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Enhanced chimp hierarchy 
optimization algorithm 
with adaptive lens imaging 
for feature selection in data 
classification
Li Zhang 1,2* & XiaoBo Chen 2,3

Feature selection is a critical component of machine learning and data mining to remove redundant 
and irrelevant features from a dataset. The Chimp Optimization Algorithm (CHoA) is widely applicable 
to various optimization problems due to its low number of parameters and fast convergence rate. 
However, CHoA has a weak exploration capability and tends to fall into local optimal solutions in 
solving the feature selection process, leading to ineffective removal of irrelevant and redundant 
features. To solve this problem, this paper proposes the Enhanced Chimp Hierarchy Optimization 
Algorithm for adaptive lens imaging (ALI-CHoASH) for searching the optimal classification problems 
for the optimal subset of features. Specifically, to enhance the exploration and exploitation capability 
of CHoA, we designed a chimp social hierarchy. We employed a novel social class factor to label the 
class situation of each chimp, enabling effective modelling and optimization of the relationships 
among chimp individuals. Then, to parse chimps’ social and collaborative behaviours with different 
social classes, we introduce other attacking prey and autonomous search strategies to help chimp 
individuals approach the optimal solution faster. In addition, considering the poor diversity of chimp 
groups in the late iteration, we propose an adaptive lens imaging back-learning strategy to avoid 
the algorithm falling into a local optimum. Finally, we validate the improvement of ALI-CHoASH in 
exploration and exploitation capabilities using several high-dimensional datasets. We also compare 
ALI-CHoASH with eight state-of-the-art methods in classification accuracy, feature subset size, and 
computation time to demonstrate its superiority.
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Classification is an essential topic in machine learning. High-dimensional datasets are becoming more and 
more common as new data collection techniques continue to emerge. However, not all features in a dataset are 
relevant to the classification goal. It is becoming increasingly important to quickly and accurately select the most 
valuable features from a large dataset1. Feature selection allows the selection of the most useful features from 
the original high-dimensional data while preserving the physical properties of the original features2. Therefore, 
feature selection is a critical preprocessing step in data mining and machine learning3,4.

The search strategies for feature subsets5,6 are generally classified into heuristic, random, and complete. 
However, the arbitrary search cannot avoid repeating the search of already explored solutions due to the lack 
of memory or learning mechanism, which results in a waste of resources. Meanwhile, the search space grows 
exponentially as the problem dimension increases, making it impractical to perform a complete search. In con-
trast, heuristic search7 performs well in dealing with complex problems and is valuable for solving optimal or 
near-optimal solutions. Therefore, metaheuristic algorithms have received much attention and research in recent 
decades for their efficient performance in solving high-dimensional optimization problems8.
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Swarm Intelligence9 efficiently finds optimal or near-optimal solutions in the solution space through interac-
tions and information sharing among individuals in the search space. As a kind of meta-inspired algorithm, group 
intelligence algorithms are widely used and show great potential with their applications in optimization, data 
mining, and machine learning10. In the past decades, many swarm intelligences have been proposed. For example, 
Grey Wolf Optimizer(GWO)11, Salp Swarm Algorithm(SSA)12, Harris hawks optimization(HHO)13, Slime Mould 
algorithm(SMA)14, Bald Eagle Search optimization algorithm(BES)15, Sand Cat swarm optimization(SCSO)16. 
These algorithms effectively solve multi-objective optimization problems and approximate the true Pareto optimal 
solution17,18. However, these swarm intelligence algorithms have a common disadvantage: they may converge 
slowly during the search process and easily fall into local optimal solutions19. The main reason for these draw-
backs is the imbalance between exploration and exploitation throughout the search process20.

The chimp optimization algorithm (CHoA)21 is a swarm intelligence optimization algorithm proposed by 
Khishe et al. in 2020, inspired by the chimp population’s hierarchy and hunting behaviour. It uses mathemati-
cal models to simulate the optimal behaviour of chimp populations through herding, chasing, and attacking to 
achieve predation. ChOA has the advantages of being simple in principle, requiring few tuning parameters, and 
being accessible to implement. These advantages of ChOA have motivated many researchers to apply it to many 
practical engineering tasks. For example, breast cancer diagnosis22, photovoltaic and solar cell performance 
optimization23, and Internet of Things applications24. However, like swarm intelligence algorithms, such as the 
classical butterfly optimization algorithm25, ChOA suffers from some shortcomings, such as slow convergence, 
low optimization search accuracy, and a tendency to fall into local optimality. These problems are especially 
prominent for complex high-dimensional optimization problems with multiple local extremes. The main reason 
for this phenomenon is attributed to the fact that the hunting mechanism of the basic CHoA is based on the 
information of the globally optimal attackers, barrier, chaser, and driver, which leads to the fact that the basic 
CHoA will gradually lose its exploration and exploitation capability in the later optimization stages. To solve 
this problem, researchers have proposed many variants of CHoA to compensate for this deficiency. For exam-
ple, Kaur et al. proposed the SChoA algorithm26, in which the sine-cosine function updates the chimp’s equa-
tions to improve the convergence speed of the algorithm and find the global minimum. Jia et al. proposed the 
EChOA algorithm27, which enhances the exploration and exploitation capabilities of the original ChOA algorithm 
through polynomial variation, Pearman rank correlation coefficients, and beetle tentacle operators. Wang et al. 
proposed the DLFChOA algorithm28, which smoothly transitions the search agent from the exploration phase 
to the exploitation phase by introducing a dynamic Lévy flight technique. This technique helps to increase the 
diversity of the algorithm in some complex issues and avoid the stagnation phenomenon of falling into local 
optimal solutions. However, the adaptive trade-off between exploration and exploitation is not considered in 
these different CHoA variants.

Therefore, we propose an enhanced chimp hierarchy optimization algorithm for adaptive lens imaging (ALI-
CHoASH). The ALI-CHoASH algorithm introduces three innovations to improve the performance of CHoA:

•	 A chimp social hierarchy was designed to enhance CHoA exploration and exploitation by tagging individual 
chimps with a social class factor to enable modelling and optimizing inter-individual relationships.

•	 Parsing chimps’ social and collaborative behaviours from different social classes. Introducing different prey-
attacking strategies and autonomous searching strategies in each social class, the approach can fully reflect 
the leading role of high-ranking chimps to lower-ranking chimps and fully exploit the independent mobility 
of individual chimpanzees to improve the diversity of the population.

•	 In the late iteration of the algorithm, an opposite learning strategy with adaptive lens imaging is proposed, 
which expands the algorithm’s global exploitation capability and improves the population’s diversity, thus 
preventing the algorithm from falling into the local optimal solution.

In summary, the ALI-CHoASH algorithm improves the performance of CHoA by introducing the chimp social 
hierarchy, different strategies for attacking prey and autonomous searching strategies, and an oppositional learn-
ing strategy for adaptive lens imaging, which enhances the exploration and exploitation of feature selection, thus 
preventing from falling into local optima. To verify its effectiveness in feature selection, extensive experiments 
are conducted to compare the ALI-CHoASH algorithm with the CHoA21, SChoA26, GMPBSA29, GWO11, SSA12 
HHO13, SMA14, BES15 algorithms, respectively. ALI-CHoASH is more effective in classification accuracy average 
and optimal fitness values.

The remainder of this work is summarized in the following structure. “Related work” Section describes related 
work on existing ChoA variants. “Background” Section briefly describes and introduces the basic CHoA algo-
rithm and the convex lens imaging principle. “Enhanced chimp hierarchy optimization algorithm for adaptive 
lens imaging” Section presents our proposed ALI-CHoASH algorithm for feature selection. In “Experimental 
analyses and discussions” Section, a series of experiments are performed and the results are discussed in detail. 
Finally, “Conclusion” Section is drawn, and the following research directions are given.

Related work
Exploration and exploitation are integral in swarm intelligence optimization algorithms30,31. Exploration provides 
global search capabilities that help algorithms discover potential solutions. Conversely, exploitation improves 
the quality and accuracy of solutions through local search and optimization. Therefore, the main challenge of 
intelligent optimization algorithms is finding the best balance between exploration and exploitation, maintain-
ing diversity in the solution space, and preventing the algorithms from prematurely converging to local optimal 
solutions. So far, scholars have made many improvements to enhance the performance of intelligent optimization 
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algorithms. According to the literature review, improvements to intelligent optimization algorithms can be clas-
sified into the following three categories.

Feature selection models are built using intelligent optimization algorithms fused with binary 
conversion functions
For example, Khosrav et al.32 proposed BGTOAV and BGTOAS for feature selection, which can improve the per-
formance of binary group teaching optimization algorithms by introducing improvements such as local search, 
chaotic mapping, new binary operators, and oppositional learning strategies to solve high-dimensional feature 
selection problems. Pashaei et al.33 proposed an orangutan optimization algorithm-based Packed feature selection 
method, which introduces two binary variants of the orangutan optimization algorithm to solve the classification 
of biomedical data. Experiments demonstrate the method’s effectiveness in feature selection and classification 
accuracy, and it outperforms other wrapper-based feature selection methods and filter-based feature selection 
methods on multiple datasets. This provides an effective algorithm and an improved method for solving the 
biomedical data classification problem. Guha et al.34 proposed the DEOSA algorithm for feature selection, which 
first maps the continuous values of the EO (Equilibrium Optimizer)35 to the binary domain by using a U-shape 
transformation function. Then, Simulated Annealing (SA) is introduced to enhance the local exploitation capabil-
ity of the DEOSA algorithm. Zhuang et al.36 proposed the PBAOA algorithm for feature selection. In the PBAOA 
algorithm, multiplication and division operators are first utilized for exploring the solution space, while subtrac-
tion and addition operators are used to develop existing solutions. Then, four types of transformation functions 
are used to improve the robustness and adaptability of the PBAOA algorithm, speed up the convergence and 
search efficiency of the algorithm, and improve the algorithm’s performance. Fatahi et al. proposed an Improved 
Binary Quantum-based Avian Navigation Optimizer Algorithm (IBQANA)37, which solves the problem of binary 
versions of meta-heuristic algorithms that produce sub-optimal solutions. Nadimi-Shahraki et al. proposed a 
new binary starling murmuration optimizer (BSMO)38, which solves complex engineering problems and finds 
the optimal subset of features. Nadimi-Shahraki et al. proposed Binary Approaches of Quantum-Based Avian 
Navigation Optimizer (BQANA)39. This algorithm exploits the scalability of QANA to efficiently select the opti-
mal subset of features from a high-dimensional medical dataset using two different approaches.

Improve the search mechanism to enhance the algorithm’s performance
For example, Mostafa et al.40 proposed an improved chameleon population algorithm (mCSA) for feature selec-
tion. mCSA improves the performance of the algorithm by three improvements such as introducing a nonlinear 
transfer operator, randomizing the Lévy flight control parameter, and borrowing the depletion mechanism 
from artificial ecosystems optimization algorithms. Long et al.41 proposed the VBOA algorithm, which firstly 
improved the algorithm’s performance by introducing velocity and memory terms and designed an improved 
position update equation for BOA. Then, a refraction-based learning strategy was introduced into the butterfly 
optimization algorithm to enhance diversity and exploration. Finally, experimental results demonstrate the 
effectiveness of the VBOA algorithm for high-dimensional optimization problems. Saffari et al.42 proposed the 
fuzzy-chOA algorithm, which uses fuzzy logic to adjust the control parameters of the ChOA and applies this 
method to change the relationship between the exploration and exploitation phases. Houssein et al.43 intro-
duced the mSTOA algorithm, which employs a balanced exploration/exploitation strategy, an adaptive control 
parameter strategy, and a population reduction strategy to improve the STOA algorithm’s tendency to fall into 
suboptimal solutions when solving the feature selection problem. Chhabra et al. introduced an improved Bald 
Eagle Search (mBES) algorithm44, which aims to solve the original BES algorithm’s insufficient searching issues 
efficiency and tendency to fall into local optimums. mBES is a new algorithm for the exploration of a large area of 
a large area of a river. To fall into local optima. mBES algorithm is improved by introducing three improvements. 
Firstly, the positions of individual solutions are updated using oppositional learning to enhance the explora-
tion capability. Secondly, Chaotic Local Search is used to improve the local search capability of the algorithm. 
Finally, Transition and phasor operators balance the relationship between exploration and exploitation. Khishe 
et al.45 proposed an improved orangutan optimization algorithm (OBLChOA), which improves the exploration 
and exploitation capabilities of ChOA by introducing greedy search and oppositional learning (OBL)-based 
methods. These improvements aim to address the slow convergence speed and lack of exploration capability of 
ChOA. Xu et al.46 study demonstrated the effectiveness of the Enhanced Grasshopper Optimization Algorithm 
(EGOA) in solving single-objective optimization problems. By introducing elite oppositional learning and a 
simplified Gaussian strategy, EGOA can discover solutions better at an early stage while having good search 
agent update capability. For solving globally constrained and unconstrained optimization problems and feature 
selection problems, EGOA exhibits good robustness and performance. This provides valuable tools and methods 
for optimization and feature selection in real-world situations. Bo et al.47 proposed an Evolutionary Orangutan 
Optimization Algorithm (GSOBL-ChOA), which utilizes Greedy Search and Oppositional Learning to increase 
the exploration and exploitation capabilities of ChOA in solving real-world engineering-constrained problems, 
respectively. Nadimi-Shahraki et al. proposed the Enhanced whale optimization algorithm (E-WOA)48, which 
uses three effective search strategies named migrating, preferential selecting, and enriched encircling prey, effec-
tively solving the global optimization problem and improving the efficiency of feature selection.

Incorporates different algorithms to improve the performance of the algorithm
Gong et al.49 This paper proposed an improved Orangutan Optimization Algorithm (NChOA) by embedding a 
clustering technique that allows it to handle various local/global optimal solutions better and retain the values 
of these optimal solutions until termination. This method combines the individual optimal algorithmic features 
of Particle Swarm Optimization (PSO) and local search techniques. Pasandideh et al.50 proposed a Sine Cosine 
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Orangutan Optimization Algorithm (SChoA) combining the Sine Cosine Function and ChoA as well as com-
bining ChoA with Particle Swarm Optimization (PSO) to form the ChoA-PSO algorithm. Finally, these new 
meta-heuristic algorithms are combined to solve the problem of optimal operation strategies for dam reservoirs. 
Kumari proposed51 improved variants of ChoA. One of these variants combines the existing ChoA with the SHO 
algorithm to enhance the exploration phase of the existing ChoA, named IChoA-SHO. The other variant aims 
to improve the exploitation search capability of the existing ChoA. These improved variants aim to solve the 
problem of poor convergence and the tendency to fall into local minima of traditional orangutan optimization 
algorithms for high-dimensional problems.

In summary, selecting appropriate search mechanisms is crucial for improving intelligent optimization algo-
rithms. Therefore, the focus of this study is to propose the enhancement of the chimpanzee social hierarchy to 
achieve effective modelling and optimization of inter-individual relationships among chimps and to improve the 
exploration and exploitation capabilities of the underlying CHoA to prevent from falling into a locally optimal 
solution by introducing different strategies for attacking the prey, an autonomous searching strategy as well as an 
oppositional learning strategy with adaptive lens imaging, which is also applied to the feature selection problem.

Background
Chimp optimization algorithm
Chimps live in groups with a strict hierarchy among them. The chimp family is divided into five classes: attackers, 
barriers, chasers, drivers and common chimps. As shown in Fig. 1, the attacker chimp is located at the top of the 
social hierarchy and is the supreme ruler and manager of the chimp group. The barrier chimp is found at the 
second level, equivalent to the deputy leader in the chimp group and is responsible for taking over the leadership 
from the attacker chimp. The chaser chimps are located in the third tier and are subservient to both attackers 
and barriers. The driver chimps are found in the fourth tier and are subordinate to the attackers, barriers, and 
chasers but can rule over the common chimps. The common chimp is located at the bottom of the hierarchy and 
always has to obey other chimps of higher status.

In the CHoA algorithm, the chimp group in the search space mainly uses the four best-performing chimps 
to guide the other chimps to search towards their optimal area, while in the continuous iterative search process, 
the four chimps, namely the attacker, the barrier, the chaser and the driver, predict the possible location of the 
captured object, i.e., by guiding the continuous search for the global optimal solution. Thus, the mathematical 
model of a chimp chasing prey during the search process is as follows:

In Eq. (1), Xpreythe position vector of the prey, Xchimp the position vector of the current individual chimp, t the 
number of current iterations, and a, C, m the coefficient vector, which is calculated as follows:

Among them, r1 and r2 are random numbers between [0, 1] , respectively. f is the convergence factor whose value 
decreases non-linearly from 2.5 to 0 as the number of iterations increases. T is denoted as the maximum number 
of iterations. a is a random vector that determines the distance between the chimp and the prey, with a random 
number of values between 

[

−f , f
]

 .m is the chaotic vector generated by the chaotic mapping. C is the control 
coefficient for the Chimp expulsion and prey chasing, and its value is a random number between [0, 2].

It is assumed below that in each iteration, the attacker, attacker, barrier, and driver store the four best positions 
obtained so far, and the remaining chimps need to update their positions based on the positions of the attacker, 
attacker, barrier, and driver. The following mathematical formula illustrates the process.

(1)Xchimp(t + 1) = Xprey(t)− a ·
∣

∣C · Xprey(t)−m · Xchimp(t)
∣

∣

(2)a = 2 · f · r1 − f

(3)C = 2 · r2

(4)m = Chaotic_value

(5)f = 2.5−
2.5 · t

T

Figure 1.   Hierarchical diagram of the chimp optimization algorithm.
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The mathematical model of a chimp attacking its prey is as follows:

From Eqs. (10)–(15), X(t) is the position vector of the current Chimp, Xattacker is the position vector of the 
attacker, Xbarrier is the position vector of the barrier, Xchaser is the position vector of the chaser, Xdriver is the 
position vector of the driver is the updated position vector of the current Chimp. Xchimp(t + 1) is the chaotic 
mapping, which is used to update the position of the solution. Chaotic_value is the chaotic mapping, which is 
used to update the position of the solution. Eq. (15) shows that the four best individual Chimps estimate the 
unique Chimp positions while the other chimp updates their positions randomly.

Principle of convex lens imaging
The rule of convex lens imaging52 is an optical principle stating that when an object is out of focus, it will produce 
an actual inverted image on the opposite side of a convex lens. Figure 3 illustrates this principle.

The equation for imaging a lens can be derived from Fig. 2 as follows.

u is the object distance, v is the image distance, and f is the lens’s focal length.

Enhanced chimp hierarchy optimization algorithm for adaptive lens imaging
Chimp social class operator design and implementation
Chimp social hierarchy design ideas
From Eq. (14), it can be seen that when the CHoA algorithm performs an optimization task, all chimps adopt a 
search strategy with similar behaviours, which may lead to a decrease in the ability of the chimpanzee popula-
tion to exploit locally. Once the attackers, barriers, chasers and drivers fall into the local optimum, it is difficult 
for the whole population to escape from the local optimal solution. Therefore, enriching the search strategy of 
the CHoA algorithm is an effective method that can enhance the algorithm’s global search ability. Currently, the 
grouping strategy is a common mechanism for multiple search strategies. For example, GTOA (teaching opti-
mization algorithm)53 and SO (Snake Optimizer)54. The experimental results proved that the grouping strategy 
using this variety of clusters is very effective. However, there are some drawbacks to the grouping strategy of 
these algorithms, as follows:

(6)dattacker = |C1 · Xattacker −m1 · X(t)|

(7)dbarrier = |C2 · Xbarrier −m2 · X(t)|

(8)dchaser = |C3 · Xchaser −m3 · X(t)|

(9)ddriver = |C4 · Xdriver −m4 · X(t)|

(10)X1 =Xattacker − a1 · dattacker

(11)X2 =Xbarrier − a2 · dbarrier

(12)X3 =Xchaser − a3 · dchaser

(13)X4 =Xdriver − a4 · ddriver

(14)Xchimp(t + 1) =(X1 + X2 + X3 + X4)/4

(15)Xchimp(t + 1) =

{

Eq.(4),µ < 0.5

Chaotic_value,µ ≥ 0.5

(16)
1

u
+

1

v
=

1

f

Figure 2.   Principle of lens imaging.
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•	 In the optimization algorithm, the introduction of multiple population strategies and the management of 
communication and collaboration among them increase the structural complexity of the algorithm.

•	 The multiple population search strategy requires data communication and information sharing among dif-
ferent populations, which involves a large amount of data communication overhead. Especially when the 
population size is large and frequent communication is required, the communication overhead will become 
high, affecting the operation efficiency of the algorithm.

•	 Parameters such as the number and size of multiple populations and communication strategies are usually 
required to be set in various population search strategies. The selection of these parameters significantly 
impacts the algorithm’s performance, and tuning these parameters is also a complex process. To improve the 
above grouping strategies to enhance the local exploitation of CHoA algorithms. Inspired by the hierarchy in 
sociological theory, this paper designs a multi-learning strategy for the social hierarchy of the chimp popula-
tion (CHoASH) to solve the problem of population diversity reduction and quality.

A framework for learning operators in chimp social hierarchies
As can be seen in Fig. 3, the CHoASH operator framework is a straightforward structure which consists of the 
following two main parts:

•	 Chimp social stratification. Let the search space of the chimp population be a N × D . N is the 
number of chimps, and D is the number of feature. The position of the i chimp at the time of t is 
Xi(t) =

(

xti,1, x
t
i,2, x

t
i,3, · · · , x

t
i,D

)

 . In chimp social stratification, the population is divided into five social 
classes: the attacker chimp class, the barrier chimp class, the chaser chimp class, the driver chimp class, and 
the standard chimp class. We use Si(t) to describe the social class of each chimp. For example, if a chimp 
belongs to the attacker class, Si(t) = 1 . So, the barrier class, the chaser class, the driver class, and the standard 
chimp class are each Si(t) = 2,Si(t) = 3,Si(t) = 4,Si(t) = 5 . Then, the social hierarchy factor (SHF) is used 
to mark the hierarchical status of each chimp, which is calculated as 

 In Eq. (17), L represents the number of classes. Thus, if an individual chimp belongs to the attacker 
class, i.e., Si(t) = 1 , then the social class factor SHFi(t) = 1 . Then, when Si(t) = 2, SHFi(t) = 0.75 . when 
Si(t) = 3, SHFi(t) = 0.5 . when Si(t) = 4, SHFi(t) = 0.25 . when Si(t) = 5, SHFi(t) = 0 .

•	 Learning Strategies. In the CHoASH algorithmic framework, two learning strategies are designed for dif-
ferent social classes: the attacking prey strategy and the autonomous search strategy. In the attacking prey 
strategy, individual chimps use the location information of chimps higher than their class to guide themselves 
to the region of the optimal solution. This strategy helps individual chimps to approach the optimal solu-
tion faster. In the autonomous search strategy, conversely, individual chimps observe information about the 
positions of chimpanzees higher than their rank and their position and update their position based on this 
information. This strategy allows chimp individuals to obtain more helpful information from higher-ranked 
individuals and thus improve their search behaviour. With the above two learning strategies, the CHoASH 
algorithm can consider local exploitation and global exploration, effectively improving the algorithm’s per-
formance.

Therefore, when SHFi(t) > r is used at each iteration, the i-th chimp adopts the prey attack strategy at time t. 
Otherwise, it assumes the autonomous search strategy. Where the random number of r ∈ [0, 1] . In the attacker 
stratum, SHFi(t) = 1 , and r is constantly less than or equal to 1, so individual chimp in this stratum have only 

(17)SHFi(t) =
L− Si(t)

L− 1

Figure 3.   Framework of the CHoASH algorithm.
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the attack-prey strategy. In the common chimp class, SHFi(t) = 0 , and r is constantly greater than or equal to 0, 
so individual chimps in that class have only autonomous search strategies.

In the attacker chimp class, the position update equation is (18):

In Eq. (18), d, k is a random number in the interval [1,D] , i, p, q is a random number in the interval [1,N] , and 
i  = p  = q . r1 is a random number in [0, 1] .

In the barrier chimp class, the position update equation is (19):

In the chaser chimp class, the position update equation is (20):

In the driver chimp class, the position update equation is (21):

In the standard chimp class, the position update equation is (22):

Note that a better solution may not be obtained through the learning strategy in Eqs. (18) to (22). Therefore, a 
screening mechanism is designed as follows:

From E. (23), the better of the current iteration chimp individual Xnewt
i,d

 and the candidate chimp individual xt
i,d

 
will enter the next generation population.

In summary, the pseudo-code of CHoASH is shown in Algorithm 1.

(18)Xnewt
i,d

=

{

xtA,k d �= k

xtA,d + 2× f × r1 ×
(

xtp,d − xtp,d

)

d = k

(19)Xnewt
i,d

=

{

xt1,d r0 ≥ 0.75
(

xtA,d + xtB,d

)

/2 r0 < 0.75

(20)Xnewt
i,d

=







�

xt1,d + xt2,d

�

/2 r0 ≥ 0.5
�

xtA,d + xtB,d + xtC,d

�

/3 r0 < 0.5

(21)Xnewt
i,d

=







�

xt1,d + xt2,d + xt3,d

�

/3 r0 ≥ 0.25
�

xtA,d + xtB,d + xtC,d + xtD,d

�

/4 r0 < 0.25

(22)Xnewt
i,d

=
(

xt1,d + xt2,d + xt3,d + xt4,d
)

/4

(23)xt+1
i,d =

{

Xnewt
i,d
, if f

(

Xnewt
i,d

)

< f
(

xt
i,d

)

xt
i,d
, otherwise
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Algorithm 1.   CHoASH Algorithm.

Adaptive lens imaging oppositional learning strategies
During the iterative search process, ordinary chimp individuals in the chimp population are susceptible to being 
guided by attacker, barrier, chaser and driver as they gradually approach the optimal region. However, as the 
algorithm searches, all individuals in the chimpanzee population eventually converge on a narrow area. This 
situation may cause the algorithm to fall into a local optimum, especially when the attacker is a local optimum, 
and the CHoA algorithm is prone to fall into a local optimum.

To enhance the global exploration capability of the CHoA algorithm and make it jump out of the local opti-
mum, we introduce an adaptive oppositional learning strategy based on the lens imaging principle. The main 
idea of this strategy is to generate new individuals by observing the behavioural patterns of the current optimal 
individual and analyzing them inversely using the lens imaging principle. Now, let the feasible solution X in the 
solution space; there always exists a corresponding inverse solution X∗ . Suppose the new individual solution X∗ is 
better than the solution X of the current optimal individual. In that case, it makes the algorithm more exploratory 
and thus avoids the plague of local optimal solutions. The advantage of this strategy is that these new individuals 
are added to the algorithm to compete and evolve with the current population to find better solutions. Figure 4 
shows the one-dimensional optimal individual (x ) space learning process based on the lens imaging principle.

Figure 4.   Lens imaging oppositional learning strategy.
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In Fig. 4, there is an individual P with height h; its projection on the coordinate axis is x ( x is the global opti-
mal individual). The base position is o (in this paper, we take the midpoint of [a, b] ) on the placement of the lens 
with focal length f, and through the process of lens imaging to obtain a height of h∗ image P∗ , its projection on 
the coordinate axis is x∗ . Therefore, the global optimal individual x, obtained based on the lens imaging opposi-
tional learning strategy, produces the inverse individual as x∗ . The following equation can be derived based on 
the principle of convex lens imaging in Fig. 3 and the oppositional learning strategy of lens imaging in Fig. 4.

Now let hh∗ = g , the transformation of Eq. (24) to solve the inverse solution x∗ is given below:

From Eq. (25), assuming that the base point o is fixed, the larger the regulator g is, the closer the inverse solu-
tion is to the base point o and the closer it is to the feasible solution. Therefore, the regulating factor, called the 
micro-regulator, searches only a small area around the possible solution, increasing the population’s diversity. 
In general, generalizing the oppositional learning strategy based on the convex lens imaging principle shown in 
(26) to the D dimensional space yields:

Where xd and x∗d are the d-th dimension components of x and x∗ , respectively, ad andbd are the d dimension 
components of the upper and lower bounds of the decision variables, respectively. Meanwhile, it can also be seen 
from Eq. (26) that the modulation factor g is an important parameter that affects the learning performance of 
lens imaging. Considering that a smaller value of g generates a more extensive range of inverse solutions, while 
a more significant deal of g causes a small range of inverse solutions, combined with the characteristics of the 
CHoA algorithm’s large-scale exploration in the pre-iterative stage and the local refined search in the post-iter-
ative location, this paper proposes a kind of adaptive regulating factor that varies with the number of iterations:

t is the current iteration number, and T is the maximum iteration number. Since g in Eq. (27) is used as the 
denominator to regulate the inverse solution, the value of g becomes larger as the number of iterations increases. 
The range of the inverse solution of the lens imaging oppositional learning becomes smaller and smaller. This 
regulation enlarges the ability of the algorithm to develop globally at the later stage of iteration and improves 
the diversity of the population.

The opposing solution generated by adaptive lens imaging oppositional learning is not necessarily superior 
to the original solution. Therefore, a screening mechanism is introduced to select whether to replace the original 
solution with the inverse solution, i.e., only if the inverse solution has a better fitness value. The formula is as 
follows:

Algorithm 2, which provides an adaptive lens imaging strategy for the specific steps, are as follows:

Algorithm 2.   Adaptive Lens Imaging Oppositional Learning.

Binary ALI‑CHoASH
To solve the feature selection problem, this paper binaries the improved algorithm ALI-CHoASH. In the bina-
ryised ALI-CHoASH, all the solutions in the solution space are converted to binary form with the value range 
of [0,1]. The conversion function for converting solutions from continuous values to binary format is shown in 
Eq. (29).

(24)
a+b
2

− x

x∗ − a+b
2

=
h

h∗

(25)x∗ =
a+ b

2
+

a+ b

2g
−

x

g

(26)x∗d =
ad + bd

2
+

ad + bd

2g
−

x

g

(27)g =

(

1+

(

t

T

)0.5
)10

(28)xi,d =

{

x∗
i,d
, if f

(

x∗
i,d

)

< f
(

xi,d
)

xi,d , otherwise



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6910  | https://doi.org/10.1038/s41598-024-57518-9

www.nature.com/scientificreports/

Where the individual i has a fitness value of f
(

x
j
i

)

.
The feature subsets selected by the ALI-CHoASH algorithm are all evaluated by the KNN classifier. Since the 

feature selection problem aims to find the smallest subset of features with maximum classification accuracy, our 
fitness function is set to the form shown in Eq. (30).

Err denotes the classification error rate, |R| denotes the number of selected feature sets, |C| denotes the number 
of original feature sets, and α denotes the weighting factor. Since Eq. (30) plays a massive role in searching the 
optimal subset of features for the ALI-CHoASH algorithm, α is set to 0.99.

In summary, the flowchart of the ALI-CHoASH method is shown in Fig. 5.

Experimental analyses and discussions
To evaluate the comprehensive performance of ALI-CHoASH. This section conducts a series of comparative 
experiments to validate it, and the detailed description of the adopted categorical dataset is shown in Table 1. 
Firstly, the setup of the comparison algorithms is described; secondly, the level of exploration and exploitation 
in the ALI-CHoASH algorithm is measured and quantitatively analyzed in terms of diversity, and the search 
strategies affecting these two factors are practically analyzed. Thirdly, the relationship between the classification 
performance and the number of features in the ALI-CHoASH algorithm is investigated; fourthly, multifaceted 
performance assessments such as classification accuracy, dimensionality approximation, convergence and sta-
bility are performed. Finally, the comparison algorithms’ convergence performance and Wilcoxon rank sum 
test are verified. Python was used as the programming language in the experiments. All the experiments were 
executed on a Legion machine with Inter Core i5 CPU (3.20GHz), and 8G RAM, and all the algorithms were 
tested using Pycharm2021.

Datasets
Six UCI (https://​archi​ve.​ics.​uci.​edu/), six ASU (https://​jundo​ngl.​github.​io/​scikit-​featu​re/​datas​ets.​html) and four 
gene (https://​ckzixf.​github.​io/​datas​et.​html) datasets from the database to verify the performance of ALI-CHo-
ASH.During the experiment, for each dataset in Table 1, 70% of the samples were randomly selected as training 
data and 30% as test data. In addition, the experiments were conducted using a KNN classifier to evaluate each 
of the obtained feature subsets. Table 1 briefly describes these datasets, with samples ranging from 60 to 1560, 
features ranging from 14 to 11225, and class labels ranging from 2 to 26. When the number of class labels is 
two categories, it is considered binary. When the number of class labels is more significant than two classes, it 
is considered multicategory.

Algorithm parameterization and evaluation metrics
To ensure the fairness of the result comparison, all the experiments in this paper are conducted in the same 
environment. For each test dataset, the experiments are executed M times (its value is set to 30 times) to evaluate 
the feature selection performance of each algorithm. T is the maximum number of iterations of the algorithm 
run (its value is 100 times), and t denotes the number of current iterations. To reduce the computational cost 
and maintain the search efficiency, the number of populations is uniformly set to 10. To verify the optimization 
effect of the proposed methods in the feature selection process, the exploration and exploitation percentage, 
average classification accuracy, average number of selected features, average optimal fitness value and optimal 
fitness value are used to evaluate the performance of the algorithms, as shown in Eqs. (33) to (39). In addition, 
a statistical significance test, i.e., the nonparametric Wilcoxon rank sum test, was performed, and the signifi-
cance level in the statistical significance test was chosen to be 0.05. The pre-set parameters for each algorithm 
are shown in Table 2.

To evaluate the effect of the ALI-CHoASH algorithm on data classification performance during feature selec-
tion, three sets of comparison experiments are designed as follows. In the first set of comparison experiments, 
ALI-CHoASH will be compared with the CHoA and SCHoA algorithms regarding exploration and exploita-
tion percentage, average fitness value, optimal fitness value and classification performance. In the second set of 
experiments, the relationship between the classification performance of the ALI-CHoASH algorithm and the 
number of features will be investigated. In the third set of comparison experiments, ALI-CHoASH will be com-
pared with GWO, SSA, HHO, SMA, BES and GMPBSA regarding fitness value and classification performance, 
respectively. The experimental framework is shown in Fig. 6. The specific technical routes of the experiments 
are as follows: firstly, ALI-CHoASH is run on the training dataset to generate a subset of candidate features and 
output the subset of features with the best performance; secondly, the training and test sets are converted into new 
training and testing set by removing the unselected features; then the classification algorithms are trained on the 
transformed training dataset; and finally, the converted test dataset into the learned classifier to verify the clas-
sification performance of the selected feature subset and the selected feature subset of the comparison algorithm.

Diversity refers to the degree of distribution of individuals in the solution space, which helps to ensure that 
the algorithm searches widely in the solution space and avoids locally optimal solutions. The following formula 
is used to measure diversity.
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median
(

xj
)

 represents the median of dimension j in the whole population, and Div represents the diversity of 
the entire population during the iteration process. Divj represents the diversity of all individuals in dimension j.

Percentage of exploration: Indicates the percentage of investigation per iteration in the algorithm, calculated 
as follows.

(31)Divj =
1

n

n
∑

i=1

median
(

xj
)

− x
j
i

(32)Div =
1

D

D
∑

j=1
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Figure 5.   The flow chart of the ALI-CHoASH algorithm.
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Development Percentage: Indicates the percentage of development per iteration in the algorithm, calculated as 
follows.

Where Div is the diversity of the cluster in the iteration and Divmax is the maximum diversity in all iterations.
Average Classification Accuracy: represents the average of the classification accuracy of the selected feature 

set, where acc(i) is the accuracy of the i-th classification, calculated as follows.

Average number of selected features: describes the average of the classification accuracy of the selected set of 
features, where number(i) is the number of features selected for the ith time, which is calculated as follows.

Average fitness value: the average of the mean fitness values of the resulting solutions is calculated, where 
fitness(i) is the i-th fitness value, which is calculated as follows.

(33)Xpl% =
Div

Divmax

× 100

(34)Xpt% =
|Div − Divmax|

Divmax

× 100

(35)AccMean =
1

M

M
∑

i=1

acc(i)

(36)AccMean =
1

M

M
∑

i=1

acc(i)

Table 1.   Test data set.

No. Data set #Instances #Features #Classes Data sources

1 Wine 177 14 3 UCI

2 HeartEW 269 14 2 UCI

3 Zoo 100 17 7 UCI

4 Vote 299 17 2 UCI

5 Congress 434 17 2 UCI

6 BreastEW 568 31 2 UCI

7 lung_discrete 73 325 7 ASU

8 Isolet 1560 617 26 ASU

9 colon 62 2000 2 ASU

10 lung 203 3312 5 ASU

11 Leukemia_1 72 5327 3 ASU

12 DLBCL 77 5469 2 Gene

13 9_Tumor 60 5726 9 Gene

14 leukemia 72 7070 2 ASU

15 Leukemia_2 72 7129 4 Gene

16 Leukemia_3 72 11225 3 Gene

Table 2.   Parameter setting of the comparison algorithm.

Name of algorithm Description/year of publication Parameter values

ALI-CHoASH Adaptive Lens Imaging Chimp Social Hierarchy Algorithm r1 ∈ [0, 1], r2 ∈ [0, 1], f ∈ (0, 2.5), u ∈ [0, 1]

CHoA Chimp optimization algorithm/202021 r1 ∈ [0, 1], r2 ∈ [0, 1], f ∈ (0, 2.5), u ∈ [0, 1]

SChoA sine-cosine chimp optimization algorithm/202226 r1 ∈ [0, 1], r2 ∈ [0, 1], f ∈ (0, 2.5), u ∈ [0, 1]

GWO Grey Wolf Optimizer/201411 r1 ∈ [0, 1], r2 ∈ [0, 1], a ∈ (0, 2.5)

SSA Salp Swarm Algorithm/201712 m = 2

HHO Harris hawks optimization(HHO)/201913 p = 0.5, J ∈ [0, 2]

SMA Slime mould algorithm/202014 δ = 0.03

BES Bald Eagle Search optimisation algorithm/202015 α = 1.5, a = 10,R = 1, c1 = c2 = 2

GMPBSA backtracking search algorithm driven by generalized mean position/202329 DIM_RATE = 1
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Average optimal fitness value: Calculate the minimum fitness values. This is calculated as follows.

Average Running Time: The average running time of the classification method for each dataset, where Runtime(i) 
is the time consumed in the i-th run, is calculated as follows.

Results and discussion
ALI‑CHoASH and CHoA diversity analysis
Maintaining diversity in algorithms has several benefits. These include increasing the search space, improving 
algorithm performance and robustness, and avoiding premature convergence. The measured diversity of the ALI-
CHoASH and CHoA algorithms during the iteration period is shown in Figs. 7, 8 and 9. The experiments on 16 
datasets demonstrate that the ALI-CHoASH algorithm has a more robust diversity than the CHoA algorithm. 
The ALI-CHoASH algorithm enhances individual interaction and communication, accelerates information dis-
semination, and improves group collaboration efficiency and effectiveness. Moreover, the algorithm helps the 
group eliminate local optimal solutions and search for global ones.

Discussion of the results of the ALI‑CHoASH with CHoA and SCHoA experiments
Table 3 shows the optimal fitness values and feature subsets for different algorithms. Table 3 shows that ALI-
CHoASH achieves better optimal fitness values on all test datasets than CHoA and SCHoA. And on Vote, 
Congress, lung_discrete, Isolet, Leukemia_1 and Leukemia_3 datasets, ALI-CHoASH selects the minimum 
number of feature subsets.

Exploration and exploitation capabilities have a significant impact on optimization performance. Existing 
meta-heuristic algorithm analyses only compare the final version of classifications40,41 but cannot assess the bal-
ance between exploration and exploitation. Therefore, experimental studies based on diversity measurements 
are needed to evaluate the exploration and exploitation capabilities of ALI-CHoASH quantitatively. As seen 
from Table 4, ALI-CHoASH achieves better average fitness values on all test datasets than CHoA and SCHoA. 

(37)FitMean =
1

M

M
∑

i=1

fitness(i)

(38)min Fit = min
{

fitness(1), fitness(2), · · · , fitness(i)
}

(39)TimeMean =
1

M

M
∑

i=1

Runtime(i)

Figure 6.   Experimental framework diagram.
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Also, the percentage of exploration and exploitation completed by ALI-CHoASH is relatively more balanced 
on all test datasets. For example, as seen from the Wine dataset in Table 4, the percentage of exploration and 
exploitation achieved by ALI-CHoASH is 55.73%:44.27%. It can be observed from Fig. 10 that in the first about 
ten iterations, ALI-CHoASH shows a clear tendency to enhance the exploration search space. After that, the 
ALI-CHoASH algorithm significantly improves and maintains a clear direction to expand the exploration space. 
This phenomenon shows that the algorithm introduces a social class multiple learning strategies and an adap-
tive lens imaging oppositional learning strategy, which prolongs the exploration effect and prevents a sharp 
decline in population diversity. Such optimization strategies give the algorithm a more robust global search and 
local convergence performance and high efficiency and accuracy in solving complex optimization problems. 
The percentage of exploration and exploitation achieved by CHoA is 76.09%:23.91%. In the first about 30 itera-
tions, CHoA shows a clear tendency to enhance the exploration search space. After that, the CHoA algorithm’s 
exploitation capability is significantly improved. The exploration and exploitation capabilities alternately appear 
to be enhanced during the subsequent iterations, which results in a sharp decrease in population diversity. The 
lung_discrete dataset in Table 4 shows that the percentage of exploration and exploitation achieved by ALI-
CHoASH is 67.38%:32.62%. It can be observed from Fig. 11 that in the first about 70 iterations, ALI-CHoASH 
shows a clear tendency to expand the exploration search space. After that, the ALI-CHoASH algorithm’s exploi-
tation capability significantly improves and maintains a clear direction to expand the exploration space. Such 
a result is favourable to preventing a sharp decline in population diversity. While the percentage of exploration 
and exploitation achieved by CHoA is 76.09%:23.91%. The rate of exploration and exploitation completed by 
SCHoA is 11.00%:89.00%. For the first approximately 70 iterations, SCHoA shows a clear tendency to explore 
the search space. After that, the SCHoA algorithm’s ability to exploit was significantly improved. The exploration 
and exploitation capabilities then maintain an equilibrium state during the subsequent iterations, which results 
in a sharp decrease in population diversity. The colon dataset in Fig. 12 and Table 4 shows that the percentage 
of exploration and exploitation achieved by ALI-CHoASH is 23.85%:76.15%. In contrast, the percentage of 
exploration and exploitation conducted by CHoA is 4.08%:95.92%. The rate of exploration and exploitation 
completed by SCHoA is 2.96%:97.04%. The leukemia dataset in Fig. 13 and Table 4 shows that the percentage of 
exploration and exploitation achieved by ALI-CHoASH is 18.99%:81.01%. In contrast, the rate of exploration 
and exploitation completed by CHoA is 3.73%:96.27%. The portion of exploration and exploitation conducted by 
SCHoA is 2.86%:97.14%. Combining the above descriptions, it is clear that when the percentages of exploration 

Figure 7.   ALI-CHoASH and CHoA diversity in the gene dataset.
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and exploitation are relatively balanced, it is possible to prevent a sharp decline in population diversity, thus 
contributing to an increase in the fitness value.

Table 5 shows the average accuracy and runtime of the different algorithms. ALI-CHoASH achieves higher 
average classification accuracy on all test datasets. Also, the runtime of the ALI-CHoASH algorithm is well 
within the acceptable range.

In conclusion, ALI-CHoASH shows better performance than SCHoA and ChoA algorithms in terms of opti-
mal fitness value, average fitness value, average classification accuracy, robustness, and percentage of exploration 
and exploitation, and proves that ALI-CHoASH’s ability to explore and exploit as well as its ability to jump out 
of the local optimum is somewhat superior.

Figure 8.   ALI-CHoASH and CHoA diversity in the UCI dataset.
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Analyzing classification performance in ALI‑CHoASH to the correlation between the number of features
Figures 14, 15, and 16 show how the classification accuracy and the number of selected features change as the 
number of iterations increases. These figures show a similar trend, i.e., the accuracy of the classifier can be 
gradually improved by removing irrelevant or redundant features to the class labels on different test datasets. 
This suggests that as long as the selected subset of features contains enough information, better classification 
performance can be achieved than using all the features. The ALI-CHoASH method can improve classification 
accuracy while removing irrelevant or redundant features. In addition, a comparative analysis with Tables 1 and 
3 shows that the ALI-CHoASH method only selects features between 0.13% and 28.57% of the original number 
of features, significantly reducing the number of original feature sets.

Comparison of classification performance of ALI‑CHoASH with other heuristic algorithms
In the previous section, the proposed ALI-CHoASH algorithm performs well in feature selection. To better vali-
date the effectiveness of the ALI-CHoASH method in feature selection, other heuristic algorithms are selected 

Figure 9.   ALI-CHoASH and CHoA diversity in the ASU dataset.
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in this section to compare feature selection with the same evaluation criteria as in the previous experiments. 
Table 6 demonstrates the highest classification accuracy, lowest classification accuracy and variance based on the 
ALI-CHoASH algorithm with GMPBSA, SMA, GWO, BES, HHO and SSA algorithms in encapsulated feature 
selection. Meanwhile, Table 7 shows each algorithm’s average classification accuracy results. These comparisons 
provide further evidence of the superiority and effectiveness of the ALI-CHoASH algorithm in the feature 
selection problem.

As seen from Table 6, the highest classification accuracy achieved by ALI-CHoASH is in the leading position 
on 15 of the 16 datasets. It only slightly loses to GWO on the Isolet dataset, ranking second. Meanwhile, the 
lowest classification accuracy achieved by ALI-CHoASH is in the leading position on 15 datasets, losing only to 
GWO on the Isolet dataset, ranking second. To describe in more detail the differences between ALI-CHoASH 
and the other algorithms (GMPBSA, SMA, GWO, BES, HHO, and SSA), we can look at the comparison of the 
highest classification accuracies in Fig. 17a and the lowest classification accuracies in Fig. 17b from these graphs. 
We can see that the ALI-CHoASH algorithm performs optimally regarding classification effectiveness in terms 
of minimum, quartile (25th percentile), median, quartile (75th percentile) and maximum.

Table 3.   Number of feature selections and Optimal fitness values for ALI-CHoASH and its enhanced 
algorithms. Best value in each row of the table is identified in bold.

Data name

Optimal fitness values Number of feature selections

ALI-CHoASH CHoA SCHoA ALI-CHoASH CHoA SCHoA

Wine 2.97E−03 5.05E−02 4.39E−02 3.07 2.9 3.03

HeartEW 1.04E−01 1.70E−01 1.41E−01 3.33 1.73 2.57

Zoo 1.98E−02 6.90E−02 6.61E−02 5.3 4.8 5.37

Vote 1.13E−02 1.73E−02 1.54E−02 2.8 3.1 3.47

Congress 6.92E−03 2.98E−02 2.54E−02 1.4 1.27 1.97

BreastEW 4.13E−02 5.71E−02 5.56E−02 4.1 2.13 2.33

lung_discrete 3.03E−02 8.14E−02 4.26E−02 11.03 11.4 18.67

Isolet 9.30E−02 1.25E−01 1.28E−01 179.8 189.6 229.27

Colon 5.80E−05 9.55E−02 5.73E−02 11.6 3.9 6.3

Lung 6.61E−03 2.34E−02 1.80E−02 40.1 46.4 37.93

Leukemia_1 3.02E−03 3.75E−02 2.41E−02 13.23 25.87 65.73

DLBCL 1.13E−05 3.71E−02 2.06E−02 6.2 3.5 5.6

9_Tumor 3.39E−01 4.40E−01 4.24E−01 62.23 14.73 20.97

Leukemia 9.05E−06 3.60E−02 1.50E−02 6.4 2.7 8.9

Leukemia_2 1.81E−02 9.90E−02 7.35E−02 98.63 9.6 15.1

Leukemia_3 1.33E−05 3.07E−05 3.61E−05 14.97 34.43 40.5

Table 4.   Average Xpl%:Xpt% and Average fitness values for ALI-CHoASH and its enhanced algorithms. Best 
value in each row of the table is identified in bold.

Data name

Average Exploration%:Exploitation Average fitness values

ALI-CHoASH CHoA SCHoA ALI-CHoASH CHoA SCHoA

Wine 55.73%:44.27% 76.09%:23.91% 45.33%:54.68% 8.65E−03 5.66E−02 4.57E−02

HeartEW 45.00%:55.00% 68.70%:31.30% 37.55%:62.45% 1.11E−01 1.72E−01 1.43E−01

Zoo 68.64%:31.36% 26.59%:73.41% 46.36%:53.65% 3.11E−02 7.44E−02 6.79E−02

Vote 38.73%:61.27% 60.95%:39.05% 42.16%:57.84% 1.35E−02 1.78E−02 1.55E−02

Congress 69.43%:30.57% 24.96%:75.04% 35.58%:64.42% 7.66E−03 2.98E−02 2.57E−02

BreastEW 43.55%:56.33% 52.90%:47.10% 22.90%:77.10% 4.39E−02 5.83E−02 5.59E−02

lung_discrete 67.38%:32.62% 50.88%:49.12% 11.00%:89.00% 5.51E−02 8.34E−02 4.38E−02

Isolet 67.05%:32.95% 88.82%:11.18% 63.17%:36.83% 1.07E−01 1.27E−01 1.29E−01

Colon 23.85%:76.15% 4.08%:95.92% 2.96%:97.04% 1.43E−02 1.05E−01 6.48E−02

Lung 24.87%:75.13% 21.59%:78.41% 6.82%:93.18% 1.15E−02 2.50E−02 1.87E−02

Leukemia_1 20.21%:79.79% 25.99%:74.01% 8.17%:91.84% 5.90E−03 4.08E−02 2.58E−02

DLBCL 29.73%:70.27% 17.23%:82.77% 4.33%:95.67% 7.00E−03 4.00E−02 2.35E−02

9_Tumor 20.75%:78.46% 16.86%:83.14% 6.75%:93.25% 4.03E−01 4.50E−01 4.33E−01

Leukemia 18.99%:81.01% 3.73%:96.27% 2.86%:97.14% 8.83E−04 3.95E−02 2.09E−02

Leukemia_2 47.88%:52.12% 8.64%:91.36% 7.16%:92.84% 2.39E−02 1.08E−01 7.95E−02

Leukemia_3 37.10%:62.90% 8.22%:91.78% 3.43%:96.57% 6.02E−03 1.62E−04 1.44E−04
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Figure 10.   Average exploration and exploitation of Wine.

Figure 11.   Average exploration and exploitation of lung_discrete.

Figure 12.   Average exploration and exploitation of colon.
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As can be seen from Table 7, the average classification accuracy achieved by ALI-CHoASH is in the leading 
position on 13 of the 16 datasets and only slightly loses to GWO on the Isolet, Leukemia_1 and 9_Tumor datasets, 
which is ranked second. Meanwhile, the average classification accuracies of the seven heuristic optimization 
algorithms, ALI-ChoASH, GMPBSA, SMA, GWO, BES, HHO and SSA, are 96.07%, 90.13%, 92.69%, 94.19%, 
92.14%, 92.14% and 89.93%, respectively. It can be seen that the ALI-CHoASH algorithm has the best average 
classification accuracy. In addition, according to the statistical results in Table 7, it can be seen that the ALI-
CHoASH algorithm has a significant advantage in the vast majority of datasets, winning the number of datasets 
with GMPBSA, SMA, GWO, BES, HHO, and SSA as 15, 15, 13, 15, 16, and 16, respectively.

Comparison of ALI‑CHoASH performance with other heuristic algorithms for fitness values
To further demonstrate the effectiveness of the ALI-CHoASH algorithm, we compared it with six other opti-
mization algorithms. The optimal fitness values of these seven algorithms are shown in Tables 8 and 9 shows 
the average fitness values of these seven algorithms. Firstly, as seen from Table 8, the optimal fitness values 
achieved by ALI-CHoASH lead on 13 of the 16 datasets, losing only slightly to GMPBSA on the Vote dataset, 
ranked second. It failed to SMA on the DLBCL dataset, ranking second and losing to GWO on the Leukemia_1 
dataset, ranking second. Meanwhile, as can be seen from Table 8, the mean values of the optimal fitness of the 
seven heuristic optimization algorithms, namely ALI-ChoASH, GMPBSA, SMA, GWO, BES, HHO and SSA, are 
4.23E-02, 1.02E-01, 7.36E-02, 5.99E-02, 8.00E-02, 8.01E-02, and 1.04E-01. It can be seen that the ALI-CHoASH 

Figure 13.   Average exploration and exploitation of leukemia.

Table 5.   The running time (/s) and classification accuracy of CHoA algorithms. Best value in each row of the 
table is identified in bold.

Data name

Classification accuracy Time (/s)

ALI-CHoASH (%) CHoA (%) SCHoA (%) ALI-CHoASH CHoA SCHoA

Wine 99.94 95.12 95.80 11.65 2.43 2.95

HeartEW 89.79 82.96 85.93 14.88 1.96 3.03

Zoo 98.33 93.33 93.67 8.52 2.66 2.84

Vote 99.78 98.44 98.67 18.45 3.39 3.88

Congress 99.39 97.07 97.56 22.02 3.16 4.47

BreastEW 95.96 94.31 94.46 27.99 5.65 6.61

lung_discrete 96.97 91.82 95.76 17.4 9.55 11.78

Isolet 90.90 87.69 87.40 165.6 49.08 52.77

Colon 100.00 90.35 94.21 65.41 44.34 57.29

Lung 99.34 97.65 98.20 63.3 80.18 104.85

Leukemia_1 99.70 96.21 97.58 178.52 122.11 163.52

DLBCL 100.00 96.25 97.92 165.78 121.25 162.3

9_Tumor 65.74 55.56 57.22 439.09 385.01 425.82

Leukemia 100.00 96.36 98.48 234.9 161.66 215.85

Leukemia_2 98.18 90.00 92.58 224.38 162.13 216.86

Leukemia_3 100.00 100.00 100.00 363.89 245.82 327.46
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algorithm has the best optimal fitness value. Finally, according to the statistical results in Table 8, it can be 
seen that the ALI-CHoASH algorithm has a significant advantage in the vast majority of datasets, winning the 
number of datasets with GMPBSA, SMA, GWO, BES, HHO, and SSA of 15, 15, 15, 16, 16, and 16, respectively. 
Where bold represents the optimal of the seven heuristic optimization algorithms under the dataset with the 
best fitness values.

Firstly, as seen from Table 9, the average fitness value achieved by ALI-CHoASH leads on 13 of the 16 datasets 
and only slightly loses to SMA and GWO on the DLBCL and 9_Tumor datasets, respectively, ranking third. It 
slightly loses to GMPBSA on the Vote dataset and ranks second. Secondly, as can be seen in Table 9, the average 
fitness values of the seven heuristic optimization algorithms, ALI-CHoASH, GMPBSA, SMA, GWO, BES, HHO 
and SSA, are 5.33E-02, 1.07E-01, 7.95E-02, 7.04E-02, 8.58E-02, 9.05E-02 and 1.08E- 01. it can be seen that the 
ALI-CHoASH algorithm has the best average fitness value. Finally, based on the statistics in Table 9, it is evi-
dent that the ALI-CHoASH algorithm has a significant advantage in the vast majority of datasets, winning the 
number of datasets with GMPBSA, SMA, GWO, BES, HHO, and SSA as 15, 14, 15, 16, 16, and 16, respectively.

As can be seen from Tables 3, 4, 5, 6, 7, 8 and 9 and Fig. 17, the ALI-CHoASH algorithm can handle the feature 
selection task well and find the optimal subset of features, resulting in satisfactory average classification accuracy.

Figure 14.   Classification accuracy versus the number of selected features process of ALI-CHoASH on UCI 
datasets.
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Algorithm complexity analyses and comparisons
Time complexity is an important index to analyze the computational efficiency of the algorithm. Let the CHoA 
population size be N, the feature dimension be D, the maximum number of iterations be T, the time required to 
solve the value of the fitness function be f (n) , and the time to initialize the parameters is t1 . The standard CHoA 
time complexity available from the literature21 is:

In the ALI-CHoASH algorithm proposed in this paper, the initial parameters of the algorithm, as well as the 
parameter setting time, are set to be consistent with CHoA. In addition, let the time for the chimpanzee social 
class multiple learning strategies be set to t2 , and the time for the improved lens imaging mapping strategy be t3 . 
The total time complexity of the ALI-CHoASH algorithm is:

(40)T = O(t1 + n+ f (n)) = O(n+ f (n))

(41)T1 = O(t1 + t2 + t3 + n+ f (n)) = O(n+ f (n))

Figure 15.   Classification accuracy versus the number of selected features process of ALI-CHoASH on ASU 
datasets.
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According to the above analysis, this paper proposes a series of improvement strategies for the shortcomings 
of the standard CHoA, and these improvement strategies do not increase the algorithm’s time complexity and 
do not affect the execution efficiency of the algorithm. The comparative analysis of the average running time of 
the seven heuristic optimization algorithms in Table 10 shows that the ALI-CHoASH algorithm has the longest 
running time. Although ALI-CHoASH effectively improves the convergence speed of the algorithm by ensuring 
population diversity through a multi-learning strategy and using an improved lens imaging mapping strategy, 
it still faces the problem of high computational cost. Therefore, future research must explore obtaining a subset 
of features with strong discriminative ability in a shorter time.

Analysis of convergence curves
Since the goal of the feature selection process is to minimize the fitness function value, the smaller the fitness 
function value, the better the convergence performance of the corresponding algorithm. To further compare 
the convergence performance of the ALI-CHoASH algorithm, Figs. 18, 19 and 20 show the fitness convergence 
curves of ALI-CHoASH with the heuristic feature selection algorithms such as CHoA, SCHoA, GMPBSA, SMA, 
GWO, BES, HHO, and SSA on 16 datasets. Meanwhile, this section observes and judges the performance advan-
tages and disadvantages of the algorithms by analyzing the convergence curves of the algorithms and further 
observes the convergence speed of the algorithms through the convergence curves. Figures 18, 19 and 20 show 
the comparison graphs of convergence curves of different algorithms on low-dimensional and high-dimensional 
datasets. From Figs. 18, 19 and 20, it can be seen that in Figs. 18a–c, e,f, 19a–d and 20a–d, the convergence 
speed of ALI-ChoASH is faster than the other eight algorithms throughout the entire iteration process, and the 
convergence accuracy is the best among these eight algorithms. This indicates that the ALI-CHoASH algorithm 
is significantly better than the other heuristic algorithms.

As can be seen from Figs. 18, 19 and 20, the ALI-CHoASH algorithm has faster convergence on 12 of the 16 
test datasets (Wine, HeartEW, Zoo, Congress, BreastEW, lung_discrete, colon, lung, 9_Tumor, leukemia, Leu-
kemia_2 and Leukemia_3) have faster convergence. For the remaining four test datasets (Vote, Isolet, DLBCL 
and Leukemia_1), the ALI-CHoASH algorithm also shows better convergence performance than most of the 
compared algorithms. This further indicates that the mechanism designed in the ALI-CHoASH algorithm can 
effectively improve the algorithm’s search capability, which can find a higher-quality subset of features in a limited 
number of iterations. The results in Tables 3, 8 and 9 also demonstrate the effectiveness of the ALI-CHoASH 
algorithm in searching the high-dimensional feature space.

Figure 16.   Classification accuracy versus the number of selected features process of ALI-CHoASH on gene 
datasets.
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Figure 21 shows the classification accuracy and the optimal number of feature subsets based on the average 
results of the Friedman ranking test for nine algorithms on sixteen datasets.

As shown in Fig. 21a for classification accuracy, the ALI-CHoASH ranks first, followed by the GWO, SMA, 
BES, SCHoA, GMPBSA, HHO, SSA, and CHoA algorithms. As shown in Fig. 21b for the optimal number of 

Table 6.   Classification accuracy for ALI-CHoASH and its meta-heuristic algorithm. Best value in each row of 
the table is identified in bold.

Data name Indicators ALI-CHoASH GMPBSA SMA GWO BES HHO SSA

Wine

Best 100.00% 98.15% 98.15% 98.15% 98.15% 98.15% 98.15%

Worst 98.15% 96.30% 92.59% 90.74% 90.74% 87.04% 92.59%

Std 3.32E−03 7.41E−03 1.61E−02 1.99E−02 1.77E−02 2.39E−02 1.68E−02

HeartEW

Best 91.36% 90.12% 87.65% 87.65% 87.65% 87.65% 87.65%

Worst 86.42% 86.42% 81.48% 83.95% 81.48% 77.78% 77.78%

Std 1.77E−02 1.02E−02 2.12E−02 7.60E−03 1.50E−02 2.81E−02 2.29E−02

Zoo

Best 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

worst 96.67% 96.67% 96.67% 96.67% 96.67% 93.33% 96.67%

Std 1.67E−02 1.47E−02 1.24E−02 1.61E−02 8.31E−03 8.61E−03 1.33E−02

Vote

Best 100.00% 100.00% 94.44% 94.44% 94.44% 94.44% 94.44%

Worst 98.89% 98.89% 91.11% 92.22% 92.22% 90.00% 92.22%

Std 4.44E−03 1.99E−03 8.36E−03 6.87E−03 6.87E−03 1.18E−02 7.98E−−03

Congress

Best 100.00% 100.00% 98.47% 99.24% 99.24% 98.47% 99.24%

Worst 99.24% 96.95% 96.95% 97.71% 97.71% 96.18% 97.71%

Std 3.05E−03 7.02E−03 4.29E−03 4.62E−03 4.70E−03 6.46E−03 4.27E−03

BreastEW

Best 96.49% 95.32% 94.15% 94.15% 94.15% 94.15% 94.15%

Worst 94.74% 93.57% 92.40% 90.64% 92.40% 91.81% 92.98%

Std 5.09E−03 3.92E−03 2.92E−03 5.75E−03 3.29E−03 4.29E−03 2.78E−03

lung_discrete

Best 100.00% 95.45% 100.00% 100.00% 95.45% 100.00% 90.91%

Worst 95.45% 90.91% 86.36% 90.91% 86.36% 81.82% 86.36%

Std 2.14E−02 2.23E−02 4.35E−02 2.99E−02 2.27E−02 3.61E−02 1.82E−02

Isolet

Best 92.09% 89.10% 89.53% 95.94% 91.24% 90.81% 90.81%

Worst 89.32% 86.75% 87.61% 93.80% 88.46% 88.68% 88.46%

Std 7.48E−03 6.10E−03 4.92E−03 5.38E−03 7.29E−03 4.33E−03 6.18E−03

Colon

Best 100.00% 84.21% 100.00% 100.00% 100.00% 100.00% 78.95%

Worst 100.00% 78.95% 89.47% 89.47% 84.21% 89.47% 73.68%

Std 0.00E+00 1.79E−02 2.94E−02 3.68E−02 4.06E−02 3.02E−02 2.61E−02

Lung

Best 100.00% 98.36% 100.00% 100.00% 98.36% 100.00% 98.36%

Worst 98.36% 96.72% 96.72% 98.36% 96.72% 96.72% 96.72%

Std 8.03E−03 4.92E−03 8.39E−03 2.94E−03 2.94E−03 7.33E−03 6.56E−03

Leukemia_1

Best 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Worst 95.45% 90.91% 90.91% 100.00% 95.45% 90.91% 90.91%

Std 1.13E−02 2.61E−02 2.54E−02 0.00E+00 2.27E−02 3.39E−02 2.61E−02

DLBCL

Best 100.00% 87.50% 100.00% 100.00% 100.00% 100.00% 100.00%

Worst 100.00% 1.76% 100.00% 100.00% 95.83% 95.83% 91.67%

Std 0.00E+00 9.17E−01 0.00E+00 0.00E+00 7.48E−03 7.48E−03 2.28E−02

9_Tumor

Best 83.33% 55.56% 72.22% 77.78% 66.67% 66.67% 61.11%

worst 55.56% 44.44% 50.00% 55.56% 50.00% 50.00% 50.00%

Std 7.60E−02 3.65E−02 5.16E−02 5.64E−02 4.40E−02 5.35E−−02 3.56E−02

Leukemia

Best 100.00% 95.45% 100.00% 95.45% 100.00% 100.00% 86.36%

Worst 100.00% 86.36% 90.91% 86.36% 86.36% 86.36% 77.27%

Std 0.00E+00 2.33E−02 3.46E−02 2.06E−02 3.85E−02 4.25E−02 1.63E−02

Leukemia_2

Best 100.00% 90.91% 100.00% 95.45% 95.45% 95.45% 95.45%

Worst 95.45% 81.82% 90.91% 95.45% 90.91% 90.91% 90.91%

Std 2.23E−02 2.71E−02 1.43E−02 3.33E−16 1.82E−02 2.25E−02 2.08E−02

Leukemia_3

Best 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Worst 100.00% 100.00% 95.45% 100.00% 100.00% 95.45% 95.45%

Std 0.00E+00 0.00E+00 8.16E−03 0.00E+00 0.00E+00 8.16E−03 1.36E−02
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feature subsets, the GMPBSA ranks first, followed by the SSA, HHO, BES, GWO, SCHoA, ALI-CHoASH, SMA, 
and CHoA algorithms.

In summary, regarding the feature selection process, the proposed improved mechanism of the ALI-CHoASH 
method can effectively improve the classification accuracy and reduce the dimensionality of the selected data 
features in sample data of different dimensions and capacities. Meanwhile, the technique performs better clas-
sification in the feature selection task, successfully selecting features with discriminative solid ability. Its solution 
fitness value, convergence speed and stability are better than CHoA, SCHoA, GMPBSA, SMA, GWO, BES, HHO 
and SSA. Therefore, the ALI-CHoASH algorithm has a better overall optimization finding ability and higher 
stability than other compared algorithms.

Wilcoxon rank‑sum test
To verify the effectiveness and stability of the ALI-CHoASH algorithm. In this section, the Wilcoxon rank sum 
test is used to confirm whether there is a significant difference in the running results between this algorithm and 
other algorithms. Therefore, the results of 9 algorithms tested independently 30 times on 16 test data are taken as 
samples. p < 5% indicates significant variability between the two algorithms compared. When p ≥ 5% , it sug-
gests that the optimality finding results of the two algorithms under comparison are the same. The comparison 
of ALI-CHoASH with CHoA, SCHoA, GMPBSA, SMA, GWO, BES, HHO and SSA is denoted as P1, P2, P3, P4, 
P5, P6, P7, and P8, respectively. Table 11 compares ALI-CHoASH with CHoA, SCHoA, GMPBSA, and SMA 

Table 7.   Average classification accuracy for ALI-CHoASH and its meta-heuristic algorithm. Best value in each 
row of the table is identified in bold.

Data name ALI-CHoASH (%) GMPBSA (%) SMA (%) GWO (%) BES (%) HHO (%) SSA (%)

Wine 99.94 97.78 96.11 96.67 95.49 94.75 95.93

HeartEW 89.79 88.02 86.21 87.37 86.79 83.66 85.88

Zoo 98.33 97.56 97.22 97.89 96.89 96.67 97.33

Vote 99.78 99.96 92.93 93.48 93.19 92.22 93.19

Congress 99.39 98.04 98.12 98.50 98.14 97.81 98.14

BreastEW 95.96 94.44 93.06 93.00 93.06 92.88 93.10

lung_discrete 100 93.64 90.30 95.61 91.52 90.76 90.00

Isolet 90.90 88.00 88.37 94.84 89.62 89.61 89.36

Colon 100 79.65 95.96 94.21 93.33 95.09 76.67

Lung 99.34 96.89 98.25 98.42 98.31 98.36 98.03

Leukemia_1 99.70 95.15 97.42 100.00 97.58 95.91 96.67

DLBCL 100.00 90.69 100.00 100.00 99.86 99.86 97.36

9_Tumor 65.74 49.81 57.04 66.85 54.44 57.04 53.89

Leukemia 100.00 87.58 96.52 94.70 91.52 96.21 81.52

Leukemia_2 98.18 84.85 95.61 95.45 94.55 93.48 92.27

Leukemia_3 100.00 100.00 99.85 100.00 100.00 99.85 99.55

Figure 17.   Comparison of classification accuracy of different algorithms.
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under 16 test data sets. GWO, BES, HHO and SSA values were calculated in the rank sum test. As can be seen 
from the analysis in Table 11, the values are much less than 5% in the vast majority of the test datasets. Among 
them, on the Zoo dataset, the results of the ALI-CHoASH and SSA algorithms for finding the best are the same 
on the whole. On the DLBCL dataset, the optimization results of ALI-CHoASH and GWO algorithms are the 
same overall. On the Leukemia_1 dataset, the optimization results of the ALI-CHoASH and SMA algorithms 
are the same general.

Table 8.   Optimal fitness values for ALI-CHoASH and its meta-heuristic algorithm. Best value in each row of 
the table is identified in bold.

Data name ALI-CHoASH GMPBSA SMA GWO BES HHO SSA

Wine 2.97E−03 2.54E−02 4.12E−02 3.62E−02 4.81E−02 5.60E−02 4.42E−02

HeartEW 1.04E−01 1.22E−01 1.39E−01 1.28E−01 1.34E−01 1.65E−01 1.43E−01

Zoo 1.98E−02 2.90E−02 3.08E−02 2.41E−02 3.49E−02 3.75E−02 3.04E−02

Vote 1.13E−02 4.97E−03 7.26E−02 6.80E−02 7.31E−02 8.14E−02 7.24E−02

Congress 6.92E−03 2.26E−02 2.10E−02 1.75E−02 2.12E−02 2.50E−02 2.19E−02

BreastEW 4.13E−02 5.88E−02 6.99E−02 7.05E−02 7.07E−02 7.32E−02 7.17E−02

lung_discrete 3.03E−02 6.78E−02 9.63E−02 4.44E−02 8.57E−02 9.32E−02 1.03E−01

Isolet 9.30E−02 1.24E−01 1.19E−01 5.34E−02 1.08E−01 1.09E−01 1.10E−01

Colon 5.80E−05 2.06E−01 4.00E−02 5.82E−02 6.62E−02 4.88E−02 2.36E−01

Lung 6.61E−03 3.57E−02 1.74E−02 1.64E−02 1.75E−02 1.70E−02 2.43E−02

Leukemia_1 3.02E−03 5.29E−02 2.56E−02 9.60E−04 2.54E−02 4.19E−02 3.79E−02

DLBCL 1.13E−05 9.71E−02 7.62E−06 8.25E−04 1.84E−03 1.81E−03 3.10E−02

9_Tumor 3.39E−01 5.02E−01 4.25E−01 3.40E−01 4.54E−01 4.26E−01 4.61E−01

Leukemia 9.05E−06 1.28E−01 3.45E−02 5.35E−02 8.43E−02 3.76E−02 1.88E−01

Leukemia_2 1.81E−02 1.55E−01 4.35E−02 4.59E−02 5.52E−02 6.62E−02 8.14E−02

Leukemia_3 1.33E−05 4.93E−03 1.51E−03 8.76E−04 4.09E−04 2.13E−03 9.41E−03

Table 9.   Average fitness values for ALI-CHoASH and its meta-heuristic algorithm. Best value in each row of 
the table is identified in bold.

Data name ALI-CHoASH GMPBSA SMA GWO BES HHO SSA

Wine 8.65E−03 3.23E−02 4.66E−02 3.73E−02 5.05E−02 6.09E−02 4.94E−02

HeartEW 1.14E−01 1.39E−01 1.46E−01 1.29E−01 1.37E−01 1.72E−01 1.50E−01

Zoo 3.11E−02 3.97E−02 3.31E−02 2.51E−02 3.62E−02 3.81E−02 3.21E−02

Vote 1.35E−02 7.85E−03 7.52E−02 6.89E−02 7.42E−02 8.26E−02 7.46E−02

Congress 7.66E−03 2.78E−02 2.21E−02 1.78E−02 2.20E−02 2.63E−02 2.31E−02

BreastEW 4.39E−02 6.27E−02 7.10E−02 7.08E−02 7.14E−02 7.42E−02 7.25E−02

lung_discrete 5.51E−02 7.80E−02 1.05E−01 6.00E−02 9.00E−02 9.90E−02 1.08E−01

Isolet 1.07E−01 1.27E−01 1.24E−01 7.59E−02 1.10E−01 1.13E−01 1.14E−01

Colon 1.43E−02 2.10E−01 5.42E−02 1.06E−01 8.58E−02 9.01E−02 2.42E−01

Lung 1.15E−02 3.57E−02 1.95E−02 1.78E−02 1.87E−02 1.89E−02 2.57E−02

Leukemia_1 5.90E−03 5.52E−02 3.42E−02 7.29E−03 2.93E−02 5.48E−02 4.46E−02

DLBCL 7.00E−03 9.98E−02 1.34E−03 4.43E−03 6.77E−03 9.17E−03 3.54E−02

9_Tumor 4.03E−01 5.06E−01 4.39E−01 3.65E−01 4.75E−01 4.59E−01 4.73E−01

Leukemia 8.83E−04 1.29E−01 4.98E−02 8.94E−02 1.05E−01 6.90E−02 1.92E−01

Leukemia_2 2.39E−02 1.55E−01 4.76E−02 4.89E−02 6.02E−02 7.48E−02 8.40E−02

Leukemia_3 6.02E−03 4.93E−03 2.70E−03 2.09E−03 1.34E−03 5.49E−03 1.06E−02
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Table 11 shows an overall significant difference between ALI−CHoASH and the other eight algorithms, thus 
indicating that ALI-CHoASH possesses better effectiveness than the different algorithms.

Conclusion
The presence of irrelevant and redundant features in high-dimensional data increases the machine learning mod-
el’s time and space complexity, thus seriously affecting the accuracy and operational efficiency. The traditional 
chimpanzee optimization algorithm is prone to problems such as slow convergence speed and low optimization 
search accuracy, leading to the inability to remove irrelevant and redundant features effectively. To balance the 
ability of local exploration and global exploitation and avoid local optimality. In this paper, we conduct an in-
depth study of the chimp population hierarchy, propose the enhanced chimp hierarchy optimization algorithm 
for adaptive lens imaging (ALI-CHoASH), and incorporate this algorithm into the feature selection algorithm. 
The following conclusions are drawn by combining the exploration and exploitation capacity percentage, clas-
sification accuracy, average optimal fitness value and optimal fitness value:

•	 Individual chimp inter-somatic relationships were optimized by designing a chimp social hierarchy. The social 
hierarchy factor was used to control the hunting patterns of chimp groups and adjust the balance between 
local exploration and global exploitation, guiding individual chimps to search more broadly within their 
social hierarchy.

•	 In the late iteration, due to the decline of population diversity, the traditional CHoA algorithm can easily 
fall into the local optimum. The position of individual chimps is optimised using the oppositional learning 
strategy of adaptive lens imaging, which improves the ability to jump out of the local optimum solution in 
the late iteration.

•	 Comparison test experiments regarding exploration and exploitation capacity percentage, classification accu-
racy and optimal fitness value show that the ALI-CHoASH algorithm has a better convergence effect and 
optimisation accuracy, proving that the improvement strategy proposed in this paper is effective.

In conclusion, ALI-CHoASH has some advantages in addressing feature selection. However, it still has short-
comings in reducing the feature dimensions of datasets such as Isolet, Leukemia_1 and 9_Tumor. Therefore, 
in future work, how to optimize the chimpanzee social hierarchy and hunting patterns, refine the classification 
optimization ability of ALI-CHoASH, and improve the classification effect of the algorithm on higher feature 
dimensions will be the main focus of future research.

Table 10.   The running time (/s) for ALI-CHoASH and its meta-heuristic algorithm.

Data name ALI-CHoASH GMPBSA SMA GWO BES HHO SSA

Wine 11.65 7.72 2.62 7.62 3.3 5.83 3.78

HeartEW 14.88 10.08 3.09 10.03 4.39 7.44 5.04

Zoo 8.52 5.65 2.35 5.56 2.4 4.29 2.7

Vote 18.45 11.37 3.45 10.9 5.15 8.52 5.57

Congress 22.02 15.87 4.56 14.79 6.42 11.58 7.63

BreastEW 27.99 19.22 5.54 17.98 6.85 14.12 9.55

lung_discrete 17.4 5.07 6.25 8.34 2.29 4.71 2.98

Isolet 165.6 84.89 46.86 92.63 42.6 78.52 48.13

Colon 65.41 11.4 27.34 31.15 4.98 12.6 8.66

Lung 63.3 26.76 45.55 56.11 10.32 24.69 18.65

Leukemia_1 178.52 23.78 66.86 75.96 11.48 29.69 19.26

DLBCL 165.78 24.23 67.6 77.99 11.35 30.03 19.73

9_Tumor 439.09 284.53 71.54 81.55 12.97 19.63 20

Leukemia 234.9 30.04 86.81 99.05 13.96 36.81 24.65

Leukemia_2 224.38 30.8 90.55 103.52 15.08 40.01 25.49

Leukemia_3 363.89 45.09 180.8 150.94 159.19 21.85 59.05
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Figure 18.   Convergence curves of all algorithms on UCI datasets.
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Figure 19.   Convergence curves of all algorithms on ASU datasets.
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Figure 20.   Convergence curves of all algorithms on gene datasets.

Figure 21.   Mean Friedman test ranks of nine algorithms on sixteen datasets.
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Data availability
The experimental data set selects the world-famous data set (https://​archi​ve.​ics.​uci.​edu/ , https://​ckzixf.​github.​
io/​datas​et.​html and https://​jundo​ngl.​github.​io/​scikit-​featu​re/​datas​ets.​html).
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