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Accuracy of generative deep 
learning model for macular 
anatomy prediction from optical 
coherence tomography images 
in macular hole surgery
Han Jo Kwon 1, Jun Heo 1, Su Hwan Park 2, Sung Who Park 1 & Iksoo Byon 1*

This study aims to propose a generative deep learning model (GDLM) based on a variational 
autoencoder that predicts macular optical coherence tomography (OCT) images following full-
thickness macular hole (FTMH) surgery and evaluate its clinical accuracy. Preoperative and 6-month 
postoperative swept-source OCT data were collected from 150 patients with successfully closed FTMH 
using 6 × 6  mm2 macular volume scan datasets. Randomly selected and augmented 120,000 training 
and 5000 validation pairs of OCT images were used to train the GDLM. We assessed the accuracy 
and F1 score of concordance for neurosensory retinal areas, performed Bland–Altman analysis of 
foveolar height (FH) and mean foveal thickness (MFT), and predicted postoperative external limiting 
membrane (ELM) and ellipsoid zone (EZ) restoration accuracy between artificial intelligence (AI)-
OCT and ground truth (GT)-OCT images. Accuracy and F1 scores were 94.7% and 0.891, respectively. 
Average FH (228.2 vs. 233.4 μm, P = 0.587) and MFT (271.4 vs. 273.3 μm, P = 0.819) were similar 
between AI- and GT-OCT images, within 30.0% differences of 95% limits of agreement. ELM and EZ 
recovery prediction accuracy was 88.0% and 92.0%, respectively. The proposed GDLM accurately 
predicted macular OCT images following FTMH surgery, aiding patient and surgeon understanding of 
postoperative macular features.

Keywords Deep learning, Generative deep learning model, Macular hole, Optical coherence tomography, 
Variational autoencoder

Full-thickness macular hole (FTMH) is a retinal condition of tractional disruption to the whole foveola, includ-
ing the Müller cell cone and external limiting membrane (ELM)1,2. Idiopathic FTMH is caused by traction to the 
fovea during posterior hyaloid detachment. Vitrectomy, internal limiting membrane (ILM) peeling, and fluid-air 
exchange with tamponade can close the macular hole (MH)3. For larger holes, additional procedures for ILM 
can be performed to increase the closure  rate4,5. Recently, the closure rate of idiopathic FTMH has reached as 
high as 96–98% after primary vitrectomy with ILM  peeling6–8. Even if the first ILM flap technique fails to close 
large holes, the closure rate can reach 100% through  reoperation9. With ongoing efforts of retinal surgeons for 
hole closure, most idiopathic FTMH cases can be closed. Therefore, the focus of FTMH surgery has shifted from 
predicting the hole closure to understanding how macular holes close morphologically and their association 
with visual  outcomes10.

Visual acuity (VA) in patients with FTMH is primarily associated with the outer retinal conditions, par-
ticularly the ELM and ellipsoid zone (EZ) status. Following a successful closure through vitrectomy, the ELM 
and EZ show gradual recovery on optical coherence tomography (OCT), leading to improved  VA11,12. Various 
factors extractable from preoperative OCT influence ELM and EZ recovery. Lee et al. revealed that axial length, 
minimum linear diameter, and preoperative intraretinal layer thickness are related to EZ  recovery13. However, 
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measuring these diverse factors in clinics manually and inputting them into a prediction model may be impracti-
cal due to the substantial time and effort.

Deep learning (DL) models have been proposed to identify risk factors or assess retinal disease prognoses 
from OCT  images14. Several DL models have been proposed for the prognosis of FTMH surgery. These models 
utilize a combination of preoperative OCT and clinical data to predict the postoperative hole  closure15, as well 
as preoperative OCT to estimate postoperative  VA16. However, previous DL models for FTMH could not predict 
the detailed anatomical conditions of the macula, including the ELM and EZ restoration.

Generative deep learning models (GDLMs) may be suitable for constructing expected postoperative OCT 
images based on preoperative OCT images in eyes with FTMH. GDLMs are divided into the following catego-
ries: variational autoencoders (VAEs) and generative adversarial networks (GANs)17. VAEs are widely utilized 
for image-to-image conversion and super-resolution and have shown remarkable outcomes in producing high-
quality images in computer vision and  art17. Because GANs are known to have unstable training and are prone 
to spatial deformity and mode collapse  phenomenon18, we selected VAE as the preferred GDLM for a reliable 
prediction of the postsurgical macular  anatomy19.

We herein proposed a GDLM based on VAE to predict postoperative OCT images using preoperative OCT 
images following FTMH surgery. Further, we evaluated the accuracy and performance of the GDLM by compar-
ing the predicted and actual postoperative OCT images, including concordance for neurosensory retinal areas 
and foveal anatomy, as well as ELM and EZ restoration.

Methods
Patient selection and ethics statements
We consecutively enrolled patients with FTMH who underwent pars plana vitrectomy, ILM peeling, and fluid-air 
exchange between January 2018 and December 2022. The selection of tamponade materials (air or  SF6 18%), ILM 
staining dyes (0.025% brilliant blue G or 0.05% indocyanine green), and additional ILM procedures (inverted 
ILM flap or autologous ILM insertion) were left to the surgeon’s discretion. The inclusion criteria were FTMH 
cases identified through macular volume scans using a swept-source OCT device, the DRI OCT-1 Atlantis 
(Topcon Corp., Tokyo, Japan), before and 6 months after surgery. The eyes were scanned using a 6 × 6  mm2 scan 
protocol centered on the fovea by an experienced technician. The study protocol was approved by the institu-
tional review boards of the Pusan National University Hospital (PNUH, approval no. 2304-016-126) and Pusan 
National University Yangsan Hospital (PNUYH, approval no. 05-2023-112). One hundred twenty-five patients 
who had met the inclusion criteria were excluded from the study based on the exclusion criteria summarized 
in Supplementary Table S1.

Data collection
Baseline parameters (age, sex, laterality, axial length, best corrected visual acuity [BCVA], central subfield macu-
lar thickness [CSMT], hole size, and FTMH stage based on the Gass  classification20), intraoperative parameters 
(combined phacoemulsification, ILM peeled area in disc diameter, ILM manipulation technique, surgeon, ILM 
staining dye, and tamponade material), and 6-month postoperative parameters (BCVA, CSMT, ELM restoration, 
and EZ recovery) were assessed. The hole size was measured using the ImageNet 6 ver. 1.24 software (Topcon 
Corp., Tokyo, Japan) by determining the longest distance between the split ends of the  ELM21. Successful ELM 
restoration was defined as a continuous ELM line that was clearly distinguishable between the outer nuclear 
layer and photoreceptor (PRL) in the fovea. Successful EZ recovery defines the continuous bright band between 
ELM and RPE in postoperative OCT.

Automatic registration and preparation of macular volume scan datasets
The macular volume OCT scan contains 256 continuous slices, each consisting of 992 vertical and 512 horizontal 
pixels of an 8-bit grayscale image, stored in a three-dimensional (3D) array using the code distributed by Graham 
(Graham, M. 2020. OCT-Converter. Version v0.5.0. https:// github. com/ marks graham/ OCT- Conve rter. Accessed 
7 March 2023). It is evident that the retinal vasculature and retina itself can change after FTMH  surgery22. Cho-
roid may also vary post-vitrectomy in patients with vitreous  traction23. Hence, we based our registration on the 
RPE surface, which was expected to undergo minimal changes and was not manipulated during surgery (Fig. 1).

For supervised learning the pairs of preoperative and postoperative slices were prepared according to the fol-
lowing sequence: An image with a resolution of 448 × 448 pixels was cropped, centered on the center of mass, and 
then resized by 50%. Only the 200 slices centered on the fovea were selected. Consequently, paired OCT images 
of 224 × 224 pixels (vertical 1164.8 μm and horizontal 5250.0 μm) were extracted from the volumetric OCT 
dataset for each patient. Augmentation techniques were then applied to the training set. This process increased 
the overall training data by six-fold (Fig. 2). All postoperative OCT images were designated as ground-truth OCT 
(GT-OCT) images. Since the foveal morphology and macular deformation vary according to the distance from 
the  foveola22, different conditions were adopted for each image slice (See Supplementary Figure S2).

Structure of generative deep learning model
Conditional VAE was used for the GDLM and was designed to receive preoperative OCT image slices and condi-
tion vectors. This artificial intelligence (AI) model can generate postoperative OCT (AI-OCT) image slices and 
comprises four units: encoder, sampler, decoder, and loss function unit. In Fig. 3, these structures are explained 
in detail. The loss function unit calculated the difference between the AI-OCT images and the GT-OCT images 
and updated the weights of the GDLM to reduce this difference. In the late stage of the training process, per-
ceptual loss functions were employed to generate fine AI-OCT images (See Supplementary Figure S3)24,25. The 
training process ended with 600 epochs and stopped if overfitting was detected. The epoch with the smallest 

https://github.com/marksgraham/OCT-Converter
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loss was determined using the validation sets, and the weights of this epoch were loaded into the GDLM and 
used to evaluate the test set.

Figure 1.  Customized software for automated registration of macular volume scan optical coherence 
tomography data obtained before and after surgery. To adjust the misalignment between the preoperative and 
postoperative optical coherence tomography (OCT) data, a custom software was developed using Python 
(version 3.9.16, Python Software Foundation, Wilmington, Delaware, US) to automatically register the 
preoperative volumetric data based on the postoperative retinal pigment epithelium (RPE) surface using the 
least-squares fitting method. (a) The registration program comprises three compartments: the left section (red 
dashed rectangle) contains information from OCT, middle section (yellow dashed rectangle) showcases en face 
and horizontal cross-sectional OCT images, and right section (green dashed rectangle) exhibits the point clouds 
of the RPE layer. The lower row of the middle section displays preoperative, postoperative, and merged OCT 
images. The merged images show the preoperative and postoperative OCT scans in red and green, respectively. 
Before registration, an inconsistency existed in the RPE layer level between the two OCT images. The right 
panel shows the preoperative (upper left) and postoperative (upper right) point-cloud sets of the RPE layers. 
The lower-left image simultaneously shows two point-cloud sets, where the orange and blue clouds represent 
the preoperative and postoperative RPE layers, respectively. Before the registration, the postoperative RPE level 
is slightly higher than the preoperative RPE level in the temporal scan space. The difference between the two 
sets is further illustrated by the pixel differences in the lower-right image. A color scale bar indicating the pixel 
units is also included in the lower-left corner of each cloud image. (b) The customized software illustrates the 
results of automated registration. A geometric transformation is applied to the preoperative OCT volume scan 
matrix to ensure that the RPE surfaces in both OCT images are closely aligned. Thus, the preoperative OCT 
image is rotated and shifted. The right section displays the RPE levels of the two OCT datasets, which are almost 
indistinguishable. After the registration, the error between the two RPE layers approached zero.
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Verification for accuracy and validity of generative deep learning model
For quantitative assessment, a representative pair of preoperative and postoperative cross-sectional OCT slices 
was selected from each test volumetric OCT dataset using the following steps: (1) The RPE surface from both 
preoperative and postoperative volumetric OCT data were extracted in each case within the test set. (2) Similar to 
the training set, we aligned the preoperative 3D volumetric OCT data with the RPE surface of the postoperative 
volumetric OCT through rotation and translation for registration. (3) The 128th OCT slice from the registered 
preoperative volumetric OCT was fed into the GDLM. (4) The 128th slice from the postoperative volumetric 
OCT was chosen as the GT-OCT slice. (5) The GDLM’s output was designated the postoperative predicted OCT 
(i.e., AI-OCT) slice.

The quality of the AI-OCT image slices was assessed using three metrics: (1) image quality score, (2) agree-
ment of the generated neurosensory retinal area, and 3) the learned perceptual image patch similarity (LPIPS) 
score. The image quality score ranges from 0 to 10, with one point assigned for each of the 10 distinct layers—the 
nerve fiber, ganglion cell, inner plexiform, inner nuclear, outer plexiform, outer nuclear layer, ELM, EZ, RPE, 
and choroidal vasculature in the AI- and GT-OCT image slice. A score of 0 was assigned when each retinal layer 
was not distinguishable or absent. To independently measure the image quality score, H.J.K. separated the AI-
OCT images and GT-OCT images and distributed them to S.H.P. in PNUYH and J.H. in PNUH, respectively. If 

Figure 2.  Preprocessing and augmentation of the training dataset. The preprocessing of the optical coherence 
tomography (OCT) images corresponding to the  127th slice for the  79th patient is included in the training 
dataset. The center of mass (COM) coordinate is extracted from preoperative OCT image. (a) A square area 
with a resolution of 448 pixels centered on the COM is cropped and resized to 224 square pixels using the 
LANCZOS4 interpolation method and designated as the original image. Five images are created by augmenting 
the original image, flipping horizontally, rotating counterclockwise by 4°and 8°around the COM, and shifting it 
by 15 pixels to the temporal and nasal sides. These images are then saved as augmentation data (red dotted line) 
and input into the generative deep learning model (GDLM). For the postoperative data, the same coordinate 
(blue asterisk) from the preoperative COM is used for the subsequent process, which is the same as for the 
preparation of the preoperative data. Consequently, (b) the original image and five augmented postoperative 
images (blue dotted lines) are designated as the ground truth for the GDLM. In order to allocate cases to each 
set randomly, we assigned consecutive integers to all cases in chronological order, following the sequence of 
prior surgical cases. Subsequently, we generated non-repeating random integers within Python software. The 
cases corresponding to randomly generated numbers were allocated in a 4:1:1 ratio, first to the training set and 
then to the validation and test sets. Multiple image pairs could come from the same volumetric scan, leading 
to a high correlation between adjacent image pairs and condition vectors. To minimize the correlation in the 
training dataset and address the imbalance in conditions, we utilized the WeightedRandomSampler modules 
in the process of loading training data sets (https:// pytor ch. org/ docs/ stabl e/_ modul es/ torch/ utils/ data/ sampl er. 
html# Weigh tedRa ndomS ampler. Accessed 21 January 2023).

https://pytorch.org/docs/stable/_modules/torch/utils/data/sampler.html#WeightedRandomSampler
https://pytorch.org/docs/stable/_modules/torch/utils/data/sampler.html#WeightedRandomSampler
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Figure 3.  Architectural overview and training scheme and environments of a conditional variational 
autoencoder for optical coherence tomography image generation. The conditional variational autoencoder 
(VAE) architecture comprises an encoder, sampler, decoder, and a loss function unit. The encoder includes a 
four-layer two-dimensional (2D) convolutional neural network (CNN) and a five-layer one-dimensional (1D) 
fully connected network (FCN). The 2D CNNs in the encoder utilize a kernel size of 3, stride of 1, and padding 
of 1, with the number of channels doubling in subsequent layers. Each layer is followed by batch normalization, 
leaky rectified linear unit (LReLU) activation, dropout, and maximum pooling to prevent overfitting. The 
output of the 2D CNNs is transformed into a 1D vector and fed into the FCNs. The FCNs output two 1D vectors 
representing the mean (μ) and log-variance (log-var) vectors, with the first layer incorporating a condition 
vector. The sampler employs variational inference and a reparameterization trick to extract a 1D latent vector 
(z) from the encoder output. The decoder is designed in the reverse order, featuring five-layer FCNs, a four-layer 
2D CNN decoder, and a sigmoid output layer. The CNNs in the decoder apply the nearest neighbor unpooling 
technique, which fills in the pixels surrounding the input data with the same value. During training, the VAE 
weights are updated to minimize the loss function comprising the reconstruction error and the Kullback–Leibler 
divergence (KLD) regularization. The reconstruction error incorporates binary cross-entropy with multiscale 
structural similarity (MS-SSIM) loss up to 400 epochs and then switches to learned perceptual image patch 
similarity (LPIPS) loss. A warm-up technique gradually increases the weight of the KLD regularization term to 
prevent latent vector deactivation. Network training is conducted on a Windows 11 operating system (version 
22H2; Microsoft, Redmond, WA, USA) using the Jupiter Notebook platform. The CUDA version 11.8, PyTorch 
version 2.1.0, and OpenCV version 4.7.0 libraries are utilized. Additionally, network evaluation is performed in 
the same environment.
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the judgment of the image quality score for each slice was ambiguous, the corresponding author provided the 
final decision.

The accuracy, precision, recall, and F1 scores were calculated to determine the concordant area of the neuro-
sensory retina by binarizing and comparing the AI- and GT-OCT image slices (Fig. 4A–G). Manual corrections 
were applied to address boundary errors, and agreement metrics were extracted from all test sets. LPIPS score is 
one image similarity indicator that employs pre-trained image classification networks to evaluate the similarity 
between two  images25. The comparison between AI- and GT-OCT image slices included assessments of LPIPS 
scores. A value close to 0 indicates a higher perceptual similarity between the two  images25.

We performed Bland–Altman analyses to assess the agreement of foveolar height (FH), mean foveal thick-
ness (MFT), and mean nasal/temporal parafoveal thickness (MNPT/MTPT) measured in AI- and GT-OCT 
(Fig. 4H,I). ELM restoration and EZ recovery were analyzed by assessing the accuracy and recall metrics between 
the two slices. Considering that the surgical procedures of the inverted ILM flap and conventional ILM peeling 
have different impacts on surgical outcomes and macular  morphology4, the performance of the GDLM was 
quantitatively tested for two surgical techniques in the test set.

Comparison of synthetic capabilities of various generative deep learning models
To our knowledge, there is yet to be any research or datasets utilizing GDLMs for synthesizing postoperative 
OCT images about FTMH. A few studies conduct OCT image synthesis to predict postoperative or post-ther-
apeutic macular anatomy for other retinal diseases, such as wet age-related macular degeneration, retinal vein 
occlusion, and epiretinal  membrane26–28. These studies employed GAN-based GDLMs, specifically the Pix2Pix 
and Pix2PixHD models. CycleGAN has been applied to address the variability of OCT images across different 
 devices29. Among various VAE models, the nouveau VAE (NVAE) has showcased state-of-the-art performance 
on the MNIST dataset, evaluated by the bits per dimension  metric30.

We compared the synthetic capabilities of our proposed model against various GDLMs. All GDLMs were 
trained up to 600 epochs using the same training dataset. We selected each model with the smallest loss, and 
synthetic capabilities were compared across 25 FTMH validation sets. The performance of each GDLM was evalu-
ated with the LPIPS score, Fréchet Inception Distance (FID)31, and image quality score between postoperative 
AI-OCT and GT-OCT images.

Statistical analyses
To analyze the data, the BCVA was converted to logMAR scale. Pearson’s chi-square or Fisher’s exact test is 
adopted to determine dependencies between two categorical variables. Continuous variables were compared 
using the Kruskal–Wallis test to compare each parameter among the three sets. Differences in FH, MFT, MNPT, 

Figure 4.  Quantitative assessment of predictive artificial intelligence optical coherence tomography image 
for full-thickness macular hole surgery. (a) A cross-sectional optical coherence tomography (OCT) slice of a 
full-thickness macular hole (FTMH) before surgery. (b) The postoperative 6-month OCT slice paired with slice 
A is regarded as the ground truth (GT) image. (c) The GDLM generates a predictive artificial intelligence (AI) 
OCT image. (d, e) The internal limiting membrane (red line) and retinal pigment epithelium layer (blue line) 
are accurately identified and superimposed onto the OCT slices. (f, g) White areas within the neurosensory 
retinal region are assigned TRUE, whereas other black areas are labeled FALSE to compare each pixel in the 
AI- and GT-OCT images. In this case, accuracy and F1 score are 95.2% and 0.901, respectively. (h, i) Foveolar 
height is measured at the foveola. Mean foveal thickness is defined as the mean retinal thickness corresponding 
to 500 μm on each side of the foveola (cyan region). Mean nasal and temporal parafoveal thickness is defined as 
the mean value of the retinal thickness corresponding to the section from 500 to 1500 μm in the nasal (yellow 
region) and temporal (magenta region) directions centered on the foveola.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6913  | https://doi.org/10.1038/s41598-024-57562-5

www.nature.com/scientificreports/

and MTPT between AI- and GT-OCT slices were investigated using the Wilcoxon signed-rank test. Comparisons 
between ILM peeling and inverted ILM flaps were performed using the Mann–Whitney U test. A P value of < 0.05 
was considered statistically significant. In Bland–Altman analyses to assess the agreement of macular morphol-
ogy, upper and lower bounds of 95% limits of agreement (LoA) as a percentage difference using the Python 
pyCompare library (ver. 1.5.4). Bland–Altman plots were generated for each parameter, and we established an 
acceptable threshold if the 95% limits of LoA were both within ± 30%32. Univariate and multivariate logistic 
regression analyses were conducted to identify the baseline and intraoperative parameters that affect ELM and 
EZ disruption. Furthermore, we developed logistic regression models with training sets comprising statistically 
significant parameters and assessed its accuracy using test sets using the Python scikit-learn library (ver. 1.0.2).

Ethics approval
Written informed consent was obtained from all participants. The study protocol and informed consent were 
approved by the Institutional Review Board of the PNUH and the PNUYH, and all research was conducted in 
accordance with the Declaration of Helsinki.

Results
Patients’ demographics
In total, 150 eyes with successfully closed FTMH met the inclusion criteria. Five surgeons performed the sur-
gery on patients with an average age of 65.2 ± 9.0 years. The preoperative BCVA and CSMT were 0.773 ± 0.366 
(20/119) and 320.5 ± 84.0 μm, respectively. Out of the total number of eyes, 47 (31.3%) were categorized as stage 
2, 49 (32.7%) as stage 3, and 54 (36.0%) as stage 4 FTMHs, with a mean hole size of 448.0 ± 215.1 μm. Combined 
cataract surgery was conducted in 114 (76.0%) eyes. The inverted ILM flap technique was performed in 78 
(52.0%) eyes, while ILM peeling in 72 eyes. The inverted ILM flap technique was performed in cases of larger 
hole size (538.8 ± 210.3 μm), compared to ILM peeling technique (349.7 ± 185.0 μm, P < 0.001). The postoperative 
BCVA and CSMT were significantly improved (0.393 ± 0.354 [20/49] and 259.6 ± 49.6 μm, respectively; P = 0.001 
and P = 0.046, respectively). ELM restoration was achieved in 110 eyes (73.3%), and successful EZ recovery was 
observed in 101 eyes (67.3%). Eyes with complete restoration of ELM exhibited better BCVA than those with-
out it (0.286 ± 0.267 vs. 0.688 ± 0.399, P < 0.001), and demonstrated greater BCVA improvement (0.457 ± 0.343 
vs. 0.168 ± 0.222, P < 0.001). Additionally, eyes with EZ recovery exhibited better BCVA (0.289 ± 0.278 vs. 
0.508 ± 0.394, P < 0.001) than those with failure of EZ recovery. All cases were randomly allocated to 100 train-
ing, 25 validations, and 25 test sets; none of the factors differed significantly across the three sets (Table 1).

Training GDLM and artificial intelligence OCT images
Of the 120,000 OCT image slice pairs in the training set, 25,800 pairs were set to condition vector 0; 25,200 pairs 
to condition vector 1; 25,800 pairs to condition vector 2; and 43,200 pairs to condition vector 3. As the number 
of epochs increased, the conditional VAE gradually reduced the loss, and the AI-OCT image slices resembled 
the GT-OCT image slices (See Supplementary Figure S3, S4, and Movie S5).

Comparison of various GDLMs with validation set
Proposed conditional VAE adopting LPIPS loss showed the lowest LPIPS and the highest image quality scores 
compared with GAN-based GDLMs (See Supplementary Table S6). Supplementary Figure S7 depicted repre-
sentative cases of GT- and AI-OCT images predicted by various GDLMs. The Pix2Pix model achieved the lowest 
FID score, but spatial deformity was observed in specific cases. CycleGAN was excluded because synthesized 
OCT images are almost identical to preoperative OCT images.

Comparison of accuracy and validity between AI- and GT-OCT image slices
AI-OCT image slices from test sets had a mean image quality score of 9.80 ± 0.50, clearly distinguishing between 
the retinal layers and surrounding structures, and were no different from the image quality scores of GT-OCT 
image slices (9.96 ± 0.20). The accuracy of the agreement between AI- and GT-OCT image slices for retinal 
regions was 94.7 ± 2.0%, with a precision of 89.0 ± 6.6%, recall of 89.5 ± 4.9%, and F1 score of 0.891 ± 0.042. The 
mean LPIPS score was 0.135 ± 0.033. Eyes with ILM peeling (n = 14, 56.0%) exhibited higher accuracy (95.5% 
vs. 93.6%, P = 0.025), precision (91.4% vs. 85.9%, P = 0.038), and F1 scores (0.909 vs. 0.868, P = 0.018) compared 
to those with inverted ILM flaps (n = 11, 44.0%) (Table 2).

AI- and GT-OCT image slices revealed no statistically significant differences in the averages of FH (228.2 ± 51.8 
vs. 233.4 ± 70.0 μm), MFT (271.4 ± 35.5 vs. 273.3 ± 55.7 μm), MNPT (316.6 ± 35.2 vs. 311.2 ± 34.3 μm), and MTPT 
(314.1 ± 32.7 vs. 309.7 ± 36.0 μm). No statistically significant difference was observed in retinal thickness between 
the ILM inverted flap and peeling groups (Table 2). The 95% LoA for all morphological parameters in both the 
test sets and the ILM peeling group remained within the range predefined by the cut-off value. However, in the 
case of the ILM inverted flap group, the upper 95% LoA for MFT exceeded 30% (See Supplementary Figure S8).

The logistic regression analysis revealed that a larger hole size was the sole factor that increased the risk of 
both ELM and EZ disruption among the baseline and intraoperative parameters. The ILM peeling group dem-
onstrated a higher probability of EZ recovery (See Supplementary Table S9). These logistic regression models 
predicted ELM and EZ recovery accuracy rates at 84.0% and 76.0%, respectively.

The accuracy of ELM restoration using GDLM was 88.0%, with recall rates of 94.4% for successful restoration 
and 71.4% for cases of restoration failure. For the EZ recovery, the GDLM achieved an accuracy of 92.0%, with 
recall rates of 100.0% for successful recovery and 80.0% for failures. The accuracy of GDLM model was superior 
to statistical analysis in prediction for postoperative foveal microstructure. The confusion matrices for predicting 
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the ELM and EZ restoration are summarized in Supplementary Figure S10. Fig. 5 and Supplementary Figure S11 
show representative cases of AI- and GT-OCT images.

Discussion
This study introduces the GDLM for predicting postoperative macular structures based on preoperative OCT 
images using a modified conditional VAE architecture. The AI-OCT images effectively depicted the distinct 
retinal layers as well as RPE and choroid. The high accuracy and F1 score indicated strong agreement with the 
neurosensory retinal region between the AI- and GT-OCT images. The retinal thickness did not differ between 
AI- and GT-OCT images. The accuracy of restoring the ELM and EZ was 85% or higher. These findings indicated 
that the proposed GDLM could generate high-quality AI-OCT images, similar to the actual postoperative OCT 
images. The average FH and MFT of AI-OCT images were comparable to those of GT-OCT images with a dif-
ference of not more than 5.2 μm, which is within a one-pixel level of mean differences. Bland–Altman analyses 
of the four thickness profiles showed that the upper and lower bounds of the 95% LoA did not exceed 30%. This 
indicates that the predicted thickness profiles can be considered acceptable as a new  technique32.

Wakabayashi et al. identified that the ELM status at 3 months was related to the BCVA 1 year after  surgery12. 
Further, ELM recovery may be a prerequisite for the EZ  recovery13. However, presenting the postoperative ELM 
status as a simple probability value may lack persuasiveness for patients and physicians. Postoperative AI-OCT 
images generated by the GDLM could provide an intuitive prediction of ELM restoration by determining the 
presence of a continuous bright line corresponding to the ELM in a 2D OCT image. The GDLM exhibited a sig-
nificant resemblance to the GT-OCT images in eyes with ILM peeling, accurately reproducing retinal structures 
compared to those with the inverted ILM flap. Following MH surgery, the inverted flap group experiences more 
glial proliferation around the fovea than the ILM peeling  group33. Consequently, such foveal proliferation results 
in diversity for the ILM inverted flap  group12,34. This diversity can potentially hinder the accurate prediction of 
macular structures by the GDLM in the ILM inverted flap group. Nevertheless, the proposed model effectively 
predicted not only other retinal thickness profiles but also ELM and EZ restoration in eyes experienced with 
ILM inverted flaps. The recall rates for ELM and EZ restoration failure were at 71.4% and 85.6%, respectively. 
This observation can be elucidated as follows: ELM and EZ disruption present as diverse signal intensities in 
postoperative OCT images, potentially introducing inaccuracies into the generative model. For instance, PRL 

Table 1.  Characteristics of successfully closed full-thickness macular hole cases after surgery and comparison 
among training, validation, and test sets. BBG, brilliant blue G; BCVA, best-corrected visual acuity; CSMT, 
central subfield mean thickness; ELM, external limiting membrane; EZ, ellipsoid zone; FTMH, full-thickness 
macular hole; ICG, indocyanine green; ILM, internal limiting membrane; logMAR, the logarithm of the 
minimum angle of resolution; OCT, optical coherence tomography. a Results of the Kruskall–Wallis test. 
b Results of the Pearson’s chi-square test. c Results of the Fisher’s exact test.

Factors
Total group
(N = 150)

Training set
(N = 100)

Validation set
(N = 25)

Test set
(N = 25) P value

Baseline parameters

 Age (year) 65.2 ± 9.0 64.5 ± 9.5 67.2 ± 8.6 65.6 ± 7.5 0.253a

 Male/female (N) 54/96 34/66 12/13 8/17 0.385b

 Right/Left (N) 73/77 49/51 14/11 10/15 0.525b

 Mean preoperative BCVA (logMAR) 0.773 ± 0.366 0.789 ± 0.374 0.744 ± 0.356 0.736 ± 0.353 0.746a

 Mean preoperative CSMT (μm) 320.5 ± 84.0 322.5 ± 80.5 334.8 ± 81.7 298.3 ± 99.8 0.374a

 Axial length (mm) 23.8 ± 1.5 23.8 ± 1.6 24.1 ± 1.3 23.7 ± 1.1 0.137a

 Hole size (μm) 448.0 ± 215.1 445.0 ± 197.6 413.4 ± 230.9 494.8 ± 262.9 0.478a

 FTMH Stage 2/Stage 3/Stage 4 (N) 47/49/54 30/36/34 11/7/7 6/6/13 0.269b

 FTMH morphology (N) [M shape/U shape/W shape] 81/49/20 55/34/11 12/8/5 14/7/4 0.772b

Intraoperative parameters

 Combined surgery (N) 114 79 18 19 0.103b

 ILM manipulation technique (N)
[Peeling only/Inverted flap] 72/78 45/55 13/12 14/11 0.560b

 Size of ILM peeling (Disc diameter) 3.2 ± 0.7 3.2 ± 0.7 3.1 ± 0.8 3.2 ± 0.7 0.779a

 Surgeon (N)
[Surgeon 1/2/3/4/5] 6/40/35/41/28 5/26/22/25/22 0/8/5/8/4 1/6/8/8/2 0.753c

 ILM staining dye (N) [BBG/ICG] 76/74 56/44 10/15 10/15 0.182b

 Tamponade materials (N) [Air/SF6] 77/73 50/50 15/10 12/13 0.628b

Postoperative parameters

 Postoperative BCVA (logMAR) 0.393 ± 0.354 0.397 ± 0.376 0.348 ± 0.229 0.420 ± 0.376 0.891a

 Postoperative CSMT (μm) 259.6 ± 49.6 259.0 ± 43.8 270.2 ± 52.5 251.3 ± 66.3 0.674a

 ELM restoration/disruption (N) 110/40 74/26 18/7 18/7 0.966b

 Success/Failure of EZ recovery (N) 101/49 70/30 16/9 15/10 0.589b
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defects may exhibit low signal intensity alongside outer foveal defects or moderate hyperreflective lesions result-
ing from glial cell proliferation, even in the ILM peeling  group35. In addition, the diminished recall rate might 
be attributed to the limited number of ELM and EZ disruption cases. Additional training sets of ELM and EZ 
disruption cases may enhance the recall rate.

We employed a conditional VAE that was trained on foveal OCT images as well as parafoveal OCT images 
corresponding to different conditions. The OCT training set for conditions other than condition 0, located away 
from the fovea, was more than three times larger than that for condition 0. The parafoveal OCT images revealed 
detailed retinal layers and surrounding structures. This approach enabled the GDLM to effectively represent 
specific retinal layers and predict various anatomical conditions for both the foveal and parafoveal regions from 
limited training sets. The realistic generation of parafoveal OCT images using the proposed GDLM is depicted 
in Supplementary Figure S11.

Studies have been conducted on the use of discriminative DL models in predicting VA or surgical outcomes 
in FTMH using preoperative cross-sectional OCT images. Obata et al. found the DL model to be more accurate 
in predicting VA than multivariate linear regression with baseline  factors16. In contrast, Lachance et al. observed 
no significant improvement in visual prediction by adding clinical findings to a CNN-based DL  model36. The 

Table 2.  Qualities and anatomical similarity between predictive and actual postoperative optical coherence 
tomography images. AI, artificial intelligence; ELM, external limiting membrane; ILM, internal limiting 
membrane; FH, foveolar height; GT, ground truth; LPIPS, learned perceptual image patch similarity; MFT, 
mean foveal thickness; MNPT, mean nasal parafoveal thickness; MTPT, mean temporal parafoveal thickness; 
OCT, optical coherence tomography. a Results of the Wilcoxon signed-rank test between AI- and GT-OCT 
images. b Results of the Mann–Whitney U test between the ILM peeling and inverted flap groups.

Parameters AI-OCT image GT-OCT image P value

All test set (N = 25)

 Image quality (0–10) 9.80 ± 0.50 9.96 ± 0.20 0.102a

 Agreement for retinal area

  Accuracy (%) 94.7 ± 2.0

  Precision (%) 89.0 ± 6.6

  Recall (%) 89.5 ± 4.9

  F1 score 0.891 ± 0.042

 LPIPS score (0–∞) 0.135 ± 0.033

  FH (μm) 228.2 ± 51.8 233.4 ± 70.0 0.596a

  MFT (μm) 271.4 ± 35.5 273.3 ± 55.7 0.819a

  MNPT (μm) 316.6 ± 35.2 311.2 ± 34.3 0.367a

  MTPT (μm) 314.1 ± 32.7 309.7 ± 36.0 0.989a

ILM peeling group (N = 14)

 Image quality (0–10) 10.00 ± 0.00 10.00 ± 0.00 1.000a

 Agreement for retinal area

  Accuracy (%) 95.5 ± 1.7 0.025b

  Precision (%) 91.4 ± 4.5 0.038b

  Recall (%) 90.6 ± 5.2 0.244b

  F1 score 0.909 ± 0.034 0.018b

 LPIPS score (0–∞) 0.126 ± 0.035 0.166b

  FH (μm) 229.2 ± 53.6 236.6 ± 62.8 0.440a

  MFT (μm) 273.5 ± 39.1 278.2 ± 45.5 0.470a

  MNPT (μm) 319.0 ± 36.4 316.7 ± 39.2 0.683a

  MTPT (μm) 315.2 ± 32.1 314.7 ± 26.2 0.683a

ILM Inverted flap group (N = 11)

 Image quality (0–10) 9.55 ± 0.69 9.91 ± 0.30 0.102a

 Agreement for retinal area

  Accuracy (%) 93.6 ± 2.1 0.025b

  Precision (%) 85.9 ± 7.7 0.038b

  Recall (%) 88.2 ± 4.3 0.244b

   F1 score 0.868 ± 0.041 0.018b

 LPIPS score (0–∞) 0.146 ± 0.027 0.166b

  FH (μm) 226.9 ± 51.9 229.3 ± 81.1 0.858a

  MFT (μm) 268.7 ± 32.0 267.1 ± 68.4 1.000a

  MNPT (μm) 313.7 ± 35.3 304.2 ± 27.1 0.374a

  MTPT (μm) 312.6 ± 35.0 303.4 ± 46.2 0.657a
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Figure 5.  Representative cases with predicted and ground truth postoperative optical coherence tomography images 
using a generative deep learning model. The leftmost column depicts preoperative optical coherence tomography 
(OCT) images from the test set used as input for the generative deep learning model (GDLM). All conditions in this 
figure are zero since the OCT cross-section passes near the fovea. The middle column shows the postoperative ground 
truth (GT) OCT images (GT-OCT), and the rightmost column displays the postoperative OCT images predicted 
using the GDLM. (a–c) The images of the GT-OCT and predicted artificial intelligence (AI) OCT (AI-OCT) are 
highly similar. The F1 score for the binarized neurosensory retinal region is 0.949. Image c, generated by the GDLM, 
encompasses all retinal layers, resulting in a quality score 10. (d–f) Unlike in the GT-OCT image (e), the external 
limiting membrane (ELM) is disrupted due to glial proliferation in the AI-OCT image (f, white arrows). (g–i) In the 
GT-OCT image, the ellipsoid zone (EZ) is disrupted (h); also, EZ disruption is apparent in the AI-OCT image (i). 
However, ELM disruption in GT-OCT is observed as a continuous line in AI-OCT, categorized as ELM restoration. 
(j–l) The ELM and EZ are disrupted in both images (k and l, white arrows).
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use of preoperative cross-sectional OCT images in DL models influencing postoperative VA can lead to varied 
results. Predicting postoperative macular structures could be key to forecasting postoperative  VA11,12. Xiao 
et al. introduced a DL model for predicting postoperative hole closure at one month using preoperative OCT 
images and clinical  data15. This model achieved an accuracy of over 80% in predicting MH closure. However, 
their successful closure rate was less than 70%, significantly lower than the primary hole closure rate of over 95% 
reported in recent  studies7,8. The prerequisite for using our GDLM model is knowledge of MH closure, which is 
impossible to determine before surgery. Nonetheless, since cases where idiopathic FTMH fails to close after the 
primary surgery are rare, these limitations will only affect a small number of patients.

In GAN-based GDLMs, spatial deformity (Supplementary Figure S7J and S7K) occurs in small training sets 
or spatial misalignment of image  pairs18. Achieving exact structural and spatial alignment in image-to-image 
transformation with conditional GANs is crucial, often requiring further registration during preprocessing 
to ensure high-quality  images37,38. However, the newly remodeled and migrated neural structure around the 
fovea makes accurate structural alignment impossible following FTMH surgery. Therefore, we designed a new 
VAE-based GDLM to predict postoperative OCT images in FTMH patients, as GAN-based GDLMs encounter 
these drawbacks. Considering the drawbacks of GANs, such as instability in training, mode collapse, and spatial 
deformity when generating  images18, the stability of VAEs is more suitable for medical applications.

This study had other several limitations, including its small sample size and retrospective nature. The GDLM 
exclusively employed preoperative OCT data during the training phase, and did not utilize clinical factors which 
can affect the anatomical status of the macula after FTMH surgery. Chronicity, stage of MH, and preoperative 
VA are major factors affecting postoperative anatomical and functional  status39,40. Incorporating these factors 
as supplementary condition vectors or integrating them with DL models holds the potential to enhance their 
performance. The proposed GDLM could not predict postoperative visual prognosis. Future research is required 
to develop an advanced DL model that can infer visual prognosis from predicted OCT images.

Despite these limitations, the proposed GDLM can serve as an explainable AI technique by providing pre-
dicted OCT images and anatomical profiles surrounding the macula rather than relying on simplistic measure-
ments, such as VA or hole closure, as utilized in conventional CNN-based DL model. Further, the introduced 
GDLM can be applied to various fields where the anatomical status of the macula after intervention needs to be 
predicted through OCT images, not limited to FTMH patients but also in all retinal conditions requiring the 
involvement of retinal specialists. Therefore, this GDLM will serve as a significant initial step in post-intervention 
OCT prediction. This study is anticipated to provide valuable clinical assistance to patients and ophthalmologists 
in assessing postoperative prognosis. Cases that predict ELM or EZ defects in AI-OCT images may result in a 
poor visual prognosis. In such cases, strategies to enhance their integrity can be considered before or during 
surgery, such as advising early surgery to the patient or considering ILM inverted flap techniques instead of 
ILM  peeling6,41,42.

In conclusion, the proposed GDLM demonstrated the ability to generate realistic and accurate predictions 
of postoperative OCT images. It successfully captured detailed retinal structures with a high degree of regional 
agreement and has the potential to provide valuable clinical insights by forecasting the restoration of ELM and 
EZ conditions closely related to postoperative prognosis. Sharing these predictive OCT images with patients 
scheduled for vitrectomy allows us to directly inform them about the surgical benefits and goals.

Data availability
The datasets for this study are protected patient information. Some data may be available for research purposes 
from the corresponding author upon reasonable request.
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