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Identification and validation 
of a metabolism‑related 
gene signature for predicting 
the prognosis of paediatric 
medulloblastoma
Jun Su 1, Qin Xie 2 & Longlong Xie 3*

Medulloblastoma (MB) is a malignant brain tumour that is highly common in children and has a 
tendency to spread to the brain and spinal cord. MB is thought to be a metabolically driven brain 
tumour. Understanding tumour cell metabolic patterns and characteristics can provide a promising 
foundation for understanding MB pathogenesis and developing treatments. Here, by analysing 
RNA-seq data of MB samples from the Gene Expression Omnibus (GEO) database, 12 differentially 
expressed metabolic-related genes (DE-MRGs) were chosen for the construction of a predictive risk 
score model for MB. This model demonstrated outstanding accuracy in predicting the outcomes of 
MB patients and served as a standalone predictor. An evaluation of functional enrichment revealed 
that the risk score showed enrichment in pathways related to cancer promotion and the immune 
response. In addition, a high risk score was an independent poor prognostic factor for MB in patients 
with different ages, sexes, metastasis stages and subgroups (SHH and Group 4). Consistently, the 
metabolic enzyme ornithine decarboxylase (ODC1) was upregulated in MB patients with poor survival 
time. Inhibition of ODC1 in primary and metastatic MB cell lines decreased cell proliferation, migration 
and invasion but increased immune infiltration. This study could aid in identifying metabolic targets 
for MB as well as optimizing risk stratification systems and individual treatment plans for MB patients 
via the use of a metabolism-related gene prognostic risk score signature.
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DFMO	� Difluoromethyl ornithine
GSEA	� Gene set enrichment analysis
HR	� Hazard ratio
OS	� Overall survival
GO	� Gene ontology
LASSO	� Least absolute shrinkage and selection operator
TCGA​	� The cancer genome atlas
GEO	� Gene expression omnibus

Medulloblastoma (MB), which accounts for 10 to 25% of paediatric tumours, is the most common malignant 
brain tumour in children, and it has a tendency to spread to the brain and spinal cord1. The strategies for treating 
MB include surgical resection, chemotherapy, and radiotherapy, and these strategies are tailored based on clinical 
radiological risk criteria2. Currently, the 5-year survival rate of patients with MB is 70–80%, which is better than 
the survival rate in previous years3. Although some MB patients achieve favourable therapeutic outcomes, they 
often suffer from neurological and endocrine sequelae4. Recently, with advances in molecular genomics, some 
breakthroughs have been made in understanding the genetic background of MB5. According to DNA methylation 
data, gene expression profiles, or proteomics data, MB can be classified into four molecular subtypes: WNT, SHH, 
Group 3, and Group 4. The molecular subtypes are associated with the prognosis of MB; however, patients within 
the same subgroups exhibit considerable heterogeneity, and the Group 3 and Group 4 subtypes of MB remain 
difficult to distinguish in clinical practice. Therefore, identifying sensitive and specific markers and constructing 
new predictive models are urgently needed to improve the prognosis of patients with MB.

Metabolic features are known to determine the phenotypes of tumour cells. The activation of oncogenes and 
deletion of tumour suppressors contribute to metabolic reprogramming in tumours. Currently, common meta-
bolic patterns in tumours include abnormalities in lipid synthesis, aerobic glycolysis, oxidative phosphorylation, 
and amino acid metabolism. Accumulating evidence indicates that the expression profile of metabolism-related 
genes has great clinical value in various cancers6. For example, many metabolism-related genes can predict 
overall survival, indicate dysregulation of the metabolic microenvironment, and serve as potential biomarkers 
for metabolic therapy in gastric adenocarcinoma patients7. In addition, mutation-activated KRAS significantly 
increases glutathione synthesis and intracellular cysteine levels in lung adenocarcinoma. The construction of 
predictive models with metabolism-related genes based on the TCGA database can reveal the characteristics of 
the immune microenvironment of lung adenocarcinoma and predict patient prognosis8,9. Therefore, understand-
ing the cellular and molecular mechanisms underlying tumour cell metabolic patterns can provide a helpful basis 
for understanding tumour pathogenesis and developing novel treatment.

MB is a metabolism-driven brain tumour5,10. Clinical 18FDG-PET studies have shown that MB patients with 
a poor prognosis exhibit active glycolytic metabolism and high glucose uptake rates11. In the SHH subtype of 
MB, the regulation of specific metabolic genes, including hexokinase 2 (Hk2) and fatty acid synthase (FASN), 
by Hedgehog (Shh) was found to shift the metabolic pattern toward aerobic glycolytic metabolism and lipid 
synthesis to maintain tumour growth12. Reducing lipid synthesis with FASN inhibitors slows tumour progression 
and prolongs survival13. Moreover, the pro-oncogene MYC drives cancer cell growth by altering cell metabo-
lism, leading to glutathione accumulation in Group 3 MB, which is characterized by MYC amplification. The 
inhibition of glutathione production exerts a synergistic effect with carboplatin treatment14. Therefore, precise 
in-depth staging of MB from a metabolic perspective is worthwhile, and targeting specific metabolic enzymes 
and metabolic pathways may be an effective cancer treatment strategy.

Our study aimed to identify key metabolic regulators in paediatric MB by conducting a comprehensive 
bioinformatics analysis of MB sample data from the Gene Expression Omnibus (GEO) database, followed by 
subsequent validation in independent datasets. In addition, to determine the possible function of the polyamine 
metabolic enzyme ODC1 in MB, cellular aggregation, movement, Cell Counting Kit-8, invasion and immune cell 
chemotaxis assays were performed with MB cell lines in vitro. Targeting ODC1-mediated polyamine metabo-
lism enhances immune cell infiltration in the tumour microenvironment, inhibits tumour cell dependence on 
polyamines, slows tumour growth and improves patient prognosis.

Materials and methods
Datasets
Three datasets, namely, GSE74195, GSE164677, and GSE85217, were obtained from the Gene Expression Omni-
bus (https://​www.​ncbi.​nlm.​nih.​gov/​gds). For the GSE85217 dataset, samples of patients with full survival data 
and who were under the age of 18 were retained for further examination. In addition, the external independent 
MB database from the CBTTC was downloaded from UCSC Xena (http://​xena.​ucsc.​edu/). The metabolic-related 
genes (MRGs) were obtained from the KEGG database15.

Identification of differentially expressed MRGs (DE‑MRGs) and functional enrichment analysis
First, the R package “limma” was used for differential gene expression analysis. The thresholds for identifying 
differentially expressed genes (DEGs) were a log2-fold change > 0.5 and an adjusted p value < 0.05. The inter-
section between the DEGs and MRGs was considered to indicate DE-MRGs. Ultimately, 71 DE-MRGs were 
identified. The DE-MRGs were subjected to Gene Ontology enrichment and enrichment assessments via the 
“clusterProfiler” package. The protein‒protein interaction (PPI) network of the DE-MRGs was obtained from 
the STRING database and constructed with Cytoscape software.

https://www.ncbi.nlm.nih.gov/gds
http://xena.ucsc.edu/
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Cluster analysis
First, univariate Cox analysis was conducted to identify prognostic DE-MRGs, and 21 of the 71 DE-MRGs were 
identified as prognostic DE-MRGs that were significantly associated with overall survival (OS) in the GSE85217 
paediatric MB dataset. The nonnegative matrix factorization (NMF) algorithm was subsequently used for cluster 
analysis to identify metabolic-related molecular subtypes based on the 21 prognostic DE-MRGs in the GSE85217 
cohort.

Establishment and verification of the predictive risk score model
As previously mentioned in sections “Identification of differentially expressed MRGs (DE-MRGs) and functional 
enrichment analysis” and “Cluster analysis”, 21 prognostic DE-MRGs were identified in the GSE85217 paediatric 
MB cohort. Then, the Lasso Cox regression technique was employed to reduce the number of dimensions in R 
software. Finally, lambda.min was used to diminish the dimension, and we obtained 12 prognostic DE-MRGs 
for the development of a predictive risk model. The equation for determining the risk score was as follows:

where βi is the regression coefficient of gene i obtained from Lasso, and Expi is the expression level of gene i.
The CBTTC database contains MB samples and provides the relevant clinical and survival information. MB 

patients aged < 18 years were selected and included in the CBTTC paediatric MB cohort, which was used to 
validate the risk model based on the abovementioned risk score formula.

Survival analysis
Kaplan–Meier (K-M) survival and univariate and multivariate Cox analyses were performed to estimate the 
prognostic value of the genes and risk scores via R packages (survival and survminer).

Gene set enrichment analysis (GSEA)
Based on the median risk score, the paediatric patients with MB were divided into two groups: the high-risk 
group and low-risk group. Subsequently, differential gene expression analysis was performed by using the “limma” 
package in R software. The results were subsequently used to conduct GSEA. The gene sets of KEGG pathway 
and HALLMARKER were downloaded from the MisgDB (https://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp). GSEA 
was performed to assess the pathway and biological process enrichment of the high- and low-risk groups by 
using the “clusterProfiler” package. The terms with an absolute normalized enrichment score (NES) > 1 and an 
adjusted p value < 0.05 were considered significant.

Immune infiltration analysis
The ssGSEA and ESTIMATE algorithms were used to evaluate immune cell infiltration in each paediatric MB 
sample by using the R packages “GSVA” (version 1.42.0) and “estimate” (version 1.0.13), respectively. The 28 
immune gene sets were described in a previous study16. Based on the 28 gene sets, the ssGSEA algorithm was 
used to quantify the relative infiltration of 28 immune cell types in the tumour microenvironment of MB. The 
ESTIMATE algorithm returned four scores, namely, the ImmuneScore, StromalScore, ESTIMATEScore, and 
tumour purity score.

Tumour stemness index (TSI) analysis
Malta and his colleagues have reported a machine learning method, called one-class logistic regression (OCLR), 
that is used to quantify the stemness of samples based on their transcriptome and other profiles17. Based on the 
OCLR algorithm, the TISs of the MB samples were calculated and used for further analysis.

Chemotherapy response analysis
The responses of the MB samples to drugs were predicted by the “pRRophetic” package in R. Based on the 
Genomics of Drug Sensitivity in Cancer (GDSC) database, the IC50 value of drugs in the MB samples were 
determined and used for correlation analysis.

Cell culture
The human Daoy (RRID: CVCL_1167) and D283 Med (RRID: CVCL_1155) MB cell lines were purchased from 
Abiowell Biotechnology; these cell lines were confirmed by STR analysis and were negative for mycoplasma 
infection. MB cell lines and normal human glial cells (HEB cell line) were incubated in MEM (Gibco, USA) 
supplemented with 10% foetal bovine serum (BI, Israel) and antibiotics (penicillin/streptomycin) in a humidi-
fied incubator in 5% CO2 at 37 °C.

Transfection
Small interfering RNAs (siRNAs) targeting ODC1 were purchased from GenePharma (Shanghai, China) and 
verified by DNA sequencing. The siRNAs were transfected into Daoy cells using Lipofectamine RNAiMAX 
(Invitrogen, New York, USA) according to the manufacturer’s instructions. The ODC1 siRNA sequences used 
were as follows: sense, GGU​UGG​UUU​CAG​CAU​GUA​UTT; antisense, AUA​CAU​GCU​GAA​ACC​AAC​CTT.

Risk score =
∑12

1
βi ∗ Expi

https://www.gsea-msigdb.org/gsea/index.jsp
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RNA extraction, RT‑PCR, and qRT‑PCR
Total RNA was isolated from Daoy cells using TRIzol reagent (Thermo Fisher, USA). According to the instruc-
tions, 500 ng of RNA was reverse transcribed into cDNA using the HiScript III 1st Strand cDNA Synthesis Kit 
(Vazyme, Nanjing, China). Then, the cDNA samples were subjected to real-time quantitative PCR using qPCR 
Master Mix (Promega, USA) and analysed with a PCR instrument (ABI7500, USA).

The sequences of the ODC1-specific primers that were used were as follows: forward primer, TTT​ACT​GCC​
AAG​GAC​ATT​CTGG; reverse primer, GGA​GAG​CTT​TTA​ACC​ACC​TCAG.

Migration and invasion analyses
Daoy cells were pretreated with siRNA and polymines (5 μm)/DFMO (5 mM) for 48 h. A migration assay 
(Corning, USA) was performed with a Transwell plate (24-well) following the manufacturer’s instructions. In 
brief, Daoy cells (5 × 104) in 100 μl of MEM were seeded in the upper chambers of the Transwell plate, and 800 μl 
of complete medium was added to the lower chambers. After incubating at 37 °C for 24 h, the chambers were 
removed, and the cells on the surface of the upper chamber membrane were removed with a cotton swab. The 
cells on the lower layer of the chamber membrane were fixed in methanol at room temperature for 15 min. Next, 
the chambers were removed, and the methanol was drained. Then, the cells were stained with 0.5% crystal violet 
(Beyotime, China) for 15 min, washed with PBS, and allowed to dry. For the invasion assay (Corning, USA), 
the cell density was adjusted to 5 × 105, and another procedure similar to that described above was conducted 
according to the manufacturer’s protocols. Finally, all the migrated cells were imaged and analysed by a Cytation 
5 (BioTek, USA).

Cell colony formation experiments
Forty-eight hours after treatment with siRNA and polymines (5 μm)/DFMO (5 mM), Daoy cells (1500 cells/well) 
were seeded in a 6-well plate and cultured for 10 days. The medium was discarded, and the cells were carefully 
washed three times with PBS solution. The cells were stained with 0.5% crystal violet for 15 min after fixation with 
methanol for 15 min. Finally, the dye solution was slowly removed by washing with running water, and the cells 
were air-dried. The number of colonies containing more than 50 cells was counted by a Cytation 5 (BioTek, USA).

Western blotting
For Western blot analysis, cells were harvested, washed three times with phosphate-buffered saline (PBS), lysed 
with immunoprecipitation (IP) lysis buffer (Thermo Fisher, USA) for 30 min on ice, and centrifuged for 15 min 
at 12,000×g at 4 °C. The protein concentrations of the supernatants were determined using a BCA protein assay 
kit. Whole-cell lysates were subjected to SDS-PAGE and transferred to nylon membranes. The membranes were 
blocked with 5% BSA for 1 h at room temperature and then incubated with primary antibodies against ODC1 
(1:1000 dilution) and GAPDH (1:2000 dilution) at 4 °C overnight. The membranes were then washed with 
PBS-T three times and subsequently hybridized with peroxidase-conjugated secondary antibodies for 1 h at 
room temperature, followed by washing with PBS-T. Finally, the blots were developed in an Amersham Imager 
600 (General Electric, USA).

CCK‑8 assay
Daoy cells were pretreated with siRNA and polymines (5 μM)/DFMO (5 mM) for 48 h and seeded in 96-well 
plates at a concentration of 4 × 103 cells per well. After incubation at 37 °C for 24 h, cell counting kit-8 (APExBIO, 
USA) reagent was added to MEM at a 1:9 ratio. Then, 100 μl of this detection solution was added to each well, 
and the cells were incubated at 37 °C for 1 h. The absorbance of the solution was measured at 450 nm using 
Labsystems (Thermo Fisher, USA).

PBMC chemotaxis assay
D283 Med cells (1.0 × 105) were treated with or without polymines (5 μM)/DFMO (5 mM); then, the cells were 
seeded in the lower chamber of a Transwell plate (6-well, 8 μm) in 1.6 ml of MEM. PBMCs (1 × 106) were stained 
with Cell Tracker Red at 37 °C for 45 min and seeded in the upper chamber of the Transwell plate in 400 μl of 
MEM. After the Daoy cells were cocultured with PBMCs for 72 h, the upper chamber was removed, and images 
of the lower chamber were captured and analysed by a Cytation 5 (BioTek, USA).

Results
Identification of differentially expressed metabolism‑related genes and functional enrich‑
ment analysis
First, we identified 1657 metabolism-related genes based on the KEGG database. Differential expression analysis 
was subsequently performed to identify DEGs between MB tissue and normal tissue samples from the GSE74195 
and GSE164677 datasets. Based on the preset thresholds for DEGs, there were 3036 DEGs in the GSE74195 data-
set and 2511 DEGs in the GSE164677 dataset (Fig. 1A,B). After identifying common genes between the DEGs and 
MRGs, we identified 71 DE-MRGs in MB (Fig. 1C). To better understand the underlying mechanism of these 71 
genes, GO and KEGG enrichment analyses were performed. The results showed that these genes were enriched 
mainly in various metabolic processes, lyase activity, and metabolic-related pathways (Fig. 1D,E). Additionally, 
the PPI network of these genes is shown in Fig. S1 and was constructed based on the STRING database.
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Identification of prognostic MRGs and metabolism‑associated clusters
To identify prognostic DE-MRGs in paediatric MB, univariate Cox regression analysis was performed, and the 
results revealed that 21 of the 71 DE-MRGs (2 genes were unmatched) were significantly correlated with the 
OS of paediatric patients with MB in the GSE85217 cohort (Fig. 2A). The correlations among these 21 genes 
were analysed, and the results revealed that there were significant correlations among the expression levels of 
the majority of the genes (Fig. 2B). These 21 prognostic MRGs were further used to conduct cluster analysis 
of the GSE85217 paediatric MB cohort. Using the NMF algorithm, we identified three distinct paediatric MB 
clusters, namely, Cluster 1, Cluster 2, and Cluster 3 (Fig. 2C). To compare the prognoses among these clusters, 
K‒M survival analysis was performed, and K‒M curves were drawn. The results showed that the overall survival 
of these three clusters was significantly different: Cluster 1 had a good prognosis, followed by Cluster 2, and 
Cluster 3 had the worst prognosis (Fig. 2D). A heatmap was constructed to visualize the expression patterns of 
these 21 genes among these three clusters, and the results revealed that these genes were significantly associated 
with the age, metastatic stage, histology, and molecular subtypes of the MB patients (Fig. 2E). Furthermore, the 
ssGSEA algorithm was used to estimate the degree of infiltration of 28 immune cells in paediatric MB samples. 
Differential analysis revealed that immune cell infiltration was significantly different among these three clusters 
(Fig. 2F). In addition, we explored the differences in stemness indices among these three clusters. As shown in 
Fig. 2G, the difference in mRNAsi among the three clusters was significant, and the mRNAsi of Cluster 2 was 
the highest; however, there was no significant difference in mDNAsi among the three clusters.

Construction and validation of a prognostic risk score model for paediatric MB
To construct a prognostic risk score model for paediatric MB based on the DE-MRGs, LASSO Cox analysis 
was conducted. Ultimately, 12 DE-MRGs, DSE, QDPR, ODC1, NUDT5, RRM2, ATP6V0E2, GAD1, PCBD2, 
GALNT16, PRDM2, ATP6V1G2, and GNS, were selected, and the coefficients of these genes were extracted 
(Fig. 3A,B). Based on the formula mentioned in the “Materials and methods” section, we computed the risk score 
for each MB sample. To assess the accuracy of this prognostic model in predicting OS, time-dependent ROC 
analysis was conducted, and curves of 1-, 3-, and 5-year OS were generated. The findings indicated that the area 
under the ROC curve (AUC) of this model for 1-, 3- and 5-year OS was 0.751, 0.731, and 0.729, respectively, 
which indicated that the signature of the 12 MRGs exhibited outstanding prognostic efficacy (Fig. 3C). Then, 
according to the median value of the risk score, paediatric MB patients were divided into a high-risk group and 
a low-risk group. Figure 3D shows the allocation of risk scores and survival status between the high-risk group 
and low-risk group based on the GSE85217 paediatric MB cohort. The gene expression levels of the 12 DE-MRGs 

Figure 1.   Identification of DE-MRGs in MB and functional enrichment analysis. (A) Volcano plot showed the 
DEGs between MB and cerebellum in the GSE74195 database. (B) Volcano plot showed the DEGs between MB 
and para-tumor in the GSE164677 database. (C) Venn graphic showed the 71 DE-MRGs. (D) Dot plot showed 
the top 10 enriched GO bp terms. (E) Dot plot showed the enriched KEGG pathways.
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Figure 2.   Identification of prognostic MRGs and metabolism-associated clusters. (A) Twenty-one of the 71 
MRGs were significantly associated with the prognosis of paediatric patients with MB according to univariate 
Cox analysis. (B) Correlations among the 21 prognostic MRGs. (C) The relationships among cophenetic, 
dispersion, and silhouette coefficients with respect to the number of clusters. (D) K‒M survival curves of OS 
time of patients in the three clusters. (E) The heatmap of the expression patterns of the 21 MRGs in the clusters. 
(F) The difference in the degree of immune cell infiltration among the three clusters based on the ssGSEA 
algorithm. (G) The difference in stemness scores among the three clusters.
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in each paediatric MB patient were visualized in a heatmap (Fig. 3E). K‒M survival curves were generated and 
showed that paediatric patients with MB in the high-risk group had significantly shorter OS than did those in 

Figure 3.   Construction of a prognostic risk model for paediatric MB. (A) The coefficient profiles of 21 MRGs 
based on the LASSO algorithm. (B) The selection of the optimal parameter (lambda) based on Ten-time cross-
validation. (C) The time-dependent ROC curves of OS time based on the GSE85217 paediatric MB cohort. (D) 
The distributions of risk score, OS, and survival status in the GSE85217 paediatric MB cohort. (E) The heatmap 
shows the relationship between the risk score and the expression of 12 MRGs in this risk model. (F) K‒M 
curves of OS in high-risk and low-risk patients.
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the low-risk group (Fig. 3F). Consistent with these findings, we obtained comparable results in the CBTTC-MB 
cohort, demonstrating that our risk model has exceptional efficacy in predicting the prognosis of paediatric MB 
patients (Fig. S2).

The prognostic model is an independent predictor of prognosis in paediatric patients with MB
To determine whether the constructed prognostic model was an autonomous prognostic factor for paediatric 
MB, both univariate and multivariate Cox analyses were performed. Univariate Cox regression analysis of the 
GSE85217 dataset demonstrated that the danger score, metastatic stage, and molecular subtype were signifi-
cantly associated with the prognosis of paediatric MB patients, whereas sex and age were not associated with 
the prognosis of paediatric MB patients (Fig. 4A). Multivariate Cox regression analysis of the GSE85217 dataset 
indicated that the risk score was an independent prognostic factor for paediatric MB after adjusting for the 
abovementioned clinical and molecular characteristics (Fig. 4B). Furthermore, stratified analysis grouped by 
sex, age, metastatic stage, and molecular subgroup was performed to confirm the robustness of our risk model. 
The findings revealed that individuals with lower risk scores consistently experienced longer overall survival 
than did those with higher risk scores in subgroups with different ages, sexes, metastatic stages, and molecular 
subtypes (Fig. 4C–F). In addition, risk score, metastatic stage, and molecular subtype were selected to construct 
a nomogram model based on the results of multivariate Cox analysis; among these factors, the risk score was 
the most important factor (Fig. 4G). According to the calibration plots, the OS times predicted by this nomo-
gram model were highly consistent with the actual 1-year, 3-year, and 5-year OS times based on the GSE85217 
paediatric MB cohort (Fig. 4H).

Clinical and molecular characteristics of risk score
We further examined the risk score of paediatric MB between different clinical and molecular subcategories. 
Our findings revealed that the risk score was significantly associated with molecular subtype (Fig. 5A), histology 
(Fig. 5B), metastatic stage (Fig. 5C), and sex (Fig. 5D). Nonetheless, no differences in risk score were observed 
among the age groups (Fig. 5E). To obtain a deeper understanding of the mechanism underlying differences in 
risk score, differential expression analysis was performed; 285 DEGs, including 86 upregulated and 199 downreg-
ulated genes, were identified between the high-risk group and low-risk group (Fig. 5F). GSEA was subsequently 
performed, and the results revealed that DEGs from the high-risk group were enriched in pathways related to 
the promotion of cancer, such as epithelial–mesenchymal transition, hypoxia, and KRAS signalling. Additionally, 
these genes were also enriched in pathways related to the immune response, such as the inflammatory response, 
cytokine‒cytokine receptor interaction, chemokine signalling pathway and focal adhesion. The top 5 pathways 
and terms are presented in Fig. 5G,H, respectively. In addition, we further analysed the correlation between the 
activity of 14 pathways and the risk score in paediatric MB and found that the risk score was positively correlated 
with the androgen, oestrogen, PI3K, and TNF-α pathways but negatively associated with the TNF-β, MAPK, 
VEGF, and WNT pathways (Fig. 5I).

Risk score was correlated with immune cell infiltration and the stem index in MB
As the functional enrichment analysis indicated an association between risk score and immune-related processes 
and pathways, we proceeded to investigate the correlation between risk score and tumour immune microenvi-
ronment in paediatric MB. First, the ESTIMATE algorithm was utilized to calculate the immune score, stromal 
score, ESTIMATE score, and tumour purity of each MB sample in the GSE85217 cohort. Correlation analysis 
was also conducted, and the results indicated that the risk score was negatively correlated with the three ESTI-
MATED scores but positively correlated with tumour purity (Fig. 6A–D). Moreover, we calculated the degrees 
of infiltration of 28 immune cell types in the GSE85217 cohort based on the ssGSEA algorithm. Our analysis 
showed that risk score was negatively correlated with the majority of immune cells in paediatric patients with 
MB (Fig. 6E,F). Differential analysis revealed significant differences in the degrees of infiltration of 16 immune 
cell types between the high-risk and low-risk groups (Fig. 6G). For most of these 16 cell types, the infiltration 
levels in the low-risk group were higher than those in the high-risk group according to the GSE85217 cohort 
(Fig. 6G). In addition, we calculated the correlation between risk score and mRNAsi and mDNAsi and assessed 
the difference in mRNAsi and mDNAsi between the high-risk group and low-risk group. The results showed 
that risk score was significantly positively correlated with mRNAsi and that mRNAsi in the high-risk group was 
significantly higher than that in the low-risk group (Fig. 6H); however, the correlation between risk score and 
mDNAsi was not statistically significant, and the difference in mDNAsi between the two risk groups was not 
significant (Fig. 6I).

ODC1 regulates polyamine metabolism to promote tumor proliferation and invasion by mod‑
ulating the immune microenvironment
Through previous analysis, we identified 12 MRGs that play important roles in paediatric MB. To validate the 
reliability of our bioinformatics analysis, we selected ODC1 and further studied its biological function in MB with 
experiments. Bioinformatics analysis revealed that ODC1 is highly expressed in MB and that its high expression 
predicts a poor prognosis. Compared to those in normal glial HEB cells, the protein and mRNA expression levels 
of ODC1 were notably upregulated in Daoy and D283 Med cells (Fig. 7A). ODC1 is a key rate-limiting enzyme 
in polyamine anabolism. It has been suggested that the occurrence of ODC1-mediated polyamine metabolism 
in MB and the accumulation of polyamines may drive tumour development. MBs are highly malignant brain 
tumours that readily metastasize to the dura mater via cerebrospinal fluid implantation. To further determine 
the role of ODC1-mediated polyamine metabolism in the proliferation and invasive metastasis of MB, we per-
formed loss-of-function and gain-of-function analyses. First, we knocked down ODC1 in Daoy cells (Fig. 7B) 
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Figure 4.   Cox survival and stratification analyses of the risk model in paediatric patients with MB. (A) The 
forest plot of univariate Cox analysis results based on the GSE85217 dataset. (B) The forest plot of multivariate 
Cox analysis results based on the GSE85217 dataset. (C) K‒M survival curves of patients in different age 
groups. (D) K‒M survival curves of patients of different sexes. (E) K‒M survival curves of patients with/
without metastasis. (F) K‒M survival curves of patients in different molecular subgroups. (G) Nomogram based 
on the risk score, metastatic stage, and molecular subtype in the GSE85217 dataset. (H) Calibration plots of the 
nomogram for predicting the probability of 1-, 3-, and 5-year OS.
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and observed a significant decrease in the ability of tumour cells to invade and migrate (Fig. 7C). Since ODC1 is 
a key metabolic enzyme in the synthesis of polyamines, we added polyamines to Daoy cells; the results revealed 

Figure 5.   Clinical and Molecular characteristics of risk score. (A) Analysis of differences in risk scores among 
molecular subtypes. (B) Difference analysis of risk score among the histological subtypes. (C) Difference 
analysis of risk score between patients with metastasis or not. (D) Difference analysis of risk score between 
gender subgroups. (E) Difference analysis of risk score between age subgroups. (F) The volcano plot of DEGs 
between high-risk group and low-risk group. (G) The top 5 terms of enriched KEGG pathways. (H) The top 5 
terms of enriched HALLMARKER pathways. (I) The correlation between risk score and 14 pathways activity.
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Figure 6.   The risk score associated with the infiltration level of immune cells in MB. (A–D) The risk score 
significantly correlated with the immune score (A), stromal score (B), ESTIMATE score (C), and tumor purity 
(D). (E) The heatmap shows the infiltration level of 28 immune cells in low-risk group and high-risk group 
based on the ssGSEA algorithm. (F) The correlation between risk score and infiltration level of 28 immune cells. 
(G) The box plot shows the difference in infiltration level of 28 immune cells between high-risk group and low-
risk group. (H,I) The association between risk score and stemness index, including mRNAsi (H) and mDNAsi 
(I).
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enhanced cell migration and invasion, while DFMO drugs that were used to inhibit ODC1 had the opposite effect 
(Fig. 7D). In addition, we further verified by cell proliferation and colony formation assays that siRNA-mediated 
knockdown of ODC1 or DFMO drug-mediated inhibition of ODC1 expression decreased cell proliferation and 
colony formation, while the opposite was observed after in vitro polyamine supplementation (Fig. 7E,F). These 
results elucidate that enhanced expression of ODC1 in MB cells accounts for polyamine accumulation and 
promotes tumour cell proliferation and invasion. Chemotaxis experiments showed that polyamine compounds 
reduced the infiltration of PBMCs to Med283 cells (Fig. 7G). In addition, we compared differences in the degrees 
of infiltration of 28 immune cell types and the expression of immune checkpoint genes between groups with dif-
ferent ODC1 expression and polyamine metabolism activity. The results showed that the degrees of infiltration of 
most immune cell types, including NK cells, effector memory CD4 T cells and CD8 T cells, macrophages, mast 
cells, MDSCs, memory B cells and so on, in groups with high polyamine metabolism activity group and high 
ODC1 expression were significantly lower than those in the groups with low polyamine metabolism activity and 
low ODC1 expression (Fig. S3A,B). These results suggest that active polyamine metabolism in tumour cells may 
reduce NK and CD8 T cell infiltration and exert antitumour immunosuppressive effects.

Furthermore, we analyzed the relationship between the expression of ODC1 and the sensitivity to certain 
drugs. Figure S4 shows that the IC50 values of entinostat, FH535, GSK1904529A, KIN001-266, MetAP2.Inhibitor, 
CPI-163, Alisertib, Trichostati-A, Panobinostat, AGI-6780, Kobe2602, Vorinostat, Afatinib, Dihydrorotenone, 

Figure 7.   Validation of the role of polyamines and ODC1 on the proliferation, invasion, and migration of 
medulloblastoma. (A) Expression of ODC1 in medulloblastoma cell lines (Daoy and D283 Med) against human 
normal brain glial cells (HEB) was detected by WB and qPCR. (B) The specific siRNA downregulated the 
protein and mRNA level of ODC1. (C,D) The effect of ODC1 on the migration and invasion ability of Daoy cells 
was investigated by transwell assay. Representative images are shown on the left; scale bar: 200 μm. Quantitative 
analysis of cell migration and invasion levels was shown in the right panel. (E) Effects of ODC1 knockdown and 
addition of polyamines or DFMO on cell viability were determined by CCK-8 assay. (F) Proliferation ability of 
Daoy cells after ODC1 knockdown and polyamine supplementation was examined by colony formation assay. 
The left panel shows the overall colony formation in the entire culture dish. The right panel shows the number 
of cell colonies in each dish. (G) PBMC were co-cultured with D283 Med cells by transwell assay (0.4 μm) after 
labeling with cell tracker Red, and the number of PBMC cells chemotactic was observed under fluorescence 
microscopy.
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I.BRD9, and telomerase inhibitor IX, were negatively correlated with high ODC1 expression, suggesting that 
patients with high ODC1 expression might benefit from these chemotherapeutic agents, which have low IC50 
values, while patients with low ODC1 expression might benefit from CGP.60474 and BMS.754807.

Discussion
MB is the most common malignant brain tumour in children; it mainly occurs in the posterior fossa and has the 
potential to spread through the cerebrospinal fluid. The histopathological classification is still the main system 
for categorizing MB and is extensively utilized in clinical practice18. However, prognosis varies greatly among 
patients with different MB subtypes. It is well known that metabolic reprogramming is an essential signature 
of tumour development. Many studies have demonstrated that abnormalities in metabolic enzymes, metabolic 
pathways, and metabolites facilitate the proliferation and invasion of tumour cells. Therefore, it is feasible to 
identify biomarkers of MB based on MRGs. In this study, we comprehensively analysed the prognostic value of 
MRGs, identified potential biomarkers and metabolic molecular subtypes, constructed a predictive risk model 
for MB, and further explored the biological function of ODC1 in MB based on in vitro experiments. Here, we cat-
egorized patients with MB into three groups according to the 21 prognostic MRGs by using the NMF algorithm. 
Patients in the three subgroups had different clinical prognoses, immune cell infiltration levels, and tumour stem 
indices. Furthermore, we developed and verified a predictive risk model utilizing 12 prognostic DE-MRGs that 
categorized MB patients into high- and low-risk cohorts. Patients in the risk subgroups also presented different 
clinical prognoses, immune cell infiltration levels, and tumour stem indices. Cox analyses, both univariate and 
multivariate, revealed that our risk model is an independent predictor of MB. Stratification analyses demon-
strated that this risk model can identify patients with poor outcomes in different clinical, histopathological, and 
molecular subgroups. The MB patients in the high-risk group always had poorer prognoses than did those in 
the low-risk group. When we compared the C-index of the risk model to that of other parameters, we observed 
that the risk model had the highest C-index in both the GSE and ICTTB MB datasets. These results suggested 
that our risk model is effective in predicting the prognosis of MB patients with high accuracy and in identifying 
patients who need aggressive treatment.

Recently, increasing studies have revealed that metabolic reprogramming plays an important role in tumori-
genesis and contributes to immune evasion19,20. The metabolic reprogramming of cancer cells can be indicative 
of resident and recruited cancer-associated stromal cells and immune cells in the tumour microenvironment 
(TME), which participate in regulating various processes and modulate the development of cancer20. In this 
study, we observed that our risk score was significantly associated with the degree of infiltration of immune cells 
in paediatric MB. The functional enrichment analysis indicated that our risk score was enriched for pathways 
related to the immune system. These results revealed that the 12 genes in our risk model may play important roles 
in regulating immune cells in the TME of MB through metabolic reprogramming. Furthermore, pathway activ-
ity analyses revealed that our risk score were correlated with pathways related to the promotion of, such as the 
androgen, oestrogen, PI3K, TNF-α, TNF-β, MAPK, VEGF, and WNT pathways. Several studies have indicated 
that oestrogen receptor β is expressed in MB and that its activation promotes MB cell proliferation and migration 
and inhibits apoptosis21. Belcher et al. reported that oestrogens reduce the sensitivity of MB to cisplatin22. Many 
studies have revealed that both the MAPK and PI3K signalling pathways are important pathways and act as key 
downstream effector factors or upstream modulators of many drives of MB metastasis23. VEGF signalling plays 
a critical role in tumour angiogenesis. Slongo et al. reported that VEGF and its receptors are expressed in human 
MB cell lines24. Some studies have reported that the VEGF signalling pathway participates in promoting MB cell 
growth, migration, and invasion25. In the present study, we discovered a significant correlation between our risk 
score and the metastatic status of MB. Therefore, these 12 genes might be involved in regulating MB metastasis.

The proposed signature included twelve metabolic genes (DSE, QDPR, ODC1, NUDT5, RRM2, ATP6V0E2, 
GAD1, PCBD2, GALNT16, PRDM2, ATP6V1G2, and GNS), and among these genes, high expression of four 
genes (QDPR, ODC1, NUDT5, and RRM2) was associated with poor prognosis, whereas elevated expression of 
the remaining eight genes (DSE, ATP6V0E2, GAD1, PCBD2, GALNT16, PRDM2, ATP6V1G2, and GNS) was 
associated with favourable outcomes in paediatric patients with MB. To the best of our knowledge, no previous 
investigations have described the use of these genes, other than RRM2, as predictors of OS in patients with MB. 
Many studies have indicated that most of these 12 MRGs are associated with various types of cancer. As the most 
important subunit of ribonucleotide reductase, RRM2 is the key regulatory enzyme for DNA synthesis and repair 
and is involved in many critical cellular processes26. Many studies have reported that RRM2 is overexpressed and 
acts as a tumour driver in various cancers, such as liver cancer27, lung cancer28, and breast cancer29. Guo et al.30 
identified that RRM2 is a core gene in MB via integrated bioinformatics analysis. In this study, we observed that 
high RRM2 expression was markedly associated with unfavourable outcomes in patients with MB. DSE is a C5 
epimerase and plays an important role in converting GlcA to iduronic acid (IdoA). Previous studies have demon-
strated that DSE is overexpressed in several cancers, such as glioma, breast cancer, and hepatocellular carcinoma, 
and regulates growth factor signalling in cancer cells31–33. NUDT5, an ADP ribose pyrophosphatase, is associated 
with nucleotide metabolism and cancer. According to Zhang et al., breast cancer cells exhibit reduced growth 
and metastasis potential upon inhibition of NUDT5 through the AKT/cyclin D signalling pathway34. Glutamate 
decarboxylase 1 (GAD1) is the key enzyme that regulates the synthesis of GABA. Recently, many researchers have 
suggested that GAD1 is significantly overexpressed in various neoplastic tissues35. GAD1 knockdown inhibits 
the cellular invasiveness and migratory abilities of human oral cancer cells by regulating β-catenin translocation 
and MMP7 activation36. Zhang et al. demonstrated that miR-3174 promotes cell proliferation, accelerates the cell 
cycle, and inhibits cell apoptosis by targeting PCBD2 in rectal cancer37. The polypeptide N‐acetylgalactosami-
nyltransferase 16 (GALNT16) is involved in protein O‐glycosylation, and its polymorphisms are correlated with 
susceptibility to breast cancer38. PRDM2, a member of the histone/protein methyltransferase superfamily, is a 
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tumour suppressor gene, and its expression is downregulated in some solid tumours, such as multiple myeloma 
and pituitary adenoma39–41.

Ornithine decarboxylase (ODC1) is a key rate-limiting enzyme that directly mediates the metabolism of 
polyamine production. Many studies have shown that an imbalance in polyamine synthesis is involved in the 
pathophysiological transformation of tumour cells, and large amounts of polyamines accumulate in rapidly 
growing tumour cells, such as breast cancer42, stomach cancer43, prostate cancer44, neuroblastoma45, and hepato-
cellular carcinoma46 cells. Polyamines, which include putrescine, spermine, and spermidine, are bioactive poly-
cations that bind nucleic acids and proteins that regulate signalling pathways47. Recently, emerging studies have 
demonstrated that ODC1 is aberrantly expressed and plays a vital role in cancer. For example, Zi Ye48 reported 
that ODC1 was overexpressed in HCC and that silencing ODC1 attenuated cell proliferation, migration, and 
invasion. D’Amico et al.49 reported that ODC1 was elevated in MB and that difluoromethyl ornithine (DFMO) 
suppressed the proliferation of primary SHH MB cells. Consistent with these findings, we discovered that ODC1 
was aberrantly overexpressed in primary (SHH subtype) and metastatic (Group 3 subtype) MB. Furthermore, we 
found that ODC1 was upregulated in both primary and metastatic MB cells. Silencing ODC1 through genetic 
and chemotherapeutic approaches inhibited the proliferation, migration, and invasion of MB cells. Moreover, the 
administration of polyamines decreased the immune infiltration of Med283 cells. Furthermore, bioinformatics 
analysis revealed that both ODC1 expression and polyamine metabolism activity were considerably correlated 
with the degree of immune cell invasion in MB. These results revealed that the metabolic enzyme ODC1 drives 
the proliferation and metastasis of MB cells by reshaping their metabolic phenotype. DFMO is a specific inhibi-
tor of polyamine biosynthesis enzymes and inhibits tumour formation50. Clinical trials have shown that DFMO 
is highly effective in reducing polyamine levels at safe doses51. Therefore, ODC1 is a potential therapeutic target 
for MB.

Conclusions
In this study, we constructed a 12-metabolic regulator (DE-MRG)-based model for predicting paediatric MB 
prognosis using comprehensive bioinformatics analysis. In addition, we revealed that ODC1-induced polyamine 
metabolism enhances the growth and invasion of MB cell lines in vitro. In summary, metabolism-related models 
could be promising prognostic methods for the clinical treatment of MB.

Data availability
The datasets used and analysed during the current study are available in the Gene Expression Omnibus (https://​
www.​ncbi.​nlm.​nih.​gov/​gds) and UCSC Xena (http://​xena.​ucsc.​edu/) repository.
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