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A memetic dynamic coral 
reef optimisation algorithm 
for simultaneous training, design, 
and optimisation of artificial neural 
networks
Francisco Bérchez‑Moreno 1,3*, Antonio M. Durán‑Rosal 2, César Hervás Martínez 1, 
Pedro A. Gutiérrez 1 & Juan C. Fernández 1

Artificial Neural Networks (ANNs) have been used in a multitude of real‑world applications given their 
predictive capabilities, and algorithms based on gradient descent, such as Backpropagation (BP) and 
variants, are usually considered for their optimisation. However, these algorithms have been shown 
to get stuck at local optima, and they require a cautious design of the architecture of the model. This 
paper proposes a novel memetic training method for simultaneously learning the ANNs structure 
and weights based on the Coral Reef Optimisation algorithms (CROs), a global‑search metaheuristic 
based on corals’ biology and coral reef formation. Three versions based on the original CRO combined 
with a Local Search procedure are developed: (1) the basic one, called Memetic CRO; (2) a statistically 
guided version called Memetic SCRO (M‑SCRO) that adjusts the algorithm parameters based on the 
population fitness; (3) and, finally, an improved Dynamic Statistically‑driven version called Memetic 
Dynamic SCRO (M‑DSCRO). M‑DSCRO is designed with the idea of improving the M‑SCRO version 
in the evolutionary process, evaluating whether the fitness distribution of the population of ANNs 
is normal to automatically decide the statistic to be used for assigning the algorithm parameters. 
Furthermore, all algorithms are adapted to the design of ANNs by means of the most suitable 
operators. The performance of the different algorithms is evaluated with 40 classification datasets, 
showing that the proposed M‑DSCRO algorithm outperforms the other two versions on most of 
the datasets. In the final analysis, M‑DSCRO is compared against four state‑of‑the‑art methods, 
demonstrating its superior efficacy in terms of overall accuracy and minority class performance.

Keywords Artificial neural networks, Neuroevolution, Coral reef optimisation algorithm, Local search, 
Classification, Robust estimators

Artificial Neural Networks (ANNs) are widely used in many fields of study such as business, industry, medical 
diagnosis, Unmanned Aerial Vehicle (UAV) detection and so  on1. Hence, ANNs have been an object of inter-
est among researchers in areas where standard regression models and other related statistical techniques have 
traditionally been used.

The Multilayer Perceptron (MLP) with Sigmoidal transfer functions (SUs)2 is the most popular and tradi-
tional ANN for classification and regression purposes. ANN models need to be trained with data and learning 
algorithms before making generalisations in classification or regression tasks. Learning algorithms are divided 
into two main groups: local search (LS) and global search algorithms. The Backpropagation algorithms (BPs)3 
or Extreme Learning Machines (ELM)4 belong to the first group, commonly used for weight optimisation, 
while Evolutionary Algorithms (EAs)5 belong to the second group. This second group is usually referred to 
 Neuroevolution6 or application of metaheuristics such as EAs to the evolution of ANNs, also known in the litera-
ture as Evolutionary Artificial Neural Networks (EANNs)7–9, so that both the weights and the ANN architecture 
are optimised. Using EAs is an efficient tool because finding a suitable ANN architecture is a controversial topic 
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in Machine Learning (ML), requiring a lot of trial and error procedures and a great deal of experience of the 
 researcher2.

On the one hand, growing networks or constructive  algorithms10,11 are one possible option to obtain the 
appropriate architecture of an ANN, which starts with a small network, usually a single unit. This network is 
trained until it is incapable of further learning. This procedure is repeated until a good solution is found. Addi-
tionally, destructive methods are also known as pruning  algorithms12, which begin with an extensive network 
that usually ends in over-fitting. Then, some procedures are applied to remove the connections and nodes that 
are not needed. However, these two methodologies are based on the traditional BP and usually suffer from slow 
convergence. Moreover, as it is well known, the main drawback of classical ANNs training methods is that they 
can fall into local optima, and the learning process can become stagnant.

On the other hand, Neuroevolution global search  methods13–15 are used to evolve weights, topologies, param-
eters and learning strategies of ANNs. They need many generations to reach a good solution, and they are too 
poor to find the best solution in a region where the algorithm converges toward a global optimum. Therefore, 
combining EAs and LS procedures would conduct a global search inside the solutions space, locating the ANNs 
near the global optimum so the local procedure could arrive at the best solution quickly and efficiently. This 
combination is known in the literature as Memetic Algorithms (MAs)16,17.

The use of metaheuristics in ML enables efficient exploration of large solution spaces and the discovery of 
high-quality solutions for complex optimization  problems15,18,19. The Coral Reef Optimisation algorithm (CRO) 
is an evolutionary-type meta-heuristic recently  proposed20,21. It draws inspiration from the processes observed 
in real coral reefs, including coral reproduction, depredation, and competition for  space22,23. The CRO combines 
elements of both an evolutionary algorithm and a Simulated Annealing  approach21, yielding impressive results 
in various challenging optimisation  problems24–26. Unlike some other meta-heuristics, the CRO is specifically 
designed with a exploitation perspective (rather than exploration), resulting in different algorithm variants based 
on the specific search procedures employed. This makes the algorithm particularly well-suited for optimising 
ANNs, although it has not been previously evaluated for this task. However, the main problem with these algo-
rithms is that they need to establish a high number of parameters to guide the evolutionary process, so the design 
of an algorithm that automatically configures these parameters can be worthwhile. Regarding LS methodologies, 
gradient-descent techniques are the most widely used for supervised learning in ANNs. Specifically, the Improved 
Resilient Backpropagation algorithm (iRprop+)27 is one of the best techniques known for weight optimisation in 
terms of convergence speed, accuracy and robustness with respect to its parameters. iRprop+ algorithm applies a 
backtracking strategy, and it decides whether to take a step back along a weight direction. Using this LS technique 
together with a CRO  algorithm28 would provide a memetic strategy for the design of ANNs.

Several Memetic EANNs using CROs have been developed in this work, but before describing them, it is 
necessary to introduce the Fitness Landscape (FL) concept. It was first defined  by29 to demonstrate the dynamics 
of biological evolutionary optimisation, proving its effectiveness for analysing  EAs30. A simple definition for that 
concept is that an FL is a graph where the points in the abscissa axis represent the different individual genotypes 
in a search space, and the points in the ordinate axis represent the fitness of each one of these  individuals31. FL 
is often used to define the dynamics of metaheuristics in optimisation tasks and is usually a statistical descrip-
tion  problem32. An FL is formed by the fitness function values of all the individuals in the search space, and a 
neighbourhood search operator is used to calculate the local FL statistics indicators. Some metrics have been 
conceived to analyse and evaluate the different features of problems, for example, information entropy measure 
and length scale, among  others6,33. Many developed techniques are used to analyse it, but only some are applied 
in practice because FL analysis is complex. FL has been used with EAs operators to select strategies and decide 
approaches in the evolutionary  process34. Despite the complexity of FL analysis, it has been performed on artificial 
combinational benchmarks such as Travelling Salesman Problem, Quadratic Assignment  Problem35, on artificial 
numerical  problems36 or, more recently, on improving the convergence of a genetic-backpropagation algorithm 
for training  ANNs37. Studying the use of robust estimators for the analysis of FL can be interesting to adapt the 
parameters through an evolutionary process automatically.

After reviewing the literature, no works use CRO metaheuristic for the training, design and optimisation of 
ANNs, all simultaneously relieving the researcher from setting the parameters of CROs. For example,  in38, time 
series prediction is carried out with ANN models using a CRO algorithm but with a fixed and fully connected 
architecture of each network, i.e. only the link weights vary during evolution. Furthermore, in that work, it is 
necessary to establish all the parameters on which a CRO algorithm depends.  In39, a CRO algorithm is used to 
extract the most suitable features in a prediction problem, in this case, Global Solar Radiation (GSR), and then 
an Extreme Learning Machine (ELM) model is used to obtain the prediction, again having to set the appropriate 
parameters for the CRO extractor algorithm.  In40, another GSR prediction problem is solved. In contrast, a CRO 
algorithm evolves the weights of a neural network in order to improve the solutions obtained, and again with the 
need to set the parameters suitable for CRO algorithm.  In41, a statistical version of CRO (SCRO) is developed 
for reducing the number of elements in time series with minimum information loss, with specific applications 
on time series segmentation. SCRO is used for time series segmentation based on minimising the error of the 
piecewise linear approximations (PLAs) obtained for each segment.

This study introduces three Memetic variations of CROs aimed at simultaneously training and designing the 
topology and weights of ANNs, each utilising the iRprop+ algorithm as the LS procedure:

• M-CRO This version has been developed and adapted for training and designing ANNs using the standard 
CRO  algorithm20. The basic version presents the problem of the establishment of multiple parameters for 
selecting the individuals used with the operators of the evolutionary process. These parameters include the 
ratio of empty positions in the initialisation phase, the percentage of corals in sexual and asexual reproduc-
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tion, or the number of less healthy corals that must die to allow empty positions for the next generation of 
evolution (stages of the evolutionary process), among others.

• M-SCRO This version improves the setting of parameters, and it is based on the Statistically-driven CRO 
(SCRO)  algorithm41. M-SCRO automatically adjusts the parameters of the standard CRO algorithm, elimi-
nating the need for extensive experimental procedures. M-SCRO selects the corals involved in the operators 
at different stages of the evolutionary process based on each individual’s fitness and the average fitness of the 
entire reef. This version assumes that the FL of the population follows a normal distribution.

• M-DSCRO The third version of the algorithm is called Memetic Dynamic SCRO (M-DSCRO). M-DSCRO 
studies the fitness of the entire reef throughout the evolutionary process, checking whether the distribution 
is normal or not. It does not assume that the FL of the population always follows a normal distribution. The 
corals involved in each algorithm stage will vary depending on FL. The selection of corals will be based on 
either the mean and standard deviation of the population or the median and interquartile range, depending 
on whether the population follows a normal distribution or not. Therefore, MD-SCRO also avoids adjusting 
multiple algorithm parameters.

The contributions of this paper are briefly summarised below:

• Three versions of the CRO metaheuristic for the simultaneous training, design and optimisation of ANNs. 
We have hybridised the algorithms (M-CRO, M-SCRO and M-DSCRO) using the iRprop+ algorithm as 
LS procedure. To the best of our knowledge, this metaheuristic has not been used before for the purpose 
of designing and optimising ANNs. The LS procedure is added at the three reproductive stages of the reef. 
Additionally, a method for reinitialising the reef in case of possible stagnation is included. This is concisely 
described in the following sections of this work.

• Adaptation of evolutionary operators used with ANNs to the reproduction scheme presented by CRO 
metaheuristics. The implementation of specific operators is crucial for the optimisation of ANNs using 
 EAs42–44. In this work, we have identified crossover and mutation operators used in ANNs that are appropriate 
for integration into the scheme of a CRO algorithm, more specifically for the sexual and asexual reproduction 
stages.

• The use of robust estimators instead of assuming normality of the fitness distribution during the evolutionary 
process. Thanks to them, M-DSCRO enhances the performance of M-CRO and M-SCRO algorithms. The 
algorithm also automatically determines the individuals to be used in each stage of the evolutionary process, 
eliminating the need for researchers to establish these parameters.

• The M-SCRO and M-DSCRO algorithms improve the accuracy compared to the basic version, eliminat-
ing the need for parameter setting. A statistical study with 40 classification datasets has been carried out to 
compare the three developed algorithms and other state-of-the-art methodologies in pattern classification. 
The study considers global accuracy metrics as well as accuracy per class. The results indicate that M-DSCRO 
outperforms other methodologies on most datasets.

The rest of the paper is organised as follows: “Background and evolutionary stages” section includes the main 
phases or stages of the evolutionary process of the three algorithms, together with the strategies used in the 
selection of individuals in M-CRO and M-SCRO algorithms. It continues referencing the LS algorithm used to 
exploit solutions in the evolutionary process, a description of the reef restarting procedure, the use of the opera-
tors adapted to ANNs, and it concludes with a brief introduction to the theory of robust estimators. “M-DSCRO 
algorithm” section describes in detail the FL strategy used in the M-DSCRO algorithm and the reproductive 
stages. “Experiments” section shows information about the datasets used in the experimentation, the ANN 
models used, the metrics employed to evaluate the performance of the algorithms and the experimental design. 
“Results and discussion” section discusses the results, including their statistical analysis. Finally, the conclusions 
are shown in “Conclusions” section.

Background and evolutionary stages
This section presents in a general way the stages of the three Memetic CRO algorithms developed. It continues 
with a reference to the iRprop+ algorithm used as an LS optimisation method, an explanation about the reef 
restarting procedure in case of premature convergence and low diversity, a brief description of the problem of 
using crossover operators in ANNs, and it concludes with a theoretical explanation of robust estimators used 
in the M-DSCRO algorithm.

Essentially, the evolutionary stages present in all three algorithms are similar. Hence, this section presents 
both the shared stages and the distinctions in parameter configuration methods. This encompasses the manual 
parameter definition for each stage of the M-CRO algorithm, as well as the automatic setup utilised in the 
M-SCRO algorithm. M-DSCRO also employs automated parameter configuration, which will be introduced 
within the algorithm’s pseudocode in “M-DSCRO algorithm” section.

Figure 1 illustrates the stages of M-CRO, M-SCRO and M-DSCRO algorithms summarising the procedures 
discussed below.

The use of CRO methodologies to design and optimise ANNs combines Evolutionary Algorithms and Simu-
lated Annealing. Additionally, the dynamic version (M-DSCRO) eliminates the need for researchers to establish 
several metaheuristic parameters by analysing the fitness landscape of the population during the evolutionary 
process.
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Understanding M‑CRO and the statistical version, M‑SCRO
Standard CRO  algorithm20 is a type of EA that, by simulating the biological processes occurring in a coral reef, 
tries to solve search and optimisation problems. In general, each position ci,j of a reef formed by P individuals 
organised in a P1 × P2 matrix is a possible solution of the problem to be solved, where P1 and P2 are the number 
of rows and columns, respectively.

On the other hand, the SCRO  algorithm41 with self-adaptive parameters was proposed for time series seg-
mentation problems with the idea of removing the high number of parameters needed to be set in the standard 
CRO. For further understanding of SCRO, let us define two significant variables of this algorithm. Taking into 

Figure 1.  Flowchart of the three Memetic CRO algorithms. The “Background and evolutionary stages” section 
and the “M-DSCRO algorithm” section describe in detail each of these stages.
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account that the quality of the coral is measured by a fitness function f (see Eq. 19), we can define the fitness values 
of the Nj corals in the j-th generation of the algorithm as {f1j , f2j , . . . , fNj} . Assuming that the fitness distribution 
is normal, the variance of the population in the j-th generation can be estimated as:

where G is the total number of generations, fij is the fitness of the i-th individual in j-th generation, and f̄j is the 
average fitness value of all the individuals of the generation, expressed as:

Considering the Eqs. (1) and (2), SCRO avoids assigning multiple parameters at different stages of the evolu-
tionary process.

Both M-CRO and M-SCRO are based on the considerations that have just been described and that are clari-
fied in the following subsections.

Initialisation in M-CRO and M-SCRO
M-CRO algorithm starts by initialising a random subset of positions from the total number of individuals P, 
leaving the remaining positions empty. The percentage of initial free positions in the coral is determined by a 
parameter ρ with 0 < ρ < 1 , which indicates the ratio of the reef that remains empty initially. The idea is that 
these positions allow for the settlement and growth of corals in the later stages of the algorithm.

To avoid the parameter ρ , the M-SCRO algorithm initialises a complete coral reef with P positions, and then, 
those corals whose fitness fi1  ∈ (f̄1 − Sf1 , 1] are deleted. Thus, the parameter ρ is unnecessary. If (f̄1 − Sf1) ≤ 0 
no corals are removed from the reef.

Once the initialisation stage has been performed, the evolutionary block of the algorithms simulates the 
processes of reproduction and reef formation, using different operators sequentially applied over a number of 
generations.

Sexual reproduction plus Local Search in M-CRO and M-SCRO
Within sexual reproduction, two processes can be distinguished: broadcast spawning (also called external sexual 
reproduction) and brooding (also called internal sexual reproduction).

For the M-CRO algorithm, in each i-th iteration, the broadcast spawning procedure selects a uniform ran-
dom fraction Fb of corals to be broadcast spawners. To form a new larva, a crossover operator is usually applied. 
“Crossover operator in artificial neural networks” section explains the problem of using crossover operators 
for ANNs. On the other hand, the remaining subset of corals on the reef ( 1− Fb ) simulates reproduction in 
hermaphroditic corals using the brooding operator. Each coral mutates to generate a new larva that becomes 
part of the candidate solution pool.

M-SCRO algorithm does not need to configure these parameters. Instead, the corals with a fitness function 
in the interval fij ∈ (f̄j − Sfj , 1] are selected for broadcast spawning. Brooding is applied to the remaining ones, 
i.e. those whose fitness fij ∈ [0, f̄j − Sfj ] . Therefore, Fb is not necessary.

At this stage of sexual reproduction, an optimisation procedure is also applied to the best individuals result-
ing from the Broadcast Spawning and Brooding operators. This optimisation is applied using iRprop+ as LS 
algorithm (detailed in “iRprop+ local search algorithm” section). Therefore, the best individual resulting from 
Broadcast Spawning is optimised with iRprop+ and added to the Coral Pool, and the same goes for the best 
individual obtained from Brooding.

Coral pool in M-CRO and M-SCRO
The corals obtained from two types of sexual reproduction and asexual reproduction, detailed below, are stored 
in a coral pool (emptied for each generation), along with the two optimised individuals with the LS algorithm, 
so that they are the individuals that will be considered for the Settlement stages. All individuals in the pool are 
evaluated prior to the Settlement stages.

Settlement in M-CRO and M-SCRO
Once the sexual and asexual reproduction procedures have been completed, each larva in the candidate pool 
attempts to settle and grow at a random position (i, j) on the reef ( P1 × P2 ). The larva will be set if the position 
is empty or if it is healthier than the existing coral at that position, i.e. its fitness value is better. In addition, a 
maximum number ν of attempts is established for the larva to search for a feasible position. A robust value for ν 
is 2, i.e. a larva has two attempts to settle on the  reef41.

Asexual reproduction plus local search in M-CRO and M-SCRO
For the M-CRO algorithm, the asexual reproduction mimics the reproduction of corals by budding or fragmen-
tation. The mechanism consists of i) ranking corals according to their fitness value, ii) selecting a small fraction 
Fa of the best corals (we have verified that the performance obtained by choosing a random solution instead of 

(1)S2fj =

∑Nj

i=1(fij − f̄j)
2

Nj − 1
, j = 1, . . . ,G,

(2)f̄j =

Nj
∑

i=1

fij/Nj .
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a fraction is similar), iii) duplicating the fraction of best corals to ensure its survival and add to a new candidate 
pool, and iv) settling the corals from the candidate pool.

In M-SCRO algorithm, in order to eliminate the Fa parameter, a random solution from the set of corals whose 
fitness verifies fij ∈ (f̄j + Sfj , 1] is selected to be asexually reproduced. If (f̄j + Sfj ) ≥ 1 , asexual reproduction is 
not carried out.

After asexual reproduction, a mutated individual is randomly selected and duplicated, then the LS is applied. 
Next, another Settlement process is carried out, so that the optimised individual attempts to establish itself in 
the coral. We have experimentally verified that the results obtained are similar regardless of the fact that the 
individual is chosen randomly or the best one is chosen.

Depredation in M-CRO and M-SCRO
Finally, the M-CRO algorithm applies a depredation procedure for a percentage Fd of the worst corals in the 
reef under a given probability Pd . It simulates the death of less healthy corals to allow empty positions for the 
next generation of evolution.

In the case of M-SCRO algorithm, it eliminates the set of individuals whose fitness function verifies 
fij ∈ [0, f̄j − 2Sfj ] . In this case, the parameters Fd and Pd do not need to be configured. If (f̄j − 2Sfj ) ≤ 0 , depre-
dation is not carried out.

Stop condition
The stopping condition of the algorithms is met when a maximum number of generations has been reached.

iRprop+ local search algorithm
In this work, the algorithm iRprop+ is used in the three algorithms implemented as an LS procedure to establish 
a balance between the exploration and exploitation of the population of ANNs. iRprop+ is an improvement 
of the well-known BP algorithm, and its good performance for ANNS weight optimisation has already been 
 proven27,45. This algorithm employs a sign-based scheme to update the weights in order to eliminate influences 
of the derivatives’ magnitude on the weight updates, but it applies a backtracking strategy to decide whether to 
take a step back along a weight direction by using a heuristic.

In45, the reader can see a detailed description of the iRprop+ adapted to the softmax activation function and 
the cross-entropy error function, used to discern the output class provided by each ANN and as optimisation 
function respectively. The error and fitness function used in this work can be consulted in “Evaluation metrics” 
section.

As seen above, the LS is applied to only three individuals in each generation. We have verified that involv-
ing more individuals would enormously increase the computational cost, and the results would not be better.

Reef restarting procedure
By incorporating an LS algorithm during the reproductive stages on the coral reef, it may be the case that the 
diversity of the population suffers a quick reduction during the search procedure, obtaining a premature conver-
gence to a local optimum. To prevent this possibility, we have introduced in the three algorithms a reef restarting 
after each stage of reproduction (Sexual, Asexual and Depredation).

The restarting procedure is similar to the Initialisation stage. However, in this case, the best coral is main-
tained, and the rest of the corals in the reef are randomly initialised. Empty spaces are carried out according to 
the procedure described in the Initialisation subsections of the three algorithms.

The reef is restarted if one of these two conditions is reached:

• The difference in fitness, bwj , between the best coral (fbj) and the worst one (fwj) is lower than a threshold, 
named ta : 

• The S2fj value of the population is lower than a threshold, named tb : 

Crossover operator in artificial neural networks
A crossover in genetic algorithms or EAs is commonly seen, but certain drawbacks prevent establishing a crosso-
ver operator if the EA considers ANNs as  individuals42,46. The cause is that crossover is impractical in environ-
ments where the fitness of an individual in the population is not correlated with the expected ability of its 
representational components. Such environments are called  deceptive47,48. Deception is a significant feature in 
most representations of ANNs, so crossover should be avoided in  EANNs42.

Therefore, a problem arises when crossing networks with similar structures and weights. That could lead to 
offspring that contain repeated components in their structure, and therefore, the ability of those components in 
the parents to be lost. Or it could also happen that the descendant individual was identical to one of the parents 
since changing the order nodes, we do not alter the individual itself (problem of  deception42). Thus, the result 
would be, in either case, an offspring with individuals equal to or worse than their parents, so the crossover 
operator is useless.

(3)(bwj = (fbj − fwj)) ≤ ta

(4)S2fj ≤ tb
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A similar drawback occurs when crossing two networks with the same structure but different weights. Each 
hidden node plays a specific role in each ANN, and it is the set of hidden nodes that have evolved together that 
makes a network have a good fitness. Therefore, crossing several random neurons from different networks to 
create offspring will not generate good individuals.

Finally, crossing two networks with different structures will surely be incompatible, reducing the possibility 
of producing offspring, so if successful, good individuals are unlikely to be generated.

Therefore, it is a complicated task to generate a crossover operator for EAs with ANNs since these drawbacks 
must be taken into account and compensated in some way to generate good offspring from the crossover of two 
individuals.

For this reason, only two types of mutations have been used for the development of the M-CRO, M-SCRO 
and M-DSCRO algorithms in their sexual reproduction stages: structural and parametric  mutations49,50. It is 
detailed below.

Operators used in the sexual reproduction stages
Taking into account the problems of using the crossover operator in ANNs discussed above, this subsection 
describes the mutation operators used in the sexual reproduction stage of the implemented algorithms. The types 
of mutations applied are the same for the M-CRO, M-SCRO and M-DSCRO algorithms.

For broadcast spawning, structural mutations are applied (it explores the search space). Structural mutations 
affect the topology of an ANN and allow different regions in the search space to be explored. This type of mutation 
modifies the number of hidden neurons and the number of links between neurons in the hidden layer, as well 
as the number of neurons in the input and output layers. Note that mutations implemented for the developed 
algorithms are: nodes deletion, connections deletion, nodes addition, connections addition and nodes fusion.

The mutations add or delete neurons consist of randomly adding or removing a minimum and maximum 
number of neurons. For deleted neurons, their links are also deleted. And for added neurons, the links are 
randomly established with a value according to an interval. The mutation node fusion randomly choose two 
neurons, A and B, and replace them with another new neuron, C. The connections from neuron C to the nodes 
shared by neurons A and B will be preserved. Additionally, those that are not common will also be kept with a 
probability of 0.5 (see example in Fig. 2).

In the mutations add or delete links, the number of links to add or delete is applied between the input and the 
hidden layer and between the hidden and the output layer.

For brooding, parametric mutations are applied (it exploits the search space). The parametric mutation modi-
fies the model coefficients aggregating Gaussian noise, using a self-adaptive annealing  process51,52. The variance 
of the Gauss distribution depends on the temperature factor based on the aptitude (see “Evaluation metrics” 
section) of each individual i, which will decrease along the evolutionary way to avoid aggressive mutations at 
the end of that process:

being A(i) the aptitude of the individual.
Specifically, the parametric mutation affects the weights wkl (weight for the k-th input of the l-th neuron 

of the hidden layer) and βlq (weight for the l-th hidden neuron of the q-th neuron of the output layer) of the 
network as follows:

(5)T(i) = 1− A(i), 0 ≤ T(i) < 1

(6)wkl(j + 1) = wkl(j)+ ǫ1(j),

(7)βlq(j + 1) = βlq(j)+ ǫ2(j),

Figure 2.  Mutation node fusion. A and B are the initial neurons involved in the fusion, and C is the neuron 
resulting from the mutation.
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where ǫ1(j) and ǫ2(j) represents one dimensional normally distributed random value from N(0,α1(j)T(i)) or 
N(0,α2(j)T(i)) respectively, and where α1(j) and α2(j) are parameters that together with the temperature deter-
mines the variance of the distribution, which varies during evolution adapting the learning process, and j is the 
generation number in the evolutionary process.

Robust estimators
In the above-mentioned M-SCRO algorithm, the distribution of the fitness function is assumed to be normal 
throughout the evolution, using the mean as the centralisation statistic and the standard deviation as the disper-
sion statistic. If the fitness distribution is not normal, it is necessary to change these statistics. The use of these 
other estimators (fully described in “Selection of individuals in M-DSCRO” section) relies on the theory of 
robust estimators. A robust estimator is fully efficient for an assumed distribution but maintains high efficiency 
for plausible  alternatives53,54. The robustness property can be studied through the breakpoint and the influence 
function of any estimator.

Robust statistics is an area of mathematical statistics that appeared in the 1960s. Its foundations include mainly 
three  works53,55,56, which are the basis of later studies on these  statistics57.

One type of robust estimator is M-estimators, a generalisation of the estimators acquired by the maximum 
likelihood method, whose objective function is a sample  average58. Thus, given a sample and a function ψ , T is 
said to be an M-location estimator based on the function ψ if:

According to the previous expression, the sample mean is a function-based M-estimator as well as the median. 
The M-estimator concept is introduced by analysing the robustness of two important location estimators, the 
mean and the median. From a sample of size n, both can be obtained by solving two optimisation problems:

for the first estimator and:

for the second, from which the following equations are obtained:

whose solutions are, respectively, the mean and the median of the fitness distribution. Thus, when the distribution 
is unknown, the sample median is a better estimator of the location parameter than the sample mean.

Robust estimators can be significantly tied to the properties of the function on which they are based. This is 
discussed below:

• As for the mean, its associated function is the identity, which designates the excessive sensitivity of this 
estimator to the presence of extreme values in the sample.

• The sample median is based on a bounded nature function, making it a less sensitive estimator to the presence 
of outliers in the sample.

In terms of obtaining robust estimators of scale, there are multiple proposals. The most classical estimator is, 
given a random sample of size n, X1,X2, . . . ,Xn , to use the median absolute deviation from sample median, 
MAD, defined as MAD = |Xi −MD| ; i = 1, 2, . . . , n , where MD is the sample median.

Authors  in59 proposed another standard estimator found in many statistical packages. It is the interquartile 
range Q3,f − Q1,f  (denoted IRQf  for simplicity) where F(Q3,f ) = 3/4 and F(Q1,f ) = 1/4 , which has a breakdown 
point of 25%, which is the point after an estimator becomes useless. It is a robustness measurement; the larger 
the breakdown point, the better the estimator. If an estimator has a high breakdown point, it may be called a 
resistant statistic.

Discussing breakdowns, MAD has the best possible breakdown point of a 50th percentile, where its influ-
ence function is bounded, with the sharpest possible limit among all scaling estimators. This property of the 
MAD estimator makes it a better auxiliary scaling estimator than the interquartile range. Nevertheless, it also 
has disadvantages, as its efficiency on Gaussian distributions is low because it first estimates the MD and then 
assigns equal importance to positive and negative deviations from it. In contrast, the interquartile range does 
not present this problem because it is not necessary for the quartile to be equally far from the centre. For this 
reason, the interquartile range has been used in this paper for the M-DSCRO algorithm, detailed in more depth 
in the next Section.

(8)
n

∑

i=1

ψ(xi − T) = 0.

(9)min

n
∑

i=1

(xi − T)2 = 0

(10)min

n
∑

i=1

|xi − T| = 0,

(11)

n
∑

i=1

(xi − T) = 0,

n
∑

i=1

sig(xi − T) = 0,
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M‑DSCRO algorithm
This Section describes in more detail the evolutionary stages of the M-DSCRO algorithm, which are similar to 
those described in “Background and evolutionary stages” section, but it varies in how individuals are selected 
in the initialisation and reproduction processes.

Both M-SCRO and M-DSCRO algorithms developed in this work avoid the additional parameters configura-
tion in the stages of the evolutionary process. Furthermore, M-DSCRO also checks if the coral reef population 
follows a normal distribution or not (regarding its fitness), in which case the automatic setting of the parameters 
varies with respect to M-SCRO algorithm, as can be seen in the following subsection.

Selection of individuals in M‑DSCRO
As aforementioned, M-SCRO assumed that the FL of the population follows a normal distribution. However, it is 
convenient to think this is not always the case in the evolutionary process. With the M-DSCRO algorithm, during 
the evolution, whether the FL follows a normal distribution is checked several times. Specifically, a Kolmogorov 
Smirnov’s  test60 is used to check the normality of fitness distribution. Based on the theory of robust estimators 
explained in “Robust estimators” section, the process for selecting corals in the initialisation and reproductive 
stages of the algorithm varies.

If the distribution is normal, the coral selection process is the same as that established in the M-SCRO algo-
rithm. Otherwise, M-DSCRO uses:

• The median of the fitness at j-th generation, MDfj , instead of the mean f̄j as centralisation estimator. For 
the sake of simplicity, the notation Cj stands for f̄j or MDfj , depending on whether the fitness distribution is 
normal or not, respectively.

• The interquartile range, IRQfj , instead of the Sfj as scale estimator. For simplicity, notation SCj stands Sfj or 
IRQfj , depending on whether the fitness distribution is normal.

The Kolmogorov Smirnov’s test is calculated only in a certain number of cases:

• When the population is initialised (after generating and evaluating the reef), that is, in the first generation.
• If G is the total number of generations, M-DSCRO also applies the Kolmogorov Smirnov’s test in the gen-

erations 2G/7, 4G/7 and 6G/7 of the evolutionary process. That is, the statistics selected by the test results 
in generation 2G/7 are used until generation 4G/7, and so on. For instance, if the distribution fitness is not 
normal at generation 2G/7, then Cj = MDfj and SCj = IRQfj is used until generation 4G/7 when the test is 
applied again.

• If the condition for the coral reef to be reset occurs.

The above values are set in this way for two reasons: (1) More checks throughout the evolution have not provided 
better results, as well as increasing the computational cost, (2) after the initial check, we continue at 2G/7 to give 
the population some time to evolve, do another check about halfway through the evolution, and finish with 6G/7 
to give the population some time to evolve after doing the third check with the possible change.

Initialisation in M‑DSCRO
M-DSCRO initialises P corals on the reef, i.e. P random ANNs representing feasible solutions to our problem. 
In the initialisation phase, instead of using the interval (f̄1 − Sf1 , 1] described in “Initialisation in M-CRO and 
M-SCRO” section, the interval (C1 − SC1, 1] is used ( ρ is unnecessary). That is, those corals whose fitness is not 
in the above interval are eliminated. If (C1 − SC1) ≤ 0 no corals are removed from the reef. Algorithm 1 sum-
marises this procedure.

Input: Random number of neurons, links and weights for each coral; size of coral reef.

Output: Initial population.

1: for each position of the coral reef do
2: Generate a coral (random ANN).

3: end for
4: Evaluate the population.

5: Kolmogorov Smirnov’s test.

6: CalculateC1 and SC1.

7: Delete those corals whose fitness is not in the interval (C1−SC1,1].
8: return Initial population.

Algorithm 1.  Initialisation algorithm in M-DSCRO.

Sexual reproduction in M‑DSCRO
Following the philosophy of M-CRO and M-SCRO algorithms, there are two types of sexual operators. On the 
one hand, external sexual reproduction or broadcast spawning must explore the search space. As mentioned in 
“Crossover operator in artificial neural networks” section, using crossover operators with EANNs has several 
drawbacks. Therefore, structural mutations are applied for those corals whose fitness function satisfies:
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On the other hand, the internal sexual reproduction of brooding tries to exploit the search space. In this way, a 
parametric mutation is applied to the remaining individuals:

As in the M-CRO and M-SCRO algorithms, each mutated coral becomes part of the candidate solution pool. 
Also, the iRprop+ algorithm is applied to the best mutated individual in both broadcast spawning and brooding, 
and both individuals are added to the pool.

Sexual reproduction procedures are summarised in Algorithm 2.

Input: Coral reef.

Output: A pool with new individuals.

1: Broadcast spawning: Collect those corals whose fitness value verifies Eq. 12.

2: for each coral in this set do
3: Make a copy of this set.

4: Apply external sexual reproduction to the copied individuals.

5: Evaluate the mutated individuals.

6: Add resulting individuals to the pool.

7: Apply LS to the best mutated individual.

8: Evaluate the optimised individual.

9: Add the resulting optimised individual to the pool.

10: end for
11: Brooding: Collect those corals whose fitness value verifies Eq. 13.

12: for each individual in this set do
13: Make a copy of this set.

14: Apply internal sexual reproduction to the copied individuals.

15: Evaluate the mutated individuals.

16: Add resulting individuals to the pool.

17: Apply LS to the best mutated individual.

18: Evaluate the optimised individual.

19: Add the resulting optimised individual to the pool.

20: end for
21: return Pool.

Algorithm 2.  Sexual reproduction process in M-DSCRO.

Asexual reproduction in M‑DSCRO
Asexual reproduction should ensure the survival of one of the best corals. To do this, M-DSCRO selects a set of 
corals whose fitness function satisfies:

If (Cj + SCj) ≥ 1 , asexual reproduction is not carried out. A random coral has been duplicated from this set at 
this stage of the reproduction process. In this way, a good coral is kept, but premature algorithm convergence is 
avoided. Note that Fa parameter is also not needed in M-DSCRO. Algorithm 3 shows this process.

Input: Coral reef.

Output: A random optimised individual.

1: ObtainCj and SCj.
2: Select those corals whose fitness value verifies Eq. 14.

3: Randomly select an individual from this set.

4: Duplicate this individual.

5: Apply LS to the duplicated individual.

6: Evaluate the optimised individual.

7: return Random optimised individual.

Algorithm 3.  Asexual reproduction process in M-DSCRO.

Settlement in M‑DSCRO
The larvae settlement follows the same structure as in M-CRO and M-SCRO algorithms.

If the settlement is carried out after sexual reproduction, the individuals to be established are in the pool. If 
the settlement takes place after asexual reproduction, it is the duplicated and optimised individual that tries to 
establish itself on the reef. Algorithm 4 shows this procedure.

(12)fij ∈ (Cj − SCj , 1].

(13)fij ∈ [0,Cj − SCj].

(14)fij ∈ (Cj + SCj , 1].
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Input: Pool with new individuals or random individual optimised

Output: New coral reef.

1: for each individual in the pool or for the random individual do
2: attempts = 1;

3: settled = 0;

4: while attempts < 2 and settled = 0 do
5: if position is empty or fitness is better than the resident then
6: Individual settles in the selected space.

7: settled = 1

8: end if
9: attempts = attempts + 1;

10: end while
11: end for
12: return Coral Reef.

Algorithm 4.  Settlement process in M-DSCRO.

Depredation in M‑DSCRO
The depredation also follows the same structure as in M-CRO and M-SCRO algorithms. It is important to note 
that in M-DSCRO algorithm, the depredation removes from the reef those individuals whose fitness function 
is in the interval [0,Cj − 2SCj] . If (Cj − 2SCj) ≤ 0 , depredation is not carried out. Again, the parameters Fd and 
Pd do not need to be configured. Algorithm 5 shows this procedure.

Input: Coral reef.

Output: New coral reef.

1: Calculate newCj and new SCj.
2: Collect those corals whose fitness is in [0,Cj−2SCj].
3: Delete all individuals collected from the coral reef.

4: return Coral reef.

Algorithm 5.  Depredation process in M-DSCRO.

Reef restarting in M‑DSCRO
After each Settlement and Depredation, it is important to check for the possible restart of the coral reef. In the 
M-DSCRO algorithm, if the restart is applied, it is necessary to verify whether the population is normal. The 
restart methodology saves the healthiest coral in the reef. The rest of the coral reef is generated randomly as in 
the Initialisation process. This will be shown in Algorithm 6.

Input: Coral reef.

Output: A new coral reef (only if restarting is needed). // see Eq. 3 and 4

1: if (bwj ≤ ta) or (S2f j ≤ tb) then
2: Save the best individual in the new coral.

3: for each position of the coral reef do
4: Generate a coral (random ANN).

5: end for
6: Evaluate the population.

7: Kolmogorov Smirnov’s test.

8: CalculateC1 and SC1.

9: Delete those corals whose fitness is not in the interval (C1−SC1,1].
10: end if
11: return A new coral reef.

Algorithm 6.  Check reset in M-DSCRO.

Stop condition in M‑DSCRO
Finally, remember that, in the stop condition, in addition to checking if the maximum number of generations 
has been reached, a Kolmogorov Smirnov’s test is applied for M-DSCRO in the generations 2G/7, 4G/7 and 6G/7 
of the evolutionary process for checking if the population is normal or not.
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Experiments
In this section, detailed information will be provided about the datasets used in the experimentation, the ANN 
model used as individuals, the metrics employed to evaluate the performance of the different algorithms, and 
the experimental setup of the parameters needed.

Datasets used in our experiments
In this work, the performance of the M-CRO, M-SCRO and M-DSCRO is evaluated considering a total of 40 
datasets for supervised classification problems, whose main characteristics are summarised in Table  1: identifier 
(ID), assigned by ordering the datasets alphabetically, name (Dataset), number of patterns (#Patt.), characteristics 

Table 1.  Characteristics of the selected classification datasets, sorted alphabetically. Note that some databases 
have undergone preprocessing, such as removing missing values or binarising categorical variables. This causes 
these databases’ number of patterns or attributes to vary slightly. However, the final databases will be available 
in Section Data availability. Within the table, #Patt. represents the number of patterns, #Char. denotes the 
number of characteristics, #Classes signifies the number of classes present in the dataset, Class Dist. indicates 
the distribution of classes, and IR refers to the Imbalance Ratio, providing a comprehensive overview of the 
dataset features. .

ID Dataset #Patt. #Char #Classes Class Dist. IR Source

1 Balance Scale 625 4 3 288-49-288 5.88 UCI61

2 Breast Cancer Wisconsin (Diagnostic) 569 30 2 357-212 1.68 UCI61

3 Breast Cancer Wisconsin (Original) 699 9 2 458-241 1.90 UCI61

4 Breast Cancer Wisconsin (Prognostic) 194 32 2 148-46 3.22 UCI61

5 Car Evaluation 1728 21 4 1210-384-65-69 18.62 UCI61

6 Chess (King-Rook vs. King-Pawn) 3196 38 2 1669-1527 1.09 UCI61

7 Connectionist Bench 208 60 2 111-97 1.14 UCI61

8 Contraceptive Method Choice 1473 9 3 629-333-511 1.89 UCI61

9 Credit-approval 666 46 2 367-299 1.23 UCI61

10 Dermatology 366 34 6 112-61-72-49-52-20 5.60 UCI61

11 Electrical Grid Stability Simulated Data 10000 12 2 6380-3620 1.76 UCI61

12 Eucalyptus 736 91 5 180-107-130-214-105 2.04 Kaggle62

13 Fog formation at Valladolid 3340 6 2 2605-735 3.54 Durán et al.63

14 Gene Expression 3175 120 3 762-765-1648 2.16 UCI61

15 Glass Identification 214 9 6 70-76-17-13-9-29 8.44 UCI61

16 Haberman’s Survival 306 3 2 81-225 2.78 UCI61

17 Hayes-Roth 132 4 3 51-51-30 1.70 UCI61

18 Horse 364 58 3 224-88-52 4.31 UCI61

19 Horse-Colic 300 121 2 191-109 1.75 UCI61

20 Image-Segmentation 210 19 7 30-30-30-30-30-30-30 1.00 UCI61

21 Ionosphere 351 34 2 126-225 1.79 UCI61

22 LEV 1000 4 5 93-280-403-197-27 14.93 OpenML64

23 Libras Movement 360 90 15 24 patterns in each class 1.00 UCI61

24 Liver Disorders 345 6 2 200-145 1.38 UCI61

25 Lymphography 148 38 4 2-81-61-4 40.50 UCI61

26 MAGIC Gamma Telescope 19020 10 2 12332-6688 1.84 UCI61

27 Newthyroid 215 5 3 150-35-30 5.00 UCI61

28 Pima Indians Diabetes 768 8 2 500-268 1.87 Kaggle62

29 SaltWaterDistortion Dataset 1000 10 4 32-352-399-217 12.47 Senshina et al.65

30 Solar Flare 1066 38 6 331-239-211-147-95-43 7.70 UCI61

31 South German Credit 1000 61 2 700-300 2.33 UCI61

32 Splice-junction Gene Sequences 3190 60 3 767-768-1655 2.16 UCI61

33 Statlog (Australian Credit Approval) 690 51 2 307-383 1.25 UCI61

34 Statlog (Landsat Satellite) 6435 36 6 1533-703-1358-626-707-1508 2.45 UCI61

35 Teaching Assistant Evaluation 151 5 3 49-50-52 1.06 UCI61

36 Thoracic Surgery Data 470 27 2 400-70 5.71 UCI61

37 Thyroid Disease allbp 2028 23 5 936-716-265-82-29 32.28 UCI61

38 Tic-Tac-Toe Endgame 958 27 2 332-626 1.89 UCI61

39 Toy 300 2 5 35-87-79-68-31 2.81 Da Costa et al.66

40 Waveform Database Generator 5000 40 3 1692-1653-1655 1.02 UCI61
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(#Char.), classes (#Classes), their distribution (Class Dist.), the imbalance ratio (IR), and the source of informa-
tion (Source). As can be seen, this selection includes various types of classification problems with different fields 
of application (medical, energy or benchmarks, among others). Also, they cover a wide variety in terms of the 
number of patterns (from 132 to 19020), number of attributes (2 to 121), classes (2 to 15) and imbalance ratio (1 
to 40). The underlying idea is to test the memetic algorithms on a wide variety of datasets and to verify that the 
dynamic proposal (M-DSCRO), as the paper’s contribution, improves the other two algorithms.

ANN model
We use MLPs with a hidden layer and Sigmoidal transfer functions (SUs) in the hidden layer, and linear units in 
the output layer, whose functional model can be represented as:

replacing Bl(x,wl) by:

where wl = (w1l , . . . ,wKl) is the vector of weights of the connections between the input layer and the l-th hid-
den node, M is the number of sigmoidal units in the hidden layer, Q is the number of classes of the problem, 
K is the number of features in each pattern to be classified, x is the input pattern and Bl(x,wl) is the sigmoidal 
basis function.

Taking the softmax activation function into account, represented in Eq. (16), it can be observed that the class 
predicted by the classifier corresponds to the neuron on the output layer whose a posteriori probability is greater.

where fq(x) is the output of the q-th output neuron for pattern x , and gq(x) is the probability that pattern x has 
of belonging to q-th class. Therefore, one of the classes does not need to be estimated due to the properties of 
the probability function.

Evaluation metrics
When considering classification problems, the most common metric is the percentage of patterns correctly clas-
sified or Correctly Classified Rate (CCR ), which is defined formally as follows:

where N is the number of patterns in the training or generalisation set, and nqq is the number of patterns from 
the q-th class that are correctly classified.

CCR  is a general approach to assess the goodness of the classification model. However, CCR  only captures 
the global accuracy of the model without considering the minority classes in imbalanced datasets. As seen in 
Table 1, there are many datasets with an imbalanced nature ( IR > 1 ), so another metric should be used for 
comparison purposes. In this sense, the Minimum Sensitivity (MS)45 is the accuracy rate of the worst classified 
class. MS is defined as follows:

where Sq is the percentage of examples correctly predicted as belonging to the q-th class. Thus, Sq = nqq/nq , 
where nq represents the total count of patterns belonging to this q-th class. The use of this metric is based on the 
fact that it is more directly interpretable than other alternatives considered (such as a multiclass f1-score): by 
calculating this ratio for the worst classified class (minimum value of the sensitivity), the classifier is ensured to 
obtain at least the given performance for all classes of the problem.

In this way, we will not only obtain a value of the overall performance of the evaluated algorithms but also 
how they behave, at least in the class that ranks worst.

However, the error function used during the evolutionary training process of the ANNs is the cross-entropy 
function, E. The E error function is a continuous function, which makes the convergence more robust with 
respect to CCR . The values that can take the E metric are between 0 and ∞:

where yqn is equal to 1 if the pattern n belongs to q-th class, and 0 otherwise, and where gq(x) is the predicted 
probability (Eq. 16) that the pattern n belongs to class q. Finally, the metric is transformed to be maximised in 
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the interval [0, 1] by the expression A = 1/(1+ E) so that the statistically-driven evolutionary procedure makes 
sense.

Experimental setting
Each dataset is divided using a stratified hold-out with 75% of the patterns for training and the remaining 25% 
for testing. Given the stochasticity of the algorithms, to obtain statistically representative average results, they 
are run 30 times with different seeds.

A multilayer neural network with a single hidden layer has been shown to be a universal approximator. 
Thus a shallow network, with a single layer of hidden units has been used, given that it is sufficient to represent 
any function with the necessary degree of  accuracy67. For the hidden and output layers, the initialisation of the 
weights is random, and a bias value needs to be trained for each SU and linear unit. The number of outputs 
corresponds to the number of classes minus one for a concrete dataset (given that the softmax function is used 
in the output layer).

For the structural mutations, the probability of choosing a type of mutation is equal to 1/5. One or two 
neurons are added or deleted during these mutations. For adding or deleting links, we randomly add or delete 
30% of the links in the input-hidden layers and 5% in the hidden-output layers. Weights are assigned using uni-
form distribution defined throughout two intervals, [-5,5] for connections between the input layer and hidden 
layer and [-10,10] for connections between the hidden layer and the output layer. For the parametric mutation, 
α1(0) = 0.5 and α2(0) = 1 . All these parameters values have been taken from previous  references49,50, which 
present an EA with similar mutators. Note that, in any case, the use of an EA, which dynamically adapts to the 
problem evaluated, results in a performance which is negligibly affected by minor changes in these parameters.

Based on the  literature20, the coral reef size (P) has been set to 100 individuals, and the number of settlement 
attempts is 2 for each individual of the pool. As mentioned above, M-CRO requires a more extensive configura-
tion than its statistical versions. The ratio of free positions on the reef ( ρ ) is set to 0.1, the percentage for the 
asexual reproduction ( Fa ) is established to 0.05, the percentage for broadcast spawning has been set to 0.75, 
while the remaining 0.25 are selected for brooding; and finally, the percentage and probability of depredation 
are 0.05 and 0.1, respectively.

Although the thresholds are configurable for coral reef reset conditions, a threshold value of 2% (0.02) for 
the bwj parameter is somewhat acceptable. In the same way, a threshold value of 0.05 for S2fj is robust.

For the iRprop+ algorithm, the number of epochs established is 25 (a more significant number of epochs does 
not improve the results), η+ = 1.2 , η− = 0.5 , �0 = 0.0125 (the initial value of the �ij ), �min = 0 and �max = 50 
 (see27 for iRprop+ parameter descriptions).

For the sake of conciseness, we have chosen to present the results of the memetic versions since they are all 
better than their standard version, and the same analysis can be extracted.

To further validate the effectiveness of the proposed M-DSCRO method, it was compared against four well-
known state-of-the-art methods: C4.5 Decision Tree, Logistic Regression (LR), Multilayer Perceptron (MLP), 
and Support Vector Machine (SVM). The aim was to surpass these established algorithms in performance. The 
selection of hyperparameters for each algorithm involved a nested 10-fold cross-validation process, repeated three 
times on the training dataset, focusing on minimising the cross-validation error. The optimal hyperparameter 
set, resulting in the lowest cross-validation error, was then applied to the entire training dataset to evaluate the 
final performance in the test set. The hyperparameter tuning was conducted as follows. For LR, both l1 and l2 
penalty functions were considered, with the cost parameter ( C ) ranging from 10−3 to 103 . In the case of SVM 
with a Gaussian kernel, C and the kernel width ( σ ) were varied within the same range of 10−3 to 103 . The C4.5 
Decision Tree’s configuration included the Gini index and entropy as criteria, with the maximum tree depth set 
between 3 and 6, and the minimum number of samples required at a leaf node ranging from 2 to 10. For the 
MLP, a single hidden layer was used, with the number of neurons in this layer chosen from the set {2, 4, 6, 8, 
10} (similar with respect to our neural networks). The training iterations were set within {500, 1000, 1500}, the 
learning rate ( α ) was chosen from {0.1, 0.5, 1}, and the momentum ( µ ) from {0.3, 0.5, 0.7, 0.9}.

Results and discussion
The results of CCR  and MS are shown in Table 2, in which mean values and standard deviation ( Meanstd ) of 
the 30 runs for each algorithm have been calculated, as well as the average number of neurons ( #Neur. ) and 
links ( #Links ) used by the best methodology in CCR . Also, each method’s mean ranking ( ̄r ) has been included, 
assigning 1 to the best method and 3 to the worst. The best method for each dataset is in bold, while the second 
one is in italics, considering the two metrics separately.

The proposed method, M-DSCRO, achieves the best results in CCR . It obtains the highest value in 36 out of 
40 datasets and the second-best value in 3 out of 40 datasets. This demonstrates that the algorithm is capable of 
achieving excellent global accuracy in almost all databases, showcasing its robustness across various applications 
and databases with diverse characteristics. The second-best performing algorithm is M-SCRO. It obtains the 
highest and second-best results in 3 and 30 datasets, respectively. In contrast, M-CRO can only achieve the best 
value in 2 datasets, indicating its weak performance when compared to the other two methods. These results 
are consistent with the literature, which shows that SCRO performs better than CRO. Moreover, the dynamic 
approach enhances their overall performance. The average rankings confirm this analysis, with M-DSCRO hav-
ing the lowest value (closest to one), and M-SCRO coming in the second position.

Observing the other metric, the algorithms get worse improvement concerning MS than CCR . This is rather 
normal as the algorithm is set up to improve entropy, a metric directly related to the percentage of total patterns 
correctly classified. Nevertheless, the results obtained are undoubtedly reasonable in almost all datasets.
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In this sense, it can be observed that the behaviour is similar to that of CCR  but with more variability. Spe-
cifically, the M-DSCRO algorithm has the highest value in 26 out of 40 datasets and is the second-best in 11. 
Additionally, the differences between M-CRO and M-SCRO are even more minor when looking at this metric. 
In this case, M-SCRO has the highest MS in 8 datasets, while M-CRO is the best one in 7. These results align with 
the findings of a previous  study41, where SCRO outperformed CRO, but the difference was not significant. It is 
worth noting that the mean ranking of M-CRO and M-SCRO (2.44 and 2.11) is much closer when analysing MS 
than when analysing CCR . Hence, the statistical version of the algorithm can improve the global accuracy while 
reducing the number of parameters that need to be determined. However, the accuracy of the worst classified 
class only improves slightly. Fortunately, the dynamic proposal (M-DSCRO) overcomes this disadvantage by 
providing a significant improvement, as observed in this analysis.

Table 2.  Mean and standard deviation values ( Meanstd ) of Correct Classification Rate (CCR ) and Minimum 
Sensitivity (MS) obtained by all the algorithms in each dataset for the 30 runs. Average number of neurons 
( #Neur. ) and links ( #Links ) used by the best methodology in CCR . The mean rankings of all algorithms are 
also included. The best method for each dataset is in bold, while the second one is in italics.

ID

CCR MS

#Neur. #LinksM-CRO M-SCRO M-DSCRO M-CRO M-SCRO M-DSCRO

1 0.95470.0151 0.96710.0139 0.96760.0133 0.73620.1263 0.85620.0972 0.82740.1167 9.00000.0000 59.20002.2034

2 0.94620.0189 0.95020.0197 0.95190.0163 0.93130.0256 0.93980.0246 0.93620.0266 4.96660.1825 85.70009.6780

3 0.94760.0113 0.94510.0112 0.94910.0116 0.88660.0319 0.88910.0300 0.89780.0279 5.00000.0000 65.53335.7459

4 0.70000.0583 0.66050.0622 0.67350.0514 0.31110.1256 0.33210.1582 0.35400.1687 5.00000.0000 92.93339.4974

5 0.97450.0129 0.98070.0144 0.98270.0100 0.87340.0784 0.91260.0690 0.91270.0662 6.96660.1825 132.20009.8415

6 0.97660.0081 0.98520.0049 0.98540.0067 0.96620.0097 0.97480.0083 0.97480.0089 5.96660.1825 147.100012.4078

7 0.75190.0488 0.76150.0473 0.76230.0476 0.62360.0830 0.65280.0712 0.64720.0732 5.66660.6064 163.433328.3994

8 0.54700.0144 0.54050.0114 0.54790.0144 0.37350.0534 0.35500.0518 0.37390.0837 5.00000.0000 59.90001.5833

9 0.84690.0157 0.85510.0190 0.85530.0192 0.82300.0247 0.83170.0314 0.83200.0226 5.96660.1825 163.800019.7996

10 0.94140.0307 0.93920.0337 0.95160.0237 0.73620.1235 0.73650.1537 0.75990.1104 6.53330.6814 149.733319.5958

11 0.91680.0186 0.94060.0045 0.94000.0030 0.88160.0334 0.92240.0080 0.92110.0068 5.00000.0000 62.76663.7936

12 0.56670.0326 0.59060.0290 0.59090.0303 0.28100.1244 0.35020.0775 0.35660.0839 10.00000.0000 522.033346.9647

13 0.86650.0035 0.86640.0041 0.86680.0045 0.67800.0121 0.67870.0110 0.68260.0132 2.83330.4611 17.90003.4775

14 0.85080.0222 0.87270.0132 0.87270.0130 0.77210.0394 0.78050.0386 0.78340.0374 6.96660.1825 504.266634.6658

15 0.72960.0362 0.74150.0470 0.75280.0319 0.32780.1920 0.38150.1745 0.41730.1733 9.96660.1825 110.60005.1030

16 0.69170.0269 0.70530.0157 0.70310.0251 0.25170.0500 0.25170.0482 0.26000.0481 5.00000.0000 24.60001.0699

17 0.74120.0548 0.75390.0503 0.76670.0551 0.60290.0673 0.62080.0569 0.62500.0790 5.00000.0000 33.83332.3056

18 0.61760.0354 0.64250.0414 0.64400.0352 0.24850.1316 0.23830.1283 0.29150.1214 5.00000.0000 216.166617.0255

19 0.70840.0385 0.72580.0434 0.74220.0381 0.54200.0737 0.53460.0800 0.54810.0648 6.96660.1825 361.866642.4903

20 0.85770.0309 0.86130.0380 0.86850.0379 0.55000.0963 0.54170.0889 0.55830.1075 9.96660.1825 156.100013.8945

21 0.91400.0231 0.91700.0252 0.91900.0300 0.81980.0596 0.81670.0579 0.79900.0675 5.20000.8469 96.033314.0577

22 0.60510.0258 0.60510.0200 0.60930.0176 0.03810.0643 0.02380.0541 0.03330.0720 8.00000.0000 73.23331.7749

23 0.69300.0374 0.69960.0403 0.71150.0473 0.18330.1103 0.15000.1265 0.16110.1348 15.00000.0000 744.566697.7702

24 0.71430.0383 0.72210.0354 0.72560.0335 0.65830.0606 0.66030.0488 0.67450.0455 5.00000.0000 35.10002.3975

25 0.80000.0548 0.79460.0529 0.80900.0581 0.10560.2749 0.07000.2136 0.02500.1369 5.56660.5683 135.000020.6614

26 0.86010.0046 0.85740.0037 0.86040.0028 0.73740.0089 0.73810.0055 0.74340.0050 5.00000.0000 49.46664.1996

27 0.93700.0179 0.94440.0154 0.94940.0168 0.68410.0690 0.69890.0697 0.72540.0931 7.36660.7648 41.03334.2221

28 0.76980.0229 0.76300.0210 0.77020.0212 0.57860.0363 0.56470.0487 0.57910.0468 4.00000.0000 37.96662.1890

29 0.56800.0228 0.57310.0210 0.57390.0170 0.15420.1563 0.08550.1144 0.11670.1428 6.00000.0000 82.93332.0499

30 0.73820.0196 0.74170.0137 0.74250.0133 0.09090.0572 0.09040.0829 0.08010.0474 8.00000.0000 239.400020.0354

31 0.70760.0232 0.71110.0227 0.71430.0227 0.47050.1244 0.50310.0838 0.47380.0776 4.96660.1825 190.100017.0866

32 0.90790.0143 0.92940.0093 0.92960.0137 0.86130.0278 0.90200.0167 0.89710.0257 6.00000.0000 953.966684.6911

33 0.85340.0177 0.85430.0244 0.85740.0255 0.82770.0286 0.81910.0441 0.83060.0430 4.90000.3051 137.900021.1486

34 0.87870.0053 0.87980.0046 0.88220.0044 0.52250.0446 0.53160.0265 0.53910.0245 7.00000.0000 240.866613.3564

35 0.45180.0634 0.46930.0570 0.47020.0577 0.33420.1006 0.32650.0987 0.34550.1028 4.00000.0000 32.26661.2298

36 0.80820.0293 0.80340.0247 0.80030.0252 0.10000.0804 0.14070.0796 0.15930.0997 4.00000.0000 84.56669.5581

37 0.62490.0113 0.62960.0102 0.63270.0098 0.04290.0666 0.01430.0436 0.01430.0436 7.00000.0000 146.16669.1692

38 0.89960.0680 0.94830.0158 0.95350.0167 0.84020.0885 0.90160.0323 0.90720.0276 4.00000.0000 77.70006.4921

39 0.89730.0331 0.90400.0304 0.91110.0260 0.82510.0517 0.83440.0503 0.83160.0520 8.00000.0000 51.63332.5118

40 0.85650.0074 0.85710.0069 0.85890.0057 0.82230.0185 0.81850.0138 0.82250.0144 5.00000.0000 190.00008.4527

Mean Rank. ( ̄r) 2.71 2.15 1.14 2.44 2.11 1.45
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When exploring stochastic algorithms, the standard deviation of the different runs is an important feature to 
consider. If the deviations are close to 0, the algorithms are robust and not dependent on random initialisation. 
This is the case for all three algorithms being evaluated. In addition, the proposed algorithm (M-DSCRO) not 
only improves in average terms but also reduces the standard deviation in almost all the databases, demonstrat-
ing the excellent stability of the algorithm.

In order to analyse the results from a statistical point of view, a set of statistical tests has been used. Firstly, 
CCR  values are analysed.  A68 test has been applied to the CCR  rankings, which states that, for a level of sig-
nificance α = 5% , the confidence interval is C0 = (0, F0.05 = 3.11) , and the F-distribution statistical value is 
F∗ = 68.45 /∈ C0 . Therefore, the test rejects the null hypothesis stating that all algorithms perform equally in 
mean ranking of CCR . That is, the algorithm effect is statistically significant. Because of this, the best perform-
ing method in CCR  is considered as the control method for a post-hoc  test69, comparing this algorithm with 
the other methods. It has been found that comparing all algorithms with a given algorithm (control method) is 
more sensitive than comparing all algorithms with each other.

The Holm’s test compares the i-th and j-th algorithms with the following statistic:

where r̄i is the mean ranking of the i-algorithm, k is the number of algorithms, and N is the number of datasets. 
With the value of z, it is found the probability of a normal distribution and compared it with a level of significance 
α . Holm’s test adjusts the value for α to compensate multiple comparisons, using a procedure that sequentially 
tests the hypotheses ordered by their significance. The ordered p-values are denoted by p1, p2, . . . , pk , so that 
p1 < p2 < ... < pk . The test compares each pi with α∗

i = α/(k − i) , starting with the most significant p-value. If 
p1 is lower than α/(k − 1) , the corresponding hypothesis is rejected, and then it is compared p2 with α/(k − 2) , 
and so on. When a certain null hypothesis is accepted the remaining ones are also accepted.

The results of Holm’s test are reported in Table  3. When using M-DSCRO as the control algorithm (CA), 
Holm’s test shows that pi < α∗

i  in all cases, for α = 0.05 , confirming that there are statistically significant differ-
ences favouring M-DSCRO. In addition, M-SCRO is statistically better than CRO using CCR  as a comparison 
metric (although the differences are lower).

Similarly, to determine the existence of statistical differences when comparing MS, a Friedman test has been 
carried out showing that, for a level of significance α = 5% , the F-distribution value obtained is F∗ = 13.23 which 
is outside the confidence interval C0 = (0, F0.05 = 3.11) . So, again, there are significant differences between the 
algorithms and, consequently, a Holm’s test has been run with M-DSCRO as CA. The results presented in Table 3 
confirm that M-DSCRO is statistically better than the other two methods. Furthermore, in this case, there are 
no significant differences between M-CRO and M-SCRO, as previously suggested.

Examining the imbalance ratio
A range of imbalanced datasets were worked with as part of the experimental validation. As stated, for each clas-
sification dataset, the IR has been calculated as the ratio of the number of patterns in the majority class to the 
number of patterns in the minority class. This information is reported in the column IR in Table 1. Furthermore, 
Fig. 3 shows a graph summarising the performance in CCR  (a) and MS (b) with the databases sorted in increasing 
order of IR, which facilitates the discussion of the results by analysing this characteristic.

After sorting the databases based on their IR and analysing the results, we noticed that for the CCR , the 
M-DSCRO algorithm outperforms the rest in almost all databases, regardless of imbalance.

When studying the MS, it is observed that the algorithm M-DSCRO performs the best in classifying the 
minority classes of both balanced and imbalanced databases. However, for extremely imbalanced databases with 
IR greater than eight, those located to the right of the orange vertical line in Fig. 3b, M-DSCRO is the best in two 
out of six, with M-CRO performing better in the remaining four. This suggests that while M-SCRO improves 
global performance for extremely imbalanced databases, it worsens the performance in minority classes. How-
ever, this issue is partly resolved with the proposed dynamic version of the algorithm.

Examining the number of classes
Also, the datasets cover a wide range in terms of the number of classes, which range from 2 to 15, and are listed 
in column (#Classes) in Table 1. As in the previous part, Fig. 4 shows the CCR (a) and MS (b) performance of 
the three algorithms on the datasets sorted in ascending order by the number of classes.

z =
r̄i − r̄j

√

k(k+1)
6N

,

Table 3.  Holm test results considering M-DSCRO as control algorithm. Its average CCR  and MS is compared 
to those of M-CRO and M-SCRO: corrected α values, compared methods and p-values, all of them ordered by 
the number of comparison (i). If M-DSCRO results statistically better, it is marked with (*).

i

CA:M-DSCRO CCR MS

α
∗

0.050
Algorithm pi pi

1 0.025 M-CRO 0.000 (*) 0.000 (*)

2 0.050 M-SCRO 0.000 (*) 0.003 (*)
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Regardless of the number of classes, M-DSCRO performs equally well in CCR . Nonetheless, it can be observed 
that the few times it could be better is in databases with 2 classes (those to the left of the orange line in Fig. 4a). 
This implies that the dynamic methodological approach excels in more complex databases in terms of overall 
accuracy.

In MS, the M-DSCRO algorithm performs very well for 2 and 3 classes (see vertical orange line in the 
Fig. 4b). However, when it comes to a larger number of classes, the algorithm is equally competent as M-CRO, 
while M-SCRO performs the worst. In other words, M-SCRO reduces the performance as the number of classes 
increases. Therefore, thanks to the dynamic approach, the statistical version becomes more potent without 
compromising performance for databases with few classes, solving its disadvantages.

Examining the size
A final analysis has been conducted to check whether the database size affects the results obtained. For this 
purpose, the number of patterns, attributes, and total size considered as the product of both have been studied.

However, a relationship has yet to be found for any of these elements since the best results of the algorithms 
are not concentrated in small or large databases but are distributed regardless of size.

Comparison with state‑of‑the‑art models
In this phase, the performance of the newly introduced M-DSCRO technique is evaluated against other state-of-
the-art machine learning models, including C4.5 decision trees, Logistic Regression (LR), Multilayer Perceptron 
(MLP), and Support Vector Machines (SVM). Table 4 summarises the mean (Mean) values of CCR  and MS (we 
omit the standard deviation to improve the readability of the results). As previously, an average ranking r̄ for 
each approach is provided, where 1 represents the top-performing method, and 5 is the least effective. The lead-
ing method for every dataset is highlighted in bold, and the runner-up is denoted in italics, with both metrics 
evaluated independently.

(a) CCR

(b) MS

Figure 3.  Performance in CCR  (a) and MS (b) of the three algorithms on the databases sorted in increasing 
order of IR: M-CRO (red), M-SCRO (blue) and M-DSCRO (green).



18

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6961  | https://doi.org/10.1038/s41598-024-57654-2

www.nature.com/scientificreports/

Regarding CCR  metric, the M-DSCRO algorithm proposed herein secures the highest performance across 
18 databases and attains the second-highest performance in 9 others, as evidenced by its mean rank ( ̄r ) of 2.15, 
positioning it as the foremost method. Following closely is the SVM model, which leads in 11 databases, culmi-
nating in an average rank of 2.7. This performance underscores the proposal competitive edge in overall accuracy 
when juxtaposed with state-of-the-art methods.

Furthermore, according to the MS metric, the M-DSCRO algorithm outperforms others, securing the top 
position in 18 datasets and the second-highest in 9, with an impressive average rank of 2.03. In this scenario, a 
tie for second place emerges between the C4.5 and LR models, each with an average ranking of 2.96, demoting 
the SVM model to the fourth position. This indicates that our method maintains superior performance across 
the board, including for minority classes, whereas the SVM model, despite its overall effectiveness, falls short in 
adequately addressing minority classes, which are often of paramount importance.

As with previous analyses, to assess whether significant statistical differences exist in the performance metrics 
CCR  and MS, two Friedman tests were conducted. These tests revealed that at a significance level of α = 5% , the 
F-distribution values achieved were F∗ = 7.67 for CCR and F∗ = 8.37 for MS. Both values exceed the bounds of 
the confidence interval C0 = (0, F0.05 = 2.43) , indicating significant disparities among the evaluated methods. 
Consequently, Holm’s post-hoc test was applied to each metric with the M-DSCRO method serving as the control 
algorithm, and the findings are compiled in Table 5.

Although the M-DSCRO algorithm exhibits superior performance in terms of CCR , the Holm’s test indicates 
that its advantage over the SVM model is not statistically significant, whereas significant disparities are observed 
when compared to C4.5, LR, and MLP. In contrast, the MS metric clearly demonstrates the algorithm’s superior 
performance relative to other methods, with the significant differences being unmistakably pronounced. Based on 
these findings, the adoption of the M-DSCRO methodology for classification problems is confidently endorsed.

(a) CCR

(b) MS

Figure 4.  Performance in CCR  (a) and MS (b) of the three algorithms on the databases sorted in increasing 
order of number of classes: M-CRO (red), M-SCRO (blue) and M-DSCRO (green).



19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6961  | https://doi.org/10.1038/s41598-024-57654-2

www.nature.com/scientificreports/

Conclusions
This paper proposes three memetic algorithms for training and optimising the topology and weights of ANNs 
simultaneously. Concretely, CRO and its statistical version, SCRO, have been implemented and adapted using 
suitable operators for this purpose, resulting in M-CRO and M-SCRO algorithms. Also, an improved version of 
M-SCRO has been proposed in which the hypothesis of normal fitness distribution is tested during the evolution, 
motivated by the theory of robust estimators. In this way, the algorithm dynamically selects the intervals based 
on the centralisation and scaling calculated estimators, resulting in the so-called M-DSCRO. The proposed algo-
rithms are finally evaluated on 40 classification datasets by comparing the Correct Classification Rate CCR , which 
measures the accuracy of a classification model by determining the proportion of correctly classified instances, 
and Minimum Sensitivity MS, which is the lowest sensitivity computed across all sensitivities of the problem.

Table 4.  Mean values of Correct Classification Rate (CCR ) and Minimum Sensitivity (MS) obtained by all the 
algorithms in each dataset. The mean rankings of all algorithms are also included. The best method for each 
dataset is in bold, while the second one is in italics.

ID

CCR MS

C4.5 LR MLP SVM M-DSCRO C4.5 LR MLP SVM M-DSCRO

1 0.7201 0.8590 0.8568 0.8419 0.9676 0.0000 0.0000 0.0000 0.0000 0.8274

2 0.9291 0.9362 0.6527 0.8865 0.9519 0.8679 0.9057 0.1107 0.8491 0.9362

3 0.9540 0.9655 0.9598 0.9598 0.9491 0.9474 0.9333 0.9139 0.9333 0.8978

4 0.7500 0.7500 0.7500 0.7500 0.6735 0.0000 0.0000 0.0000 0.0000 0.3540

5 0.9536 0.9281 0.9435 0.9977 0.9827 0.7647 0.8542 0.5988 0.9896 0.9127

6 0.9862 0.9624 0.9474 0.9950 0.9854 0.9816 0.9423 0.9322 0.9921 0.9748

7 0.7460 0.4921 0.5409 0.7857 0.7623 0.4348 0.3043 0.2159 0.6364 0.6472

8 0.5504 0.5150 0.4815 0.5858 0.5479 0.4458 0.3012 0.0643 0.2771 0.3739

9 0.8554 0.8554 0.6458 0.7048 0.8553 0.7935 0.8261 0.4862 0.7027 0.8320

10 0.4891 0.9599 0.7926 0.8942 0.9516 0.0000 0.8478 0.2758 0.8108 0.7599

11 0.8165 0.8016 0.8798 0.9524 0.9400 0.7362 0.7981 0.8167 0.9322 0.9211

12 0.5502 0.5633 0.2250 0.5805 0.5909 0.3120 0.3210 0.0000 0.3450 0.3566

13 0.8513 0.8679 0.7348 0.8081 0.8668 0.5387 0.6625 0.0156 0.4149 0.6826

14 0.8928 0.8979 0.8852 0.5914 0.8727 0.8063 0.8691 0.8168 0.0052 0.7834

15 0.6731 0.6346 0.4987 0.7115 0.7528 0.5000 0.2500 0.0000 0.2500 0.4173

16 0.7467 0.7336 0.7394 0.7336 0.7031 0.3279 0.0000 0.0612 0.0000 0.2600

17 0.6804 0.3814 0.4210 0.4845 0.7667 0.1842 0.0000 0.0976 0.0000 0.6250

18 0.5956 0.6140 0.6229 0.6140 0.6440 0.0000 0.0000 0.0221 0.0000 0.2915

19 0.8304 0.7813 0.7662 0.7857 0.7422 0.6951 0.6585 0.6073 0.5488 0.5481

20 0.2876 0.8301 0.1723 0.4641 0.8685 0.0000 0.5909 0.0000 0.0000 0.5583

21 0.9080 0.8736 0.9015 0.9655 0.9190 0.8710 0.6774 0.7333 0.9032 0.7990

22 0.5234 0.5113 0.4932 0.5688 0.6093 0.0000 0.3000 0.0000 0.2500 0.0333

23 0.1152 0.0632 0.0996 0.4015 0.7115 0.0000 0.0000 0.0000 0.0000 0.1611

24 0.5581 0.6473 0.5536 0.6550 0.7256 0.4815 0.6200 0.3272 0.4907 0.6745

25 0.7589 0.7878 0.7800 0.7206 0.8090 0.0150 0.0200 0.0210 0.0150 0.0250

26 0.8351 0.7902 0.8175 0.8194 0.8604 0.6597 0.5584 0.6043 0.6316 0.7434

27 0.8750 0.9125 0.9425 0.9313 0.9494 0.5000 0.7391 0.7637 0.6957 0.7254

28 0.7068 0.7749 0.6698 0.7958 0.7702 0.7040 0.5152 0.1227 0.5606 0.5791

29 0.4646 0.5434 0.4206 0.5434 0.5739 0.1667 0.1250 0.0000 0.1667 0.1167

30 0.5345 0.7302 0.6523 0.5521 0.7425 0.0000 0.2676 0.0000 0.0000 0.0801

31 0.6988 0.7590 0.6988 0.6988 0.7143 0.0000 0.4667 0.0000 0.0000 0.4738

32 0.9511 0.8143 0.9395 0.6386 0.9296 0.9469 0.5759 0.9036 0.2448 0.8971

33 0.8253 0.8355 0.8355 0.8102 0.8574 0.8100 0.8210 0.8210 0.8000 0.8306

34 0.8254 0.7850 0.3914 0.9142 0.8822 0.5924 0.1720 0.0000 0.6497 0.5391

35 0.5405 0.4324 0.3955 0.4324 0.4702 0.3846 0.2308 0.1716 0.2727 0.3455

36 0.8291 0.8462 0.8462 0.8462 0.8003 0.0556 0.0000 0.0000 0.0000 0.1593

37 0.5105 0.4355 0.4632 0.4618 0.6327 0.0000 0.0000 0.0000 0.0000 0.0143

38 0.8131 0.9707 0.7417 0.9749 0.9535 0.6492 0.9680 0.5792 0.9680 0.9072

39 0.8514 0.3108 0.3036 0.8919 0.9111 0.7727 0.0000 0.0000 0.8125 0.8316

40 0.7130 0.8640 0.8572 0.8616 0.8589 0.6815 0.8470 0.8307 0.7752 0.8225

Mean Rank. ( ̄r) 3.20 3.06 3.89 2.70 2.15 2.96 2.96 3.89 3.16 2.03
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The results show that M-SCRO statistically improves on M-CRO in terms of CCR  but is equal in terms of MS. 
However, M-SCRO does not require parameter tuning. The new proposed M-DSCRO methodology, however, 
outperforms the other two algorithms by achieving the same advantage as M-SCRO, i.e. eliminating the need for 
manual parameter value adjustment based on a dynamic update of the parameters during evolution considering 
robust estimators and avoiding the assumption of normality of the fitness distribution. According to the study 
performed, the results of M-DSCRO are significantly better in terms of CCR  and MS. The M-DSCRO algorithm 
demonstrated superior CCR  in diverse imbalance levels and performed well in MS across balanced and imbal-
anced datasets. However, in cases of high imbalance (IR> 8), M-CRO outperformed M-DSCRO in minority 
class classification in some instances, a gap partially bridged by its dynamic version. The datasets varied from 2 
to 15 classes, with M-DSCRO showing consistent CCR  performance and excelling in datasets with fewer classes. 
While effective in MS for 2 and 3 classes, its performance aligned with M-CRO as class number increased, with 
M-SCRO effectiveness waning with more classes. The dynamic approach of M-DSCRO addressed its limitations 
without affecting its performance in smaller datasets. An analysis on the influence of database size found no 
clear link between database dimensions and algorithm performance. Finally, a comparison against four state-
of-the-art algorithms shows how M-DSCRO excels, proving its superior effectiveness in terms of both overall 
performance and minority class performance.

For future lines of research, the authors plan to extend this work by using the CCR  along with MS in a mul-
tiobjective evolutionary algorithm. It has been shown  in45 that both objectives are opposite, especially at certain 
levels. At the beginning of a learning or evolutionary process, CCR  and MS could be cooperative, but after a 
certain level, objectives become competitive and an improvement in one objective tends to involve a decrease 
in the other one. MS can be considered a complementary measure of CCR  whose value must be maximised. It 
will improve CCR  as a weighted average of the correct classification rates of the Q classes. In this way, the pair 
(CCR , MS) tries to find a point between the scalar accuracy measure and the multidimensional ones based on 
misclassification rates.

Data availability
The datasets utilised are available at https:// www. uco. es/ grupos/ ayrna/ datas ets/ datas etsMD SCRO. zip. The 
instructions regarding the format and its usage can be found on the same page https:// www. uco. es/ grupos/ 
ayrna/ index. php/ en/ inves tigac ion-y- difus ion/ parti tions- and- datas ets.
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