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M6A‑related bioinformatics 
analysis indicates that LRPPRC 
is an immune marker for ischemic 
stroke
Lianwei Shen  & Shouwei Yue *

Ischemic stroke (IS) is a common cerebrovascular disease whose pathogenesis involves a variety of 
immune molecules, immune channels and immune processes. 6‑methyladenosine (m6A) modification 
regulates a variety of immune metabolic and immunopathological processes, but the role of m6A in IS 
is not yet understood. We downloaded the data set GSE58294 from the GEO database and screened 
for m6A‑regulated differential expression genes. The RF algorithm was selected to screen the m6A 
key regulatory genes. Clinical prediction models were constructed and validated based on m6A 
key regulatory genes. IS patients were grouped according to the expression of m6A key regulatory 
genes, and immune markers of IS were identified based on immune infiltration characteristics and 
correlation. Finally, we performed functional enrichment, protein interaction network analysis and 
molecular prediction of the immune biomarkers. We identified a total of 7 differentially expressed 
genes in the dataset, namely METTL3, WTAP, YWHAG, TRA2A, YTHDF3, LRPPRC and HNRNPA2B1. 
The random forest algorithm indicated that all 7 genes were m6A key regulatory genes of IS, and the 
credibility of the above key regulatory genes was verified by constructing a clinical prediction model. 
Based on the expression of key regulatory genes, we divided IS patients into 2 groups. Based on the 
expression of the gene LRPPRC and the correlation of immune infiltration under different subgroups, 
LRPPRC was identified as an immune biomarker for IS. GO enrichment analyses indicate that LRPPRC 
is associated with a variety of cellular functions. Protein interaction network analysis and molecular 
prediction indicated that LRPPRC correlates with a variety of immune proteins, and LRPPRC may 
serve as a target for IS drug therapy. Our findings suggest that LRPPRC is an immune marker for IS. 
Further analysis based on LRPPRC could elucidate its role in the immune microenvironment of IS.
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Currently, regarding the treatment of ischemic stroke, in addition to the classical intravenous thrombolytic 
therapy, the addition of endovascular treatment with mechanical thrombectomy and acute reperfusion therapy 
have also been proven to be  effective1. However, all of these treatments have limitations. The effective therapeutic 
window for intravenous thrombolysis is only 3  h2. The addition of mechanical thrombectomy to endovascular 
therapy is only indicated for proximal intracranial vascular  occlusion3. Acute reperfusion therapy requires a high 
level of therapeutic team and specialized  equipment3. Thus, it is necessary to find new therapeutic approaches. In 
recent years, the role of RNA modification in gene regulation has received extensive attention from the academic 
community. N6-methyladenosine (m6A) modification is the most common means of mRNA modification in 
eukaryotes. It can modulate mRNA immune metabolism and immune processes by affecting transcript stability, 
splicing, translation efficiency and hat non-dependent translation. It plays a key role in immune metabolism and 
immunologic processes in cancer, neurological diseases and metabolic  diseases4,5. Among the more than 150 RNA 
modification methods identified so far, methylation is the most  abundant6. It has been demonstrated that m6A-
related genes may exist as therapeutic targets and diagnostic biomarkers for IS, and are involved in the immune 
regulation of stroke occurrence and  development7. Therefore, the present study used a bioinformatics approach 
to comprehensively analyze the role of genes related to the regulation of m6A modifications in immune infiltra-
tion in ischemic stroke. The aim was to identify immune markers of IS and further explore immune molecules 
and/or immune-related drugs that may be associated with immune markers.

Methods
Data collection and processing
In this study, RNA expression profiles and clinical information for the ischemic stroke data set GSE58294 were 
downloaded via the GEO database, which includes blood RNA testing data from 69 ischemic stroke samples due 
to cardiogenic embolism and 22  controls8. These samples were sequenced by the GPL570 (Affymetrix Human 
Genome U133 Plus 2.0 Array) platform. The expression matrix was normalised using the “normalizeBetween-
Arrays” function of the “limma” package in R. The gene probes were annotated with official symbols. The flow-
chart of the experiment is shown in Fig. 1.

Screening for m6A‑regulated differential genes in IS patients
Based on the current research on m6A, 28 m6A-related genes were included in this study as subjects, including 
METTL3, METTL14, METTL16, WTAP, VIRMA, ZC3H13, RBM15, RBM15B, CBLL1, YWHAG, TRA2A, 
CAPRIN1, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC, HNRNPA2B1, 
IGFBP1, IGFBP2, IGFBP3, RBMX, ELAVL1, IGF2BP1, FTO, and  ALKBH59,10. The corresponding positions of 
the m6A-related genes in the chromosomes were determined by perl software, and the corresponding positions 
of the m6A-related genes in the chromosomes were visualized by using the “RCircos” package in R language. 
The expression of m6A-related genes in each sample was extracted using the R software package “limma”. Then 
Wilcoxon test was used to detect the difference between ischemic stroke patients and controls in the above m6A-
related gene expression model, and the difference in m6A-related genes was screened as statistically significant 
at P < 0.05.

Machine learning‑based screening of m6A key regulatory genes
In this study, two widely used machine learning algorithms, random forest (RF) and support vector machine 
(SVM), were selected. The residual values of m6A differentially regulated genes in the two machine learning 
algorithms and the inverse distribution of the residuals were plotted by using the “randomForest” package in R, 
so as to select a suitable model, and then screen out the m6A key regulatory genes based on this model.

Construct and test clinical prediction models based on m6A key regulatory genes
The “datadist” function in the “rms” package of the R language was used to package the m6A key regulatory 
genes screened by the model, and the “lrm” function was used to fit the model. The “lrm” function was used to 
fit the clinical prediction model. Use the “nomogram” function to visualise the clinical prediction model in the 

Figure 1.  Flowchart.
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form of nomogram. Evaluation of clinical prediction models: C-index was used for differentiation assessment; 
calibration curve was used for consistency assessment; clinical decision curve and clinical benefit curve were 
used for patient benefit assessment.

Classification of IS patients in the dataset based on m6A key regulatory genes
Consensus cluster analysis of IS patients based on m6A key regulatory genes. The number of clusters in the IS 
samples was determined in R using the “ConsensusClusterPlus” package. The parameters are: “maxK” = 10, 
“reps” = 100, “pItem” = 0.8, “pFeature” = 1, “clusterAlg” = “hc,” and “distance” = “euclidean”11. IS patients were 
repeatedly sampled 10 times according to the m6A key regulatory genes, and IS patients were classified into 10 
different subgroups. The optimal number of clusters was selected based on Calinski’s criterion and correlation 
between subgroups. The “Rtsne” package was used to display the sample distribution of different clusters. The 
expression of m6A key regulatory genes between different clusters was compared using the Kruskal–Wallis test 
in R language.

Determination of IS immune marker
Single sample gene set enrichment analysis (ssGSEA) was performed using the “gsva” package in R to analyse 
the immune infiltration of the samples. Twenty-three immune cell types were selected for this study, includ-
ing Activated.B.cell, Activated.CD4.T.cell, Activated.CD8.T.cell, Activated.dendritic.cell, CD56bright.natural.
killer. cell, CD56dim.natural.killer.cell, Eosinophil, Gamma.delta.T.cell, Immature.B.cell, Immature.dendritic.
cell, MDSC, Macrophage, Mast.cell, Monocyte, Natural.killer.T.cell, Natural.killer.cell, Neutrophil, Plasma-
cytoid.dendritic.cell, Regulatory.T.cell, T.follicular.helper. cell, Type.1.T.helper.cell, Type.17.T.helper.cell, and 
Type.2.T.helper.cell. Infiltrating immune cell abundance scores in two different patient clusters were compared 
in R using the Kruskal–Wallis test. Heatmaps were created with the “pheatmap” package to show the correla-
tion between the 2 m6A key regulatory genes and these immune cells to determine the identification of IS 
immunomarkers.

Enrichment analysis, protein–protein interaction network analysis and molecular prediction 
of IS immune marker
In this study, we used the “limma” package in R to screen for differential genes between different clusters with 
|log2 (fold change)| > 1, P < 0.05, and performed enrichment analysis for IS immune marker. Gene ontology (GO) 
enrichment analysis: The GO database information was referenced through the clusterProfiler package of R and 
the org.hs.eg/.dbpackage of R. The “enrichplot” package, “ggplot” package, “ggplot” package, “ggplot” package 
and “ggplot” package were used for the enrichment analysis. GO terms that satisfy this condition are defined 
as those that are significantly enriched in differentially expressed genes. The top hits with the most significant 
enrichment (lowest p-value) are shown in the  histogram12. The STRING database was used to construct protein 
interaction network analysis (PPI) for immune marker. the more connections in the network, the more important 
the protein is. STITCH (Search Tool for Interactions of Chemicals) database was used for molecular prediction 
of immune markers. The database is an online resource focusing on molecular interactions and network drug 
discovery, aiming to integrate data on biological compounds, proteins, genes, metabolic pathways and many 
more, and digitally display their interaction and signal  networks13.

Ethical approval and participation consent
The data of the human part of the study were obtained from GEO database, and the original study has completed 
the ethical audit.

Results
m6A differential expression gene screening for IS
By analysing the GSE58294 data set, we identified METTL3, WTAP, RBM15B, CBLL1, YWHAG, TRA2A, 
YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC, HNRNPA2B1, FTO, and ALKBH5, and the expres-
sion of 15 m6A-associated genes. 7 genes, including METTL3, WTAP, YWHAG, TRA2A, YTHDF3, LRPPRC, 
and HNRNPA2B1, showed statistical differences. genes were statistically different. Among them, METTL3, 
YWHAG, TRA2A, LRPPRC, and HNRNPA2B1 were significantly down-regulated, while WTAP, and YTHDF3 
were significantly up-regulated (Fig. 2A,B). Meanwhile, we marked the locations of the seven differentially 
expressed genes on the chromosomes (Fig. 2C).

Machine learning‑based screening of m6A key regulatory genes
We compared the two machine learning algorithms by calculating the residual value and the inverse cumula-
tive distribution graph. The RF algorithm outperformed the SVM in terms of the residual value and the inverse 
cumulative distribution graph (Fig. 3A,B), so we chose the RF algorithm to be used for screening the key regula-
tory genes. From the RF graph, it can be seen that the RF algorithm has the smallest error when the tree number 
is 30 (Fig. 3C). Since the importance scores of the differential genes were all greater than 2, METTL3, WTAP, 
YWHAG, TRA2A, YTHDF3, LRPPRC, and HNRNPA2B1 were used as key regulatory genes (Fig. 3D).

Construction and validation of clinical prediction models
We constructed a clinical prediction model using the “lrm” function in the “rms” package, which can be used to 
assess the correlation between five key regulatory genes and the risk of IS, and visualised the model by a line graph 
(Fig. 4A). The C-index of the model was 0.987, indicating that the model had good discrimination (Fig. 4B). The 
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calibration of the model was done using Bootstrap self-sampling method by setting the number of resamples to be 
1000, and the resulting calibration curve plotted indicates that the model is well calibrated (Fig. 4C). The decision 
analysis curve and the benefit curve show that the constructed model has good application value (Fig. 4D,E).

Figure 2.  m6A differential expression gene screening for IS. (A) Boxplot of 15 m6A genes expression between 
control and IS. **p < 0.01, ***p < 0.001. (B) Heatmap of 7 differentials expressed m6A genes between control 
and IS Red represents. high expression and blue represents low expression. (C) Chromosomal location of m6A 
differentially expressed genes.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8852  | https://doi.org/10.1038/s41598-024-57507-y

www.nature.com/scientificreports/

IS patient clusters obtained based on m6A key regulatory genes
Based on the 2 m6A key regulatory genes, we performed a cluster analysis of IS patients. Consensus cluster-
ing matrix is shown in Fig. 5A,B. Using the relevance of the subgroups as a criterion, we chose to classify the 
patients into 2 clusters (Fig. 5B,C). Based on the 2 clusters mentioned above, we extracted the expression pro-
files of m6A key regulatory genes in different clusters, and the box plots indicated that the expression levels of 
METTL3, YWHAG, TRA2A, YTHDF3, LRPPRC, and HNRNPA2B1 were significantly different in different 
clusters (Fig. 5D). Principal component analysis (PCA) showed that the above cluster analysis method could 
accurately distinguish IS (Fig. 5E). Therefore, the clustering of IS patients based on m6A key regulatory genes 
in this study was accurate.

Determination of IS immune marker
We assessed the level of immune cell infiltration between different clusters by the ssGSEA algorithm to explore 
the differences in the immune microenvironment of different clusters. Through statistical analysis, we found 
significant differences in 19 immune cell infiltration types across 2 clusters (Fig. 6A). Meanwhile, we calculated 
the correlation between the 7 m6A key genes and immune cell infiltration (Fig. 6B), among which the correlation 
of LRPPRC was the most obvious, with the maximum positive correlation coefficient of 0.75 and the maximum 
negative correlation coefficient of -0.61.Therefore, LRPPRC may play a key role in immune cell infiltration. As 
shown in Fig. 6C, we found that by comparing the LRPPRC expression of immune-infiltrating cells of the sam-
ples, Activated.B.cell, Activated.CD4.T.cell, Activated.CD8.T.cell, Activated.dendritic.cell, CD56dim.natural.

Figure 3.  Machine learning-based screening of m6A key regulatory genes. (A) Boxplot of residual in RF and 
SVM. (B) Reverse cumulative distribution of residual in RF and SVM. (C) RF screening of m6A key regulatory 
genes. (D) Screening for candidate m6A-regulated genes by RF.
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Figure 4.  Construction and validation of clinical prediction models. (A) Nomogram of m6A key regulatory 
genes for predicting IS. (B) C_index of the model. (C) Calibration curve of the model. (D) Decision curves for 
clinical prediction models. (E) Benefit curves for clinical prediction models.
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killer.cell, Eosinophil, Immature.B.cell, Immature.dendritic.cell, Macrophage, Monocyte, Natural.killer.cell, Neu-
trophil, T.follicular.helper.cell, Type.17.T.helper.cell and Type.2.T.helper.cell, and 15 other immune-infiltrating 
cells were statistically different, suggesting that LRPPRC is an important player in the immune microenvironment 
of IS, and can be considered as an immune marker for IS.

Enrichment analysis, PPI network analysis and molecular prediction of LRPPRC
We performed GO enrichment analysis of LRPPRC in R language (Fig. 7A,B). LRPPRC was enriched in mito-
chondrial function in BP; localised in mitochondria and nucleus in CC; and associated with transcription-
translation in MF. We performed molecular prediction in the STRING database indexed by LRPPRC, set the 
minimum required interaction score as the highest confidence (0.900), and obtained the related molecules and 
drugs as PPARGC1A, SLIPR, CYCS, MAP1S, BECN1, ERBB2, PTPN11, JAK1, SOS1 and STAT3 (Fig. 7C). We 
performed protein interaction network analysis in the STITCH database indexed by LRPPRC, set the minimum 
required interaction score as the highest confidence (0.900), and obtained the interacting proteins as MPRS35, 
SLIRP, EIF4E, MT-ND5, HEBP2, MAP1S, POLRMT, ERBB2, SHC1 and GRB2 (Fig. 7D).

Discussion
The development of IS is extremely complex and involves a variety of molecular mechanisms and methylation 
modifications. M6A modifications are very common in mammalian brain tissues and play an important role in 
synaptic plasticity, learning, memory and other aspects related to neurological functions. M6A expression abnor-
mality may be one of the causes of a variety of neurological disorders, and m6A-related genes can be found in 
Alzheimer’s disease, Parkinson’s disease, and major  depression5. Whereas IS can affect the entire brain and its 
neural network properties, it has been shown that stroke significantly increases RNA methylation in ischemic 
stroke brain  tissue14. Current studies on the role of m6A in the development of IS mainly focus on immune-
related aspects. m6A modifications can promote microglia/macrophage activation and polarisation and plays a 
regulatory role in microglia-induced inflammatory responses after  stroke15. M6A modifications are also closely 
related to the generation of immune inflammation and alterations of the immune microenvironment after  IS16, 
but the development of IS may also be associated with excitotoxicity, ionic imbalance, oxidative stress, endoplas-
mic reticulum stress, and  apoptosis17. The exact principle of its action is still unclear. Therefore, it is necessary 

Figure 5.  IS patient clusters obtained based on m6A key regulatory genes. (A) Consensus clustering matrix of 
IS samples for k = 2 to k = 5. (B) Consensus clustering CDF for k = 2 to k = 9. (C) Calinski criterion analysis of IS 
samples. Calinski criterion optimal number of clusters: 2. (D) Boxplot of 5 m6A genes expression in group A 
and B *p < 0.05, ***p < 0.001. (E) PCA analysis between clusters.
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Figure 6.  Determination of IS immune marker. (A) Differences in immune infiltration abundances in five 
m6A clusters. *p < 0.05, **p < 0.01, ***p < 0.001. (B) Immune cell infiltration correlation heat map of m6A key 
regulatory genes. (C) Immune infiltration analysis between clusters with different LRPPRC expression levels 
Group Low and group High represent cell clusters with low and high LRPPRC expression, respectively. *p < 0.05, 
**p < 0.01, ***p < 0.001.
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to use bioinformatics to comprehensively explore the role of m6A regulation in the immunity of IS. We screened 
five key m6A-regulated genes in IS, in which the expression of METTL3, LRPPRC and HNRNPA2B1 was 
increased, and the expression of WTAP and YTHDF3 was decreased. M6A methylation mediated by METTL3 
promotes the maturation of miR-335, which facilitates the formation of stress granules in the early phase of acute 
ischaemic  stroke18. Stress granules can immediately and transiently block mRNA translation to protect valuable 
mRNAs and proteins from harmful environments, thereby reducing neuronal damage and  apoptosis18. In a study 
on IS and immune microenvironment regulation, researchers found that LRPPRC could inhibit the immune 
response during the development of IS by suppressing dendritic cell activation, thereby attenuating the immune 
suppression due to neurological deficits and alterations in the systemic immune system, and decreasing the 
incidence of infections in IS  patients15. WTAP is an essential bridging protein that stabilises the METTL3-
METTL14  complex19, thereby promoting the formation of stress granules and protecting neurons. In a study 
exploring the relationship between m6A and circRNAs in mouse cerebral ischemia, the expression of YTHDF3 
decreased and then increased, while the expression of METTL3 decreased. Meanwhile, METTL3 and YTHDF3 
may not only act on post-transcriptional regulation of mRNAs only, but also on  circRNAs20. CircRNAs are closely 

Figure 7.  Enrichment analysis, PPI network analysis and molecular prediction of LRPPRCs. (A,B) Gene 
Ontology analysis points out the enrichment degree in BP, CC, and MF. (C) PPI of LRPPRC. (D) Molecular 
prediction of LRPPRC.
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associated with stroke severity and inflammatory response and are neurospecific, which play key roles in stroke 
diagnosis, prognosis, and treatment, and may be used as new diagnostic and prognostic  biomarkers21. After that, 
we chose machine learning and clinical prediction models for screening of m6A key genes and prediction of the 
risk of IS occurrence. The RF algorithm can be used not only for prediction of early neurological deterioration 
in patients with acute mild  stroke22, but also for prediction of long-term prognosis of  IS23. We not only found 
that the residual values and area under the AUC curve of the RF algorithm were superior to the SVM algorithm. 
the RF algorithm identified METTL3, LRPPRC, HNRNPA2B1, WTAP and YTHDF3 as key regulatory genes for 
IS. Clinical prediction models can predict the risk of IS occurrence based on m6A key regulatory genes. Because 
of its simplicity and ease of understanding, column charts have become a common visual representation of clini-
cal prediction models. IS column charts often select the lifestyle habits, past medical history, imaging tests, labo-
ratory tests, etc. of IS patients as the influencing factors of IS to predict the occurrence and development of  IS24,25. 
Clinicians can calculate the probability of IS based on the expression of METTL3, LRPPRC, HNRNPA2B1, 
WTAP and YTHDF3. To further search for biomarkers of IS, we divided the 69 IS patients into 5 clusters based 
on the differences in the expression of key m6A genes and analyzed the differences in immune infiltration in 
different clusters. Clustering of patients based on certain information about the patient that is relevant to the 
target disease is common in clinical practice. In a study on Parkinson’s disease, investigators found that baseline 
clinical typing of patients based on their serum markers predicted their motor or non-motor prognosis, which 
in turn provided clinicians with ideas for earlier  interventions26. In a 63-year follow-up study of dementia, 
researchers found significant differences in the incidence of dementia after clustering the follow-up population 
by genetic risk of  dementia27. In our study, we first clustered the IS patients in the dataset based on the m6A key 
gene, which was known to distinguish IS patients by PCA. In a study of m6A modification in inflammatory bowel 
disease, clustering of patients also showed different  immunophenotypes28. To further identify immune markers 
for m6A, we used the ssGSEA algorithm to look at the level of immune cell infiltration between m6A clusters 
and identified by immune correlation that LRPPRC could serve as an immune marker for IS. After that, we 
looked at the immune infiltration characteristics of IS patients grouped based on the expression of LRPPRC and 
found that LRPPRC plays an important role in the immune microenvironment of IS. Finally, we performed 
enrichment analysis, PPI and molecular prediction of LRPPRC. LRPPRC may influence stroke development in 
mitochondrial function, transcriptional translation associated with m6A, and via immune-related  proteins29. 
The influenza A virus PB2 protein can block JAK1/STAT signalling by targeting JAK1 for degradation via a 
proteasome mechanism. This allows the PB2 protein to evade the body’s innate immunity to the  virus30. Metabo-
lomics and proteomics have shown that SOS1 can serve as a potential biomarker for early IgA nephropathy and 
is involved in the regulation of immune system activation in IgA  patients31. STAT3, a transcriptional regulator, 
plays a key role in vertebrate immunity. Mutations in this factor are associated with immunodeficiency and 
autoimmune  diseases32. MAP1S is a protein involved in autophagy and is mainly expressed in macrophages. And 
MAP1S-deficient macrophages have attenuated phagocytosis of bacteria, thus attenuating the body’s innate 
immunity to microbial  infections33. Mutations in ERBB2 promote PD-L1-mediated immune escape in gallblad-
der  cancer34. CYCS is significantly associated with immune cells and promotes the proliferation of asthma cells 
in vitro35. Meanwhile, we also identified immune-related molecules by molecular prediction. Over expression 
of mitochondrial RNA polymerase is associated with abnormal clinical pathology conditions in patients with 
lung adenocarcinoma, which can lead to decreased life expectancy. Also, mitochondrial RNA polymerase expres-
sion is positively correlated with immune suppressor gene, and POLRMT over expression in lung adenocarci-
noma patients affects the immune microenvironment of the  tumour36. A comprehensive analysis of multiple 
oncology databases found that SHC1 plays an important role in the tumour immune microenvironment. SHC1 
has prognostic and diagnostic value in a variety of cancers and may serve as a potential biomarker for cancer 
immunotherapy and  diagnosis37. In melanoma, genetic ablation of phosphorylated-eIF4E reprogrammes the 
immunosuppressive microenvironment, which reduces the production of inflammatory factors and 
 immunoproteins38. In summary, LRPPRC plays an important role in the immune microenvironment of IS and 
may serve as an immune marker for IS. Our study also has its limitations. We should increase m6A-seq sequenc-
ing data for IS to fully elucidate the role of m6A in  IS39.

Conclusion
In this study, we comprehensively demonstrated the potential of LRPPRC as an immune marker for IS by con-
structing multiple bioinformatics analyses, which can be used as an idea for further research on drug targets 
for IS.

Data availability
The dataset for this study is GSE58294 from the GEO database, which contains transcriptome-wide data on blood 
from 69 cardioembolic ischaemic stroke samples and 22 control samples. For more information, visit https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE58 294. This dataset is publicly available.
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