appropriate normalization methods for microbiome data 
analysis, thereby enhancing the robustness and reliability of predictive models in microbiome research.

Results
Different datasets have different background distributions
There are eight publicly accessible colorectal cancer (CRC) datasets shown in Table 1, including  Feng25,  Gupta26,68, 
 Thomas8,  Vogtmann28,  Wirbel29,  Yachida30,  Yu9, and  Zeller31. In total, we included 1260 samples (625 controls, 635 
CRC cases) from multiple countries such as the USA, China, France, etc. The participant demographics ranged 
from 21 to 90 years, with a male representation of 59.6% . The datasets were characterized by diverse body mass 
index (BMI) values and included subjects with other health conditions such as hypertension, hypercholester-
olemia, and Type 2 Diabetes (T2D). DNA extraction and sequencing were conducted using various protocols 
and platforms. Our analysis aimed to examine the background distribution differences among these datasets.

In order to assess population differences across the CRC datasets, a PCoA plot based on Bray Curtis distance 
was generated. Figure 1a revealed distinct separations between different datasets, suggesting variations in micro-
bial composition among the populations. Although the observed separation accounted for a small proportion 
( 7.9% ) of the total variance, statistical significance was confirmed through the PERMANOVA test ( p = 0.001 ). 
These findings underscored the substantial heterogeneity in microbial communities across diverse CRC datasets, 
despite the relatively modest contribution to the overall variance. To quantify the overlaps of these datasets, 
we computed the average Bray-Curtis distance (Fig.1b). The dispersion of individual datasets was represented 
on the diagonal, with the largest dispersion observed in the Gupta dataset. Among the off-diagonal values that 
measured the average distance between samples in different datasets, Feng and Gupta exhibited the lowest over-
lap, with a distance of 0.901. Consequently, controls from these two datasets were selected as the template data 
for subsequent simulations in scenario 1. Mixing these two populations with decided proportions allowed us to 
control the heterogeneities between simulated populations.

Our analysis also extended to five distinct IBD datasets, as depicted in supplementary Table S1. These included 
the  Hall32,  HMP5,70,  Ijaz33,  Nielsen35, and  Vila6 datasets. Similar to the CRC datasets, the IBD datasets exhibited 
variations in geographical origin, age, BMI, and sequencing platforms. Supplementary Figure S1 revealed a clear 
separation between the different datasets (Supplementary Figure S1(a)) along with evident dataset dispersion 
variations (Supplementary Figure S1(b)). These observations underscore the fact that distinctive populations 

Table 1.  Characteristics of CRC datasets, including country, number of control samples (No. of control), 
number of CRC samples (No. of CRC), number of species in each dataset (No. of species), percentage of zero 
values in each dataset (zero percentage), DNA extraction kits (DNA-Exk), sequencing platforms (Seq-Plat), 
and reference.

Dataset Country No. of control No. of CRC No. of species Zero percentage DNA-Exk Seq-Plat Reference

Feng Austria 61 46 578 80.0% MoBio IlluminaHiSeq 25

Gupta Indian 30 30 308 83.6% Qiagen IlluminaNextSeq 26,68

Thomas Italy 52 61 584 83.6% Qiagen IlluminaHiSeq 8

Vogtmann United States of 
America 52 52 539 78.7% Gnome IlluminaHiSeq 28

Wirbel Germany 65 60 537 80.8% Gnome IlluminaHiSeq 29

Yachida Japan 251 258 697 87.3% NA IlluminaHiSeq 30

Yu China 53 75 575 80.7% Qiagen IlluminaHiSeq 9

Zeller France 61 53 629 81.0% Gnome IlluminaHiSeq 31
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are inherently marked by their unique background distributions, a factor that must be judiciously accounted for 
in any microbiome-related analysis.

Transformation and batch correction methods could enhance prediction performance for het‑
erogeneous populations
In Scenario 1, the effects of different normalization methods on the prediction of binary phenotypes across 
diverse background distributions of taxa were investigated. The figures, including Figure 2, Supplementary 
Figures S2, S3, and S4, display the average performance metrics of 100 iterations: average AUC, accuracy, speci-
ficity, and sensitivity. Each panel in these figures represents a distinct disease effect, with each column denoting 
a population effect and rows indicating normalization methods.

When there were no population effects between the training and testing datasets ( ep = 0 ), all normalization 
methods exhibited satisfactory performance, with average AUC, accuracy, sensitivity, and specificity values 
consistently achieving the maximum value of 1. However, as the population effects increased or disease effects 
decreased, an evident decline in these values was observed.

Figure 1.  Different CRC populations had different background distribution patterns. (a) PCoA plot based on 
Bray-Curtis distance, with colors for different datasets. The variance explained by populations (PERMANOVA 
R
2 ) and its significance (PERMANOVA p value) were annotated in the figure. (b) Average Bray-Curtis distances 

between pairs of CRC datasets. Values on the diagonal referred to average Bray-Curtis distances between 
samples within the same dataset. Off-diagonal values refer to average Bray-Curtis distances between pairs of 
samples in different datasets. Larger values indicated a more dispersed distribution (on-diagonal) or bigger 
differences (off-diagonal). The figures were generated using R version 4.3.0.

Figure 2.  Heatmaps depicting average AUC values obtained from abundance profiles normalized by various 
methods for predicting simulated cases and controls in Scenario 1. The panels (a), (b), and (c) correspond to 
disease effects of 1.02, 1.04, and 1.06 respectively. The columns represent different values of population effects, 
while the rows represent different normalization methods, grouped based on their classifications in the left 
column. The figures were generated using R version 4.3.0.

https://www.r-project.org/
https://www.r-project.org/
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When the differences between case and control were small (Figure 2(a), ed = 1.02 ), the prediction AUC 
values of scaling methods rapidly declined to 0.5 (random prediction value) as ep increased. TMM and RLE 
demonstrated better performances than TSS-based methods, such as UQ, MED, and CSS, in a wider range of 
conditions. Notably, TMM maintained an AUC value above 0.6 when ep < 0.2 . As disease effects increased 
(Figure 2(b) ed = 1.04 and (c) ed = 1.06 ), both TMM and RLE exhibited superior ability to remove sample 
differences for predictions compared to TSS-based methods. Regarding prediction accuracy, TMM sustained 
accuracy above 0.6 with ed > 1.04 and ep < 0.1 , surpassing the accuracy of other techniques (Supplementary 
Figure S2). In comparison to TMM, the other normalization methods specifically designed for RNA-Seq data, 
such as RLE, showed a tendency to misclassify controls as cases in predictions. This resulted in a sensitivity close 
to 1 (Supplementary Figure S3) and a specificity close to 0 (Supplementary Figure S4) in scenarios with popula-
tion effects between training and testing datasets ( ep > 0 ). Similar outcomes were observed for TSS but not for 
TSS-based methods such as UQ, MED, and CSS.

While normalized counts are commonly used for analyzing microbiome data, they still exhibit skewed dis-
tributions, unequal variances, and extreme values, which may limit their effectiveness in situations with signifi-
cant heterogeneity. To enhance cross-population prediction performance, we applied various commonly used 
transformations, including CLR, LOG, AST, STD, Rank, Blom, NPN, logCPM, and VST. These transformation 
methods aimed to address one or several problems. For instance, logCPM and LOG transformations resolved 
skewness and extreme values, STD focused on unequal variances, VST tackled unequal variances and extreme 
values, and AST, CLR, Rank, Blom, and NPN addressed all three issues. The yellow and grey bars in Figure 2 
represent the average prediction AUC values obtained using abundance profiles transformed by different meth-
ods. LOG, AST, Rank, and logCPM showed performances similar to TSS, indicating a failure in distribution 
adjustment. Conversely, transformation methods that achieved data normality, such as Blom and NPN, effectively 
aligned the data distributions across different populations for both population effects (ep) and disease effects 
(ed). Additionally, STD generally improved prediction AUC values, while the performance of CLR and VST 
transformation decreased with increasing population effects (ep). However, the sensitivity of all transformation 
methods was close to 1 (Supplementary Figure S3), and the specificity was close to 0 (Supplementary Figure S4) 
in circumstances where ep > 0 . Consequently, prediction accuracies remained around 0.5 (Supplementary Fig-
ure S2), even for methods like Blom, NPN, and STD that exhibited higher AUC values.

Surprisingly, the batch correction methods highlighted in red bars yielded promising prediction results with 
high AUC (Figure 2), accuracy (Supplementary Figure S3), sensitivity (Supplementary Figure S4), and specificity 
(Supplementary Figure S5), except for QN. QN forced the distribution of each sample to be the same, potentially 
distorting the true biological variation between case and control samples, making it difficult for the classifier to 
distinguish between the groups. This was also validated by its high sensitivity (Supplementary Figure S3) and low 
specificity (Supplementary Figure S4) values. While QN was only effective when the two populations originated 
from the same distribution, FSQN, BMC, limma, ComBat, and ConQuR significantly enhanced the reproduc-
ibility of response predictions, remaining unaffected by disease effects and population effects.

Batch correction methods can successfully remove batch effects within the same population
In Scenario 2, we examined studies within the same population that exhibited technical variations and differences 
across batches. These batch effects can lead to substantial heterogeneity among the data  batches71. Figures 3, S5, 
S6, and S7, respectively, showed the average AUC, accuracy, sensitivity, and specificity values obtained from 
random forest models using abundance profiles normalized by various methods across 100 runs. Overall, all 

Figure 3.  Heatmaps depicting average AUC values obtained from abundance profiles normalized by various 
methods for predicting simulated cases and controls in Scenario 2. The panels (a), (b), and (c) correspond 
to disease effects of 1.02, 1.04, and 1.06 respectively. The columns represent different combinations of batch 
mean and batch variation, with “m” for batch mean adjusting the mean and “v” for batch variance adjusting the 
variance. The rows represent different normalization methods, grouped based on their classifications in the left 
column. The figures were generated using R version 4.3.0.

https://www.r-project.org/
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these values demonstrated an upward trend with increasing disease effects. However, the normalization methods 
exhibited varying responses to changes in batch means and variances.

Figure 3a displayed the results obtained with disease effect equal to 1.02. When the batch variance remained 
fixed ( sevvar = 1 ), pronounced response to additive batch means ( sevmean = 0, 500, 1000 ) was observed among 
the scaling methods and some transformation methods (CLR, LOG, AST, logCPM, VST). These methods exhib-
ited a decrease in AUC scores from approximately 0.7 to around 0.5 when sevmean  = 0 . In contrast, the STD, 
Rank, Blom, NPN, and all batch correction methods maintained a more robust level of AUC values (around 0.7) 
in the presence of varying batch means, as long as the batch variances did not change. These trends persisted with 
increasing disease effects, as depicted in Fig. 3b, c. Notably, among the methods more sensitive to batch means, 
scaling methods such as TMM and RLE exhibited a slight improvement in predictive accuracy as the batch means 
increased. Transformation methods like LOG, AST, and logCPM performed similarly.

The effects of batch variances on binary phenotype prediction remained consistent across different normali-
zation methods. In Fig. 3a, when the batch mean was fixed at 0 and the batch variances were adjusted from 1 
to 4, all normalization methods experienced an average decrease in AUC values of approximately 0.1. Among 
the scaling methods, namely MED, UQ, and CSS, which modified the scaling factor from TSS, consistently 
yielded lower AUC values compared to other methods for different batch variances ( sevvar = 1, 2, 4 ). In Fig. 3c, 
with ed = 1.06 , the influence of increased batch variance on prediction accuracy was reduced, indicating the 
dominance of disease effect in prediction. Most normalization methods achieved AUC scores above 0.9 when 
sevvar = 4 , indicating successful removal of batch effects for predictions. Nonetheless, MED, UQ, and CSS con-
tinued to exhibit inferior ability in removing batch effects compared to other methods.

In scenario 2, the general trends of prediction accuracy (Supplementary Figure S5), sensitivity (Supple-
mentary Figure S6), and specificity (Supplementary Figure S7) aligned with AUC values. It is noteworthy that 
ComBat maintained prediction accuracy, sensitivity, and specificity at a lower level than other batch correction 
methods when the batch variance remained constant and the batch mean increased, highlighting its limitations 
in addressing batch mean discrepancies.

The impact of disease model can be reduced by disease effects
In Scenario 3, we explored the influence of differences in disease models between the training and testing data on 
the prediction AUC scores. The results are presented in Figures 4, S8, S9, and S10. The overall trends in the rela-
tive performance of different normalization methods were consistent with the previous two scenarios. The AUC 
scores increased as the disease effects increased. And as expected, the AUC scores also increased as the number 
of overlapping disease-related taxa increased. For example, when ed = 1.02 (Fig. 4a), the AUC values obtained 
using abundance profiles normalized by different methods were all approximately 0.6 when there were 2 overlap-
ping disease-associated taxa between the training and testing data. When the number of disease-associated taxa 
increased to 10, the optimal AUC scores increased to 0.7. The same pattern was observed with ed = 1.04 and 
ed = 1.06 . When the disease effects increased to 1.06 (Fig. 4c), the majority of normalization methods achieved 
AUC scores exceeding 0.8, even when there were only 2 overlapped disease-associated taxa. This indicates that 
the impact of the disease model can be mitigated by stronger disease effects.

Figure 4 also illustrated that among the normalization methods we compared, scaling methods such as UQ, 
MED, and CSS had lower AUC values compared to other methods, as observed in the other two scenarios. QN 
also exhibited lower prediction performances. The other methods showed similar prediction performances with 
respect to different disease effects and different numbers of disease-associated taxa.

Supplementary Figures S8, S9, and S10 demonstrated a similar prediction performance of normalization 
methods measured by accuracy, sensitivity, and specificity.

Figure 4.  Heatmaps depicting average AUC values obtained from abundance profiles normalized by various 
methods for predicting simulated cases and controls in Scenario 3. The panels (a), (b), and (c) correspond to 
disease effects of 1.02, 1.04, and 1.06 respectively. The columns represent different numbers of overlapping 
disease-associated taxa in the training and testing datasets. The rows represent different normalization methods, 
grouped based on their classifications in the left column. The figures were generated using R version 4.3.0.

https://www.r-project.org/
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Batch correction methods are necessary for cross‑dataset predictions
We next evaluate various normalization methods using 8 gut microbiome datasets from shotgun sequencing 
related to CRC (Table 1). These experimental datasets were retrieved from the R package curatedMetagenomic-
Data with a sample size larger than 30 for either cases or controls. Datasets were paired with one for model train-
ing and the other for validation. For each method, the AUC score, accuracy, sensitivity, and specificity based on 
the normalized abundance using random forest was calculated. We repeated the predictions 30 times to account 
for the randomness of the prediction model and the average of the these values was reported for each study.

Supplementary Figure S11 presents box plots showing the AUC values obtained from the 30 repeated predic-
tions. We observed unstable AUC values for most normalization methods when trained or tested on the Gupta 
dataset. This observation aligns with the data distribution depicted in Fig. 1, where Gupta exhibited the greatest 
dissimilarities and variability compared to other datasets. The same observation holds true for the Feng dataset. 
Overall, none of the normalization methods consistently improved the prediction AUC values to a specific level. 
The prediction accuracy remained dependent on both biological and technical factors. For example, when the 
model was trained on Gupta and tested on Feng, most methods yielded average AUC scores around 0.7, except 
for Rank and VST (Supplementary Figure S11(b1)). None of the normalization methods achieved an AUC value 
above 0.8 to significantly improve prediction performance.

The box plots of prediction accuracy, sensitivity, and specificity (Supplementary Figures S12, S13, and S14) 
are consistent with the results of AUC values, indicating that prediction outcomes are influenced by multiple 
factors, and normalization methods cannot fundamentally address the impact of heterogeneity on prediction 
reproducibility. Additionally, consistent with our observations in simulations, most methods exhibit a trend of 
high sensitivity and low specificity, suggesting that healthy individuals may be classified as diseased in clinical 
applications, requiring additional information for further assessment.

To quantify the performance of normalization methods, we ranked all normalization methods according 
to their average AUC, accuracy, sensitivity, and specificity values derived from models trained and tested on 
the same pair of training and testing datasets. The distributions of their ranks for each method are depicted in 
Figure 5. A higher ranking (lower values in the box plot) indicates a better prediction performance. Among 
the twenty-two normalization methods we compared, batch correction methods, including FSQN, BMC, and 
Limma, tended to have higher AUC values (Figure 5a) and higher accuracy (Figure 5b) than other methods. In 
comparison to FSQN, BMC and Limma exhibited a superior balance between sensitivity and specificity. Most 
transformation methods encountered an issue of high sensitivity but low specificity, particularly evident in STD, 
Rank, and QN (Fig. 5c, d). Scaling methods ranked behind batch correction methods and performed similarly 
to each other in CRC dataset predictions, indicating relatively small population effects in CRC datasets.

We also applied the normalization methods to IBD datasets listed in Supplementary Table S1 and conducted 
cross-dataset predictions. Supplementary Figures S15, S16, S17, and S18 illustrates the box plots of the AUC, 
accuracy, sensitivity, and specificity values obtained from 30 repeated predictions, respectively. And Supple-
mentary Figure S19 visualizes the rank distributions for each method within pairs of IBD datasets. The results 
obtained were similar to those observed in the CRC dataset predictions. Among all the normalization methods, 
batch correction methods, including BMC and Limma, consistently demonstrated the best performance. Scaling 
methods, such as TMM, followed closely behind. However, FSQN exhibited variable performance, occasionally 
achieving good results while sometimes yielding poor results. Overall, the trends in IBD dataset predictions were 
consistent with the observations made in CRC dataset predictions.

Discussion
In our study, we considered three sources of heterogeneity between datasets: population effects, batch effects, 
and disease models. Population effect refers to variations arising from differences in population characteristics, 
including environmental factors, geographical locations, diet, and other population-specific features. If there are 
marked differences in the microbiome composition between the training and testing datasets, the trained model 
may struggle to distinguish disease-related microbiome patterns from population-specific variations. Batch effect 
arises from technical variations introduced during data collection or processing, such as sequencing technolo-
gies, sample preparation, or other experimental procedures. These batch effects may confound the true microbial 
signatures associated with the disease status, resulting in diminished generalization performance. Disease model 
represents the underlying patterns and features associated with the disease phenotype, and disparities in this 
regard can lead to decreased predictive performance, as a model trained on one dataset may encounter difficulties 
in generalizing effectively to another dataset. We conducted a comprehensive evaluation of various normalization 
methods for predicting binary phenotypes with the impact of heterogeneity from different sources. The results 
revealed important insights into the performance and suitability of different normalization approaches in the 
context of disease prediction.

Our findings demonstrated that no single normalization method consistently outperformed others across all 
datasets and phenotypic outcomes. This suggests that the choice of normalization method should be carefully 
considered based on the specific dataset characteristics and research objectives. However, certain trends and 
patterns did emerge from our analysis.

Among the scaling methods, methods such as TMM performed comparably well, indicating their effective-
ness in reducing technical variations and improving the comparability of data across samples. These methods 
are relatively simple and straightforward to implement, making them practical choices for normalization in 
microbiome data analysis.

Interestingly, compositional data analysis methods, CLR, exhibited mixed performance across different data-
sets. While it has been widely used in microbial community analysis, our results suggest that its effectiveness in 
disease prediction may vary depending on the specific dataset and phenotypic outcome. Further investigation 
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is needed to understand the underlying factors influencing the performance of compositional data analysis 
methods in predicting binary phenotypes.

Transformation methods, including NPN and Blom, showed promising results in some datasets according 
to the prediction AUC values, highlighting their potential to improve prediction performance by capturing 
nonlinear relationships and addressing skewed distributions. These methods offer flexibility in handling diverse 
data types and can be particularly valuable in situations where data transformation is necessary to meet model 
assumptions. However, trade-offs need to be made between prediction sensitivity and specificity when appluy-
ing transformation methods.

Batch correction methods, such as BMC and Limma, consistently performed well across multiple datasets. 
These methods effectively accounted for batch effects, which are often present in multi-center or multi-cohort 
studies. The ability to remove batch effects is critical in ensuring accurate and reliable predictions, especially 

Figure 5.  Distribution of ranks for 22 normalization methods in cross-dataset prediction on CRC datasets. The 
normalization methods are ranked based on the average AUC (a), average accuracy (b), average sensitivity (c), 
and average specificity (d) under the same pair of training and testing datasets. The figures were generated using 
R version 4.3.0.

https://www.r-project.org/
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when integrating data from different sources. Based on our findings, we recommend incorporating batch correc-
tion methods in cross-dataset binary phenotype prediction of metagenomic data. This involves utilizing scaling 
methods to mitigate biases attributed to sequencing technology, followed by LOG transformation to approximate 
a more normally distributed data, aligning with the assumptions of batch correction methods. By subsequently 
applying batch correction methods, we enhance the robustness of the analysis. We believe that this pipeline can 
improve the accuracy and reliability of phenotype cross-dataset predictions based on metagenomic data.

It is worth noting that the performance of normalization methods was influenced by the heterogeneity of 
the datasets. The relative impact of heterogeneity from different sources depends on the nature of the data and 
the extent of variation in each factor. For instance, if the population effect is pronounced and not adequately 
controlled, the model might capture population-specific differences instead of disease-related patterns. Likewise, 
if batch effects are left unaddressed, the model may overfit on technical variations instead of discerning true 
biological signals associated with the case-control status. In datasets where there were substantial biological and 
technical variations, the prediction accuracy remained primarily determined by these factors rather than the 
choice of normalization method. This emphasizes that proper preprocessing, normalization, and consideration 
of potential confounders are essential for building robust and generalizable predictive models.

Overall, our study underscores the need for careful consideration and evaluation of normalization methods 
in microbiome data analysis, particularly in the context of disease prediction. Researchers and practitioners 
should take into account the specific characteristics of their datasets, including population heterogeneity, dis-
ease effects, and technical variations when selecting and applying normalization methods. Additionally, future 
research should focus on developing novel normalization approaches that are tailored to the unique challenges 
of microbiome data and explore their performance in larger and more diverse datasets.

In conclusion, our comprehensive evaluation of normalization methods provides valuable insights into their 
performance in predicting binary phenotypes using microbiome data. This research contributes to the advance-
ment of robust and reliable methodologies in microbiome research and paves the way for more accurate disease 
prediction and personalized therapeutic interventions based on the human microbiome.

Materials and methods
Real metagenomic dataests
As the first application example, we analyzed shotgun sequencing data from patients with colorectal cancer (CRC) 
obtained from the R package curatedMetagenomicData v3.8.023. The taxonomic profiles for each dataset were 
determined using  MetaPhlAn324, which ensures consistency in downstream analysis. A total of nine CRC datasets 
are  available8,9,25–31. We excluded studies with sample sizes of less than 30 for either cases or controls, resulting 
in eight accessible CRC datasets for our analysis. A detailed summary outlining the distinctive characteristics of 
these eight CRC datasets can be found in Table 1.

As the second application example, we analyzed shotgun sequencing data from patients with inflammatory 
bowel disease (IBD) from the R package curatedMetagenomicData v3.8.023. There are 6 available IBD datasets 
in curatedMetagenomicData5,6,32–35. Similarly to the CRC datasets, we excluded studies with sample sizes less 
than 30 for either cases or controls from the analysis. A summary of the characteristics of the IBD datasets can 
be found in Supplementary Table S1.

Statistical analysis
We calculated the microbial relative abundance for each sample and used the Bray-Curtis  distance36 to compare 
the dissimilarities between samples. This distance was computed using the function vegdist() from R package 
vegan37. To visualize the clustering of samples effectively, we performed principal coordinate analysis (PCoA) 
through the pcoa() function from R package ape38. To assess the variance attributable to datasets, we conducted 
the permutational multivariate analysis of variance (PERMANOVA)39 with adonis() function in R package 
vegan37.

Normalization methods
A number of normalization methods could be applied to microbiome data for data analyses. For the purpose 
of predicting the unknown disease status of samples, we try to transform or normalize our data to satisfy the 
assumption that training and testing data are drawn from the same distribution. Seven scaling methods, one 
compositional data analysis method, eight transformation methods, and six batch correction methods were 
compared in this analysis. Our study is also the largest comparison in terms of prediction up to date according 
to our best knowledge.

Assume we have a dataset consisting of n samples and m features. Denote cij as the count for taxon i in sam-
ple j. With this notation, the steps and formula of normalization methods can be briefly introduced as follows.

Scaling methods
A commonly used method for normalizing microbiome data is scaling. Its basic idea is to divide counts in the taxa 
count table by a scaling factor or normalization factor to remove biases resulting from sequencing technology:

where xij is the normalized abundance for taxon i in sample j, sj is the scaling/normalization factor for sample 
j. We investigated seven popular scaling methods (Table 2) in our analysis, including TSS, UQ, MED, CSS in 
metagenomeSeq, TMM in edgeR, RLE in DESeq2, and GMPR in GUniFrac.

xij =
cij

sj
,
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Total Sum Scaling (TSS)14: Counts are divided by the total number of reads in that sample.

Upper Quartile (UQ)14,40: Similar to TSS, it scales each sample by the upper quartile of counts different from 
0 in that sample.

where q3(·) is the function of estimating upper quartile, and Pj = {cij|cij > 0, i = 1, · · · , n} represents a set of 
counts different from 0 in sample j.

Median (MED)14: Also similar to TSS, the total number of reads is replaced by the median counts different 
from 0 in the computation of the scaling factor.

where Median(·) is the function of estimating median, and Pj = {cij|cij > 0, i = 1, · · · , n} represents a set of 
counts different from 0 in sample j.

Cumulative Sum Scaling (CSS)41: CSS modified TSS for microbiome data in a sample-specific manner. It 
selects the scaling factor as the cumulative sum of counts, up to a percentile l̂  determined by the data:

where Mj = {cij|cij ≤ q
l̂
(cj)} denotes the taxa included in the cumulative summation for sample j, and NCSS is 

an appropriately chosen normalization constant. This scaling method is implemented by calling the cumNorm() 
function in the R package metagenomeSeq41.

Trimmed Mean of M-values (TMM)42: TMM is a popular normalization method for RNA-Seq data with the 
assumption that most genes are not differentially expressed. It selects a reference sample first and views the others 
as test samples. If not specified, the sample with count-per-million upper quantile closest to the mean upper 
quantile is set as the reference. The scale factor between the test sample and the reference sample is estimated by 
the ratio of two observed relative abundance for a taxon i. The log2 of the ratio is called M value, 
Mi

jk = log2
cij/

∑

i cij
cik/

∑

i cik
 , and the log2 of the geometric mean of the observed relative abundance is called A value, 

(1)sTSSj =
∑

i

cij .

(2)s
UQ
j = q3(Pj),

(3)sMED
j = Median

(

Pj
)

,

(4)sCSSj =
∑

i|i∈Mj
cij

NCSS
,

Table 2.  Summary of normalization methods, including seven scaling methods, one compositional data 
analysis (CoDA) method, eight transformation methods, and six batch correction methods.

Methods Data designed for Preprocessing R function R package

Scaling methods

TSS / None sum() stats

UQ RNA-Seq None quantile() stats

MED RNA-Seq None median() stats

CSS microbiome None cumNorm() metagenomeSeq

TMM RNA-Seq None calcNormFactors() edgeR

RLE RNA-Seq None estimateSizeFactors() DESeq2

GMPR microbiome None GMPR() GUniFrac

CoDA CLR TSS TSS clr() compositions

Transformation methods

LOG / TSS log() stats

AST / TSS asin(), sqrt() stats

STD / TSS center(), scale() stats

Rank RNA-Seq TSS rank() stats

Blom RNA-Seq TSS qnorm(), rank() stats

NPN / TSS huge.npn() huge

logCPM RNA-Seq None cpm() edgeR

VST RNA-Seq None varianceStabilizingTransformation() DESeq2

Batch correction methods

QN DNA microarray TSS, LOG normalize.quantiles.use.target() preprocessCore

FSQN RNA-Seq TSS, LOG quantileNormalizeByFeature() FSQN

BMC DNA microarray TSS, LOG pamr.batchadjust() pamr

Limma DNA microarray TSS, LOG removeBatchEffect() limma

ComBat DNA microarray TSS, LOG ComBat() sva

ConQuR microbiome None ConQuR() conqur
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Ai
jk = 1

2 log2

(

cij
∑

i cij

cik
∑

i cik

)

 . By default, it trims the M values by 30% and the A values by 5% . Then the weighted 
sum of M values can be used to calculate the scale factor of sample j to sample k:

where mTMM
jk  is the remaining taxa after the trimming step, and weight wi

jk =
∑

i cij−cij
cij

∑

i cij
+

∑

i cik−cik
cik

∑

i cik
 . This scaling 

method is implemented using calcNormFactors() function in the edgeR43 Bioconductor package.
Relative log expression (RLE)44: RLE is another widely used method for RNA-Seq data and relies on the 

same assumption that there is a large invariant part in the count data. It first calculates the geometric mean of 
the counts to a gene from all the samples and then computes the ratio of a raw count over the geometric mean 
to the same gene. The scale factor of a sample is obtained as the median of the ratios for the sample:

where G(ci) =
(

∏m
j=1 cij

)
1
m is the geometric mean of gene i. By setting the type=“poscounts” of estimateSizeFac-

tors() function in the DESeq245 Bioconductor package, a modified geometric mean is computed. This calculation 
takes the n-th root of the product of the non-zero counts to deal with zeros in microbiome data.

Geometric mean of pairwise ratios (GMPR)46: GMPR extends the idea of RLE normalization by reversing 
the order of computing geometric and median to overcome the zero inflation problem in microbiome data. The 
scale factor for a given sample j using reference sample k is calculated as

This scaling method is implemented using GMPR() function in the GUniFrac47 package.

Compositional data analysis (CoDA) methods
Gloor et. al.48 pointed out that microbiome datasets generated by high-throughput sequencing are compositional 
because they have an arbitrary total imposed by the instrument. Thus several methods were proposed to eliminate 
the effect of sampling fraction by converting the abundances to log ratios within each sample. These commonly 
used methods in compositional data analysis include additive log-ratio transformation (ALR)49, centered log-ratio 
transformation (CLR)49, and isometric log-ratio transformation (ILR)49. ALR and ILR convert n dimensional 
taxon vector to n− 1 dimensional data in the Euclidean space, with the challenge of choosing a reference taxon. 
Due to the large number of taxa and the resulting computing problem, we only considered CLR in our analysis.

Centered Log-Ratio (CLR)49: CLR transformation is a compositional data transformation that takes the 
log-ratio of counts and their geometric means. This is done within each sample based on relative abundances. 
This can be written in mathematical form as:

where xij is the relative abundance of taxon i, i = 1, · · · , n in sample j, j = 1, · · · ,m , G(xj) =
(
∏n

i=1 xij
)

1
n is the 

geometric mean of sample j with a pseudo count 0.65 times minimum non-zero abundance added to 0  values50. 
This transformation is implemented using clr() function in R package compositions51.

Transformation methods
Microbiome data have problematic properties such as skewed distribution, unequal variances for the individual 
taxon, and extreme values. We propose to transform microbiome data before fitting the prediction model to 
handle either one, two, or all of these problems. Let cij and xij be the count and relative abundance of taxon 
i, i = 1, · · · , n in sample j, j = 1, · · · ,m , respectively. Table 2 gives a summary of transformation methods consid-
ered in this study, including LOG, AST, STD, Rank, Blom, NPN in huge, logCPM in edgeR, and VST in DESeq2.

LOG: Log transformation is often used for taxa with skewed distribution so that the transformed abundances 
are more or less normally  distributed21. A pseudo count 0.65 times the minimum non-zero abundance is added 
to the zero values before log transformation to avoid infinite  values50.

Arcsine square-root (AST): AST transformed data have less extreme values compared to the untransformed 
data and are more or less normally distributed. It is defined as

(5)log2

(

sTMM
jk

)

=

∑

i∈mTMM
jk

(

wi
jkM

i
jk

)

∑

i∈mTMM
jk

(

wi
jk

) ,

(6)sRLEj = Mediani

{

cij

G(ci)

}

,

(7)sGMPR
j =





�

j

Mediani|cij ·cik �=0

�

cij

cik

�





1
m

.

(8)clr(xj) =
[

log
x1j

G(xj)
, · · · , log xnj

G(xj)

]

(9)log(xi) =
(

log xi1, · · · , log xim
)

.

(10)AST(xi) =
(

arcsin
√
xi1, · · · , arcsin

√
xim

)

.
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Standardization (STD)21: STD is the default implementation in many regression analyses to reduce the varia-
tions of features (taxa in our analysis):

where µi and σi is the mean and standard deviation of taxon i separately.
Rank21: Rank transformation is a simple and popular method used in non-parametric statistics. The 

rank-transformed features are uniformly distributed from zero to the sample size m. A small noise term 
ǫij ∼ N(0, 10−10) is added before data transformation to handle the ties of zero counts.

where rij , j = 1, · · · ,m is the corresponding rank for relative abundance xij , j = 1, · · · ,m in taxon i.
Blom21,52: Blom transformation is based on rank transformation. The uniformly distributed ranks are further 

transformed into a standard normal distribution:

where c = 3
8 is a constant, �−1(·) denotes the quantile function of normal distribution, and rij , j = 1, · · · ,m is 

the corresponding rank for relative abundance xij , j = 1, · · · ,m in taxon i.
Non-paranormal (NPN)53: NPN transformation is designed to be used as part of an improved graphical lasso 

that first transforms variables to univariate smooth functions that estimate a Gaussian copula. The transforma-
tion can also be used alone for analysis. Let � denote the Gaussian cumulative distribution function, then we 
can estimate the transformed data using

where r̂ij = rij
m+1 , and δ = 1

4m1/4
√

π logm
 . This transformation is implemented using huge.npn() function in R 

package huge54.
Log counts per million (logCPM): logCPM refers to the log counts per million, which is a useful descriptive 

measure for the expression level of a gene for RNA-Seq data. We applied it to the microbiome data. A pseudo 
count 0.65 times the minimum non-zero abundance is added to the zero values before log transformation.

This transformation method is implemented using cpm() function in the edgeR43 Bioconductor package.
Variance Stabilizing Transformation (VST)44: VST models the relationship between mean µi and variance 

σ 2
i  for each gene i:

where v(µi) = σ 2
i = µi + aiµ

2
i  , with ai = a0 + a1

µi
 being a dispersion parameter and a0 and a1 are estimated in a 

generalized linear model. A pseudo count 1 was added to zero values. This transformation is implemented using 
varianceStabilizingTransformation() function in the DESeq245 Bioconductor package.

Batch correction methods
Batch effects in many genomic technologies result from various specimen processing. And they often cannot be 
fully addressed by normalization methods alone. Many methods have been proposed to remove batch effects. 
Here we studied six commonly used approaches, including QN in preprocessCore, FSQN in FSQN, BMC in pamr, 
limma in limma, ComBat in sva, and ConQuR in conqur (Table 2).

Quantile normalization (QN)55: QN is initially developed for use with DNA microarrays, but has since been 
expanded to accommodate a wide range of data types, including microbiome data. Given a reference distribution, 
QN essentially replaces each value in a target distribution with the corresponding value from a reference distribu-
tion, based on identical rank order. In cases where the reference distribution encompasses multiple samples, the 
reference distribution should be first quantile normalized across all  samples56. In our analysis, we designated the 
training data as the reference distribution. We applied QN to log-transformed relative abundances, substituting 
zeros with a pseudo count that was calculated as 0.65 times the minimum non-zero abundance across the entire 
abundance table. The reference distribution is obtained using function normalize.quantiles.determine.target() in 
R package preprocessCore57. And the batch effects are removed using function normalize.quantiles.use.target() 
in R package preprocessCore57.

Feature specific quantile normalization (FSQN)22: FSQN is similar to QN, except for quantile normalizing 
the genes rather than samples. The reference distribution is the taxon in the training set and the target distribution 
is the taxon in the testing set. It is applied to log-transformed relative abundance data, with zeros replaced with 

(11)STD(xi) =
(

xi1 − µi

σi
, · · · , xim − µi

σi

)

,

(12)Rank(xi) = (ri1, · · · , rim),

(13)Blom(xi) =
(

�−1

(

ri1 − c

m+ 1

)

, · · · ,�−1

(

rim − c

m+ 1

))

,

(14)NPN(xij) =











�−1(δ), if r̂ij ≤ δ,

�−1(r̂ij), if δ < r̂ij ≤ 1− δ,

�−1(1− δ), if r̂ij ≥ 1− δ,

(15)logCPM(ci) =
(

log2
ci1

106
, · · · , log2

cim

106

)

.

(16)VST(cij) =
∫ cij

0

1

v(µi)
dµi ,
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pseudo count 0.65 times the minimum non-zero abundance across the entire abundance table, using function 
quantileNormalizeByFeature() in R package FSQN22.

Batch mean centering (BMC)58: BMC centers the data batch by batch. The mean abundance per taxon for 
a given dataset is subtracted from the individual taxon abundance. It is applied to log-transformed relative 
abundance data, with zeros replaced with pseudo count 0.65 times the minimum non-zero abundance across 
the entire abundance table, using pamr.batchadjust() function from pamr R  package59.

Linear models for microarray data (Limma)60: Limma fits a linear model to remove the batch effects. We 
first calculate the relative abundances and apply a log2 transformation to them. A pseudo count 0.65 times the 
minimum non-zero abundance across the entire abundance table was added to zeros to avoid infinite values 
for log transformation. The removeBatchEffect() function in R package limma60 is then used to correct for batch 
effects, taking the log2 relative abundance data and batch information as inputs.

ComBat61: ComBat uses an empirical Bayes framework to estimate and remove the batch effects while pre-
serving the biological variation of interest. Similar to Limma, the relative abundance of microbiome data (zero 
replaced with pseudo count 0.65 times the minimum none-zero abundance across the entire abundance table) 
was log-transformed prior to batch correction. This correction method is implemented using the function Com-
Bat() in R package sva62.

Conditional quantile regression (ConQuR)63: ConQuR conducts batch effects removal from a count table 
by conditional quantile regression. This batch correction method is implemented using function ConQuR in 
the R package  ConQuR63.

The random forest classifiers
In both the CRC and the IBD datasets, we aimed to predict whether a sample originated from a case subject 
(CRC/IBD) or a control subject.

The training and testing datasets underwent normalization to minimize heterogeneities both within and 
across datasets. For scaling methods that select references, such as TMM and RLE, and transformation methods 
that make prediction covariates (taxa) drawn from the same distribution, such as STD, Rank, Blom, NPN, and 
VST, we first normalized the training data. Then we combined the training and testing data together and normal-
ized the combined data. Finally, we chose the samples from the testing data as the normalized testing data. This 
approach ensures the consistency in normalization of training and testing  data64.

We performed prediction of disease status using random forest, which has been shown to outperform other 
learning tools for most microbiome  data65. The random forest models were implemented using function train() 
in R package caret66 with 1,000 decision trees, and the number of variables at each decision tree was tuned using 
grid search by 10-fold cross-validation.

In the testing set, each sample was assigned a disease probability score. Initially, we adjusted the score thresh-
old to calculate the True Positive Rate (TPR) and False Positive Rate (FPR) at varying thresholds and generated a 
Receiver Operating Characteristic (ROC) curve. The Area Under the ROC Curve (AUROC) was utilized as the 
metric for prediction accuracy evaluation. Subsequently, we set a fixed threshold at 0.5. Samples with a prob-
ability score exceeding this threshold were predicted as diseased (positive), while those below it were classified 
as non-diseased (negative). Measures such as accuracy, specificity, and sensitivity were computed to assess the 
prediction accuracy.

Simulation studies
A successful predictive model is transferable across datasets. To evaluate the impact of various normalization 
methods on binary phenotype prediction, we conducted simulations by creating two case-control populations, 
normalizing them using various methods, building prediction models with random forest on one simulated 
population, and testing them on the other in 3 different scenarios. The prediction accuracy, measured by AUC 
values, was evaluated for each of the 100 simulation runs in different scenarios.

Scenario 1: Different background distributions of taxa in populations
In the first scenario, we assumed that the heterogeneities between populations were due to variations in the 
background distributions of taxa, such as ethnicity or diet. McMurdie and  Holmes16 presented a way to simulate 
samples from different populations (Simulation A) and samples with case-control status (Simulation B) sepa-
rately in such a scenario. In our simulations, we integrated these strategies and introduced certain modifications.

Our methodology began by determining the underlying taxon abundance levels for the training and testing 
populations. From Figure 1, the two least overlapping datasets,  Gupta26,68 and  Feng25, were chosen to be the 
template of training and testing sets, respectively. More specifically, 30 control samples and 183 species of the 
Gupta dataset were included for simulating the dataset for training, and 61 healthy samples and 468 species of 
the Feng dataset were included for simulating the dataset for testing. For each dataset, we had a count table with 
rows for taxa and columns for samples. Sum the rows to get the original vectors representing the underlying taxa 
abundance in different populations, denoted as pk , k = 1, 2 , respectively.

To investigate the impact of differences between two populations on cross-study prediction, we create pseudo-
population vectors vk , k = 1, 2:

where ep is the population effect quantifying differences between two populations. Note that 
v1 − v2 = ep · (p1 − p2) . Therefore, the differences between the two simulated populations increase with ep. 
At ep = 0 , the two simulated populations share the same underlying distribution, resulting in no population 
differences between the training and testing datasets. Conversely, at ep = 1 , the simulated populations exhibit 

v1 = ep · p1 + (1− ep) · p2, v2 = p2,
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the largest possible differences. In our simulations, we examined the overall trend for different normalization 
methods by varying ep from 0 to 1 in increments of 0.2. For scaling methods and transformation methods that 
work effectively at smaller ep values, we set ep to range from 0 to 0.25 in increments of 0.05.

Out of the 154 shared taxa between the two populations, we randomly selected 10 taxa and hypothesized that 
these taxa were associated with a specific disease of interest. Considering that disease-associated taxa can either 
be enriched or depleted, we presumed the first 5 taxa to be enriched and the latter 5 to be depleted. These 10 taxa 
were fixed in the following analysis. The abundance vectors for simulated controls of selected disease-associated 
taxa were not changed ( vctrlk = vk , k = 1, 2 ), while the abundance vectors for simulated cases of selected disease-
associated taxa were defined as follows:

where ed ∈ {1.02, 1.04, 1.06} denoted a disease effect factor that quantified the differences between cases and 
controls. As the value of ed increases, the difference between case and control samples becomes more marked. 
Once we had the new vectors, we re-normalized them into probability vectors denoted as vcasek  , k = 1, 2.

Pseudo probability for control sample j in population k, denoted as xctrlkj  , was generated under the assumption 
of a Dirichlet distribution: xctrlkj ∼ Dir(αctrl

k ) , with αctrl
k = c · vctrlk  for k = 1, 2 . When c is very large, the variance 

of xctrlkj  will be close to 0, and it is similar to vctrlk  . To introduce some variability while generating non-zero prob-
abilities, we set c to 1× 106 . The read counts for control sample j in population k was subsequently simulated 
using multinomial distribution, with a library size of 1, 000, 000, described by:

The generation of case samples followed a similar procedure, with the creation of 50 control and 50 case samples 
within each population.

In the scenario where ed = 1.02 and ep = 0 , both the training and testing datasets share the same background 
distribution. The proportion of zero values in the simulated training and testing sets is approximately 11.2% ± 
0.2%. As ep increases, the background distribution in the testing dataset remains constant, resulting in a consist-
ent proportion of zero values. In contrast, the proportion of zero values in the training dataset increases with 
the increase in ep. When ep = 1 , the proportion of zero values reaches approximately 20% ± 0.2%. The value of 
ed does not affect the proportion of zero values in the training and testing data. Therefore, both ed = 1.04 and 
ed = 1.06 yield similar outcomes.

Scenario 2: Different batch effects in studies with the same background distribution of taxa in populations
In this scenario, we utilized Feng  dataset25 as the template for simulations. This ensured that the background 
distribution remained consistent between the training and testing datasets, thereby eliminating the population 
effects discussed in Scenario 1. We generated the read counts of training and testing data with 50 controls and 50 
cases each by following the same procedure described in Scenario 1. It involved using multinomial distributions 
with a sample size of one million reads. The number of disease-associated taxa was set to 10 and disease effects 
varied from 1.02 to 1.06 with increments of 0.2.

To simulate batch effects, we followed a similar procedure as in Zhang et al69. They used the linear model 
assumed in the ComBat batch correction  method61 as the data-generating model for batch effects. Specifically, 
we assumed that both the mean ( γik ) and variance ( δik ) of taxon i were influenced by the batch k. The values of 
γik and δik were randomly drawn from normal and inverse gamma distributions:

To set the hyper-parameters ( µk , σk ,αk ,βk ), we specify two values to represent the severity of batch effects. This 
included three levels for batch effects on the mean ( sevmean ∈ {0, 500, 1000} ) and three levels for batch effects on 
the variance ( sevvar ∈ {1, 2, 4} ). For each severity level, the variance of γik and δik was fixed at 0.01. The parameters 
are then added or multiplied to the expression mean and variance of the original study. The batch effects were 
only simulated on the training data while the testing dataset was unchanged.

In simulation scenario 2, where the background distribution remains consistent for both the training and 
testing sets, the proportion of zero values remains stable at 11.2% ± 0.2% in both datasets. However, when incor-
porating the batch mean into the expression mean, the proportion of zero values in the training data decreases 
to 0%. Conversely, when multiplying the batch variance with the expression variance, the proportion of zero 
values in the training data increases to 16% ± 0.2%.

Scenario 3: Different disease models of studies with the same background distribution of taxa in populations
In this scenario, we hypothesized that the model for disease-associated taxa could vary between populations. To 
avoid the population effects described in Scenario 1, we utilized the Feng  dataset25 as template for simulations. 
To avoid the batch effects described in Scenario 2, no batch effects were introduced into this simulation scenario.

For the selection of disease-associated taxa, we predefined 10 taxa for the training data. A subset of taxa was 
chosen from the initially selected 10 and additional taxa were included to maintain a total of 10 signature taxa in 
the testing data. The degree of similarity between the training and testing data was determined by the number of 
overlapping taxa, ranging from 2 to 10 with increments of 2. Subsequently, the two populations were simulated 
following the same procedure as in the previous two scenarios. The simulation parameters included 100 samples 
per population (50 controls and 50 cases), one million reads per sample, and a disease effect of 1.02, 1.04, 1.06.

vcasek [enriched] = vk · ed, vcasek [depleted] = vk/ed, k = 1, 2,

cctrlkj ∼ MN(library size, xctrlkj ), k = 1, 2.

γik ∼ N(µk , σ
2
k ), δik ∼ InvGamma(αk ,βk).
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In this scenario, both training and testing data share the same background distribution, and there are no batch 
effects. Therefore, the proportion of zero values in all count tables remains 11.2% ± 0.2%.

Data availability
All the CRC and IBD datasets used in this study are available in the R package curatedMetagenomicData (v3.8.0). 
All the codes used in the analysis can be found at https:// github. com/ wbb121/ Norm- Metho ds- Compa rison.
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