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PCB defect detection algorithm 
based on CDI‑YOLO
Gaoshang Xiao , Shuling Hou  & Huiying Zhou *

During the manufacturing process of printed circuit boards (PCBs), quality defects can occur, which 
can affect the performance and reliability of PCBs. Existing deep learning‑based PCB defect detection 
methods are difficult to simultaneously achieve the goals of high detection accuracy, fast detection 
speed, and small number of parameters. Therefore, this paper proposes a PCB defect detection 
algorithm based on CDI‑YOLO. Firstly, the coordinate attention mechanism (CA) is introduced to 
improve the backbone and neck network of YOLOv7‑tiny, enhance the feature extraction capability 
of the model, and thus improve the accuracy of model detection. Secondly, DSConv is used to 
replace part of the common convolution in YOLOv7‑tiny to achieve lower computing costs and 
faster detection speed. Finally, Inner‑CIoU is used as the bounding box regression loss function of 
CDI‑YOLO to speed up the bounding box regression process. The experimental results show that 
the method achieves 98.3% mAP on the PCB defect dataset, the detection speed is 128 frames per 
second (FPS), the parameters is 5.8 M, and the giga floating‑point operations per second (GFLOPs) 
is 12.6 G. Compared with the existing methods, the comprehensive performance of this method has 
advantages.

As a basic component of the vast majority of electronic devices, PCBs play the role of a skeleton for connecting 
electronic components as well as for transmitting signals and energy. The manufacturing process of PCB, needs 
to go through several complex processes, each of which may have quality defects, which can be divided into 
two categories: functional defects and appearance  defects1. functional defects are the most serious during PCB 
production and can directly affect the performance of the PCB, while appearance defects can affect the aesthetics. 
In these two types of defects, six main types of defects often occur in industrial production, including missing 
hole, mouse bite, open circuit, short, spur, and spurious copper.

In early industrial production, PCB defect detection methods are mainly based on manual visual inspection, 
functional inspection, and inline instrumentation. However, the manual visual inspection method has the disad-
vantages of visual fatigue, slow detection speed, and high cost; the functional inspection method requires special 
test equipment and cannot detect multiple defects; and the inline inspection method can only detect functional 
defects. Currently, automated optical inspection (AOI)2 has become the most common PCB defect detection 
technology used in industrial production. AOI is a non-contact inspection method based on machine learning 
and image processing technology. There are three basic methods of AOI, which are the reference comparison 
method, non-reference comparison method, and Hybrid  method3. The reference comparison method is used to 
determine the type of defect by comparing the difference between the PCB to be inspected and the PCB stencil, 
but this method is more affected by external influences such as lighting. The non-reference comparison method 
requires predesigned discrimination conditions, but the presence of a defect is not set in advance of the discrimi-
nation conditions can not detect the defect. The hybrid method is a combination of the first two methods, but 
the combination of the algorithm increases the amount of calculation, and the detection steps are cumbersome.

In recent years, deep learning methods have gradually dominated the image field, and deep learning algo-
rithms are highly accurate and fast compared to machine learning. Deep learning-based object detection algo-
rithms are mainly classified into two main categories, end-to-end One-stage object detection algorithms, such as 
 YOLOv14,  YOLOv25,  YOLOv36,  YOLOv47, and  SSD8; and Two-stage object detection algorithms based on region 
suggestions, such as R-CNN9, Fast R-CNN10, and Faster R-CNN11. Deep learning algorithms are widely used 
in the field of defect detection. Yanan et al.12 used the YOLOv3 algorithm to achieve surface defect detection of 
steel rails. Wang et al.13 used deep learning neural network for defect detection on potato surface. Zhang et al.14 
proposed a solar surface defect detection algorithm by fusing multi-channel convolutional neural network. Some 
scholars have also applied deep learning methods in the field of PCB defect detection. Ding et al.15 proposed 
TDD-net based on Faster R-CNN, which used the k-means clustering method to obtain more reasonable anchor 
frames and enhanced feature mapping relationships at different levels, suitable for the detection of small defects. 
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Hu et al.16 constructed a new network based on improved Faster R-CNN, which used ResNet50 as the backbone 
network, used GARPN to predict more accurate anchor frames, and merged the residual units of Shufflenetv2. 
This method does not require external mechanical fixtures and strict template alignment operations, reducing the 
testing cost. Chen et al.17 proposed a Transformer-YOLO network detection model using an improved clustering 
algorithm to generate suitable anchor frames, using Swin Transformer as a feature extraction network, and adding 
convolution and attention mechanism modules to the feature detection network in order to make the network 
more effective in focusing on defect information. Liu et al.18 proposed a fast defect detection network, which 
used a modified MobileNetv2 network as the backbone network, introduced the SPP structure, and used k-means 
clustering to obtain a suitable anchor frame, and the experimental results showed that the network model was 
small and could be detected in real-time. Liao et al.19 improved the YOLOv4 network by using a lightweight 
network MobileNetv3 replaced the CSPDarknet53 backbone network of YOLOv4 with an optimized activation 
function, and the experimental results showed that the network was improved in both detection accuracy and 
speed and reduced the number of model parameters.

However, the current deep learning-based method for PCB defect detection does not balance detection 
accuracy, speed, and network model parameters well. To address this issue, this paper proposes a new network 
model, CDI-YOLO, by selecting the lightweight YOLOv7-tiny network model as the baseline and making relevant 
improvements. The paper’s main contributions are:

(1) The YOLOv7-tiny network model combines the ELAN structure with the CA module. The CA module 
allows the network model to consider both the relationship between feature channels and the location infor-
mation in the feature space during training. This is beneficial for the network model to focus more on the 
PCB defective features during feature extraction, ultimately improving the detection accuracy of the network.
(2) DSConv can be used to replace some of the common convolutions in the YOLOv7-tiny network model. 
This technique mimics the behavior of convolutional layers by using quantization and distributional offsets, 
resulting in lower computational effort and faster detection.
(3) CDI-YOLO uses Inner-CIoU as the bounding box regression loss function instead of CIoU. Inner-CIoU 
generates auxiliary bounding boxes of different sizes using scale factors to compute the loss values, resulting 
in faster and more efficient regression results.

Methodology
Overview of the YOLOv7‑tiny network model
In 2022, Wang et al.20 proposed the YOLOv7 object detection algorithm. The algorithm includes models with 
different widths and depths for edge GPUs, normal GPUs, and cloud GPUs, such as YOLOv7-tiny, YOLOv7, and 
YOLOv7-W6. Scaling strategies are used to generate YOLOv7-X, YOLOv7-E6, and other new models. To achieve 
a balance between detection accuracy, speed, and network model parameters in the PCB defect detection task, 
this paper utilizes the YOLOv7-tiny network model, a lightweight version of the YOLOv7 network model, as the 
baseline model. Relevant improvements are made based on this model. Figure 1 shows the structure diagram 
of the YOLOv7-tiny model.

The YOLOv7-tiny network model’s basic framework comprises four main components: Input, Backbone, 
Neck, and Head.

The input layer utilizes Mosaic data augmentation to randomly crop input images before splicing them into 
a single image for training data, thereby enriching the dataset.

The backbone network comprises CBL, ELAN, SPPCSPC, and MP modules. The CBL module includes a con-
volutional layer, a normalization layer, and a LeakRelu activation function. The ELAN module consists of multiple 
CBL modules, and the MP is a maximum pooling layer. The backbone network extracts features from the image.

The PANet (Path Aggregation Network)21 construct is used by Neck as its feature fusion module. This allows 
for information aggregation through top-down and bottom-up paths, enabling features at different scales to 
communicate and fuse with each other, thereby improving the accuracy of object detection.

The Head of YOLOv7 adopts the feature pyramid structure commonly used in the YOLO series, where differ-
ent levels of feature maps are processed and fused to capture object information at different scales. The detection 
head comprises several prediction layers that forecast the object’s bounding box, category, and confidence score.

CDI‑YOLO network structure
The CDI-YOLO network model is an improvement of YOLOv7-tiny. The model structure is shown in Fig. 2. The 
CA module is combined with the ELAN  structure22 of YOLOv7-tiny and embedded into the backbone and neck 
networks of the network model. This enables the model to focus globally on various locations of the inputs instead 
of limiting itself to specific regions, improving the accuracy of network detection. DSConv was used to replace 
some of the CBL modules in the YOLOv7-tiny network model to improve its ability to detect various types of PCB 
defects. Additionally, Inner-CIoU was employed as the bounding box regression loss function for CDI-YOLO, 
resulting in faster bounding box regression through the use of an auxiliary bounding box to calculate the loss.

Introduction of coordinated attention module
Due to the small defects of PCBs, feature information may not be immediately apparent and can be influenced by 
various environmental factors. To enhance the YOLOv7-tiny network model’s ability to extract defect information 
from PCBs, this study incorporates the CA module into the ELAN module of YOLOv7-tiny23. This improves the 
accuracy of PCB defect detection.

CA module is an attention mechanism used in computer vision tasks to improve model performance by 
enhancing feature representation. Traditional attention mechanisms focus on the channel dimensions of the 
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feature map, dynamically adjusting the feature importance between channels by learning weights. Conversely, 
CA module concentrates on the spatial location of the feature graph and adjusts the importance of different 
spatial locations by learning their weights. The fundamental concept of CA module is to incorporate the loca-
tion information of the feature graph into the attention weights. The approach takes into account that features 
located in different areas may have varying contributions to the task. As a result, it adjusts the importance of 
features by learning the weights of their locations to better capture spatially structured information. The CA 
module encodes channel relationships and remote dependencies through two steps: coordinate information 
embedding and coordinate attention generation. Figure 3 illustrates the coordinate attention module, and the 
detailed principle of CA module is described below.

(1) Coordinate Information Embedding.
The input feature map X undergoes pooling operations along the horizontal and vertical directions using 

two pooling kernels, (H , 1) and (1,W) , respectively. Equation (1) shows the output of channel c in the vertical 
direction h.

Equation (2) shows the output of channel c in the horizontal direction w.

The horizontal and vertical outputs are then spliced to obtain a pair of orientation-aware feature maps Z.
(2) Coordinate Attention Generation.
Equation (3) shows that the feature map Z , obtained through coordinate information embedding, is input 

into a 1 × 1 convolutional kernel F1 , followed by a nonlinear activation operation δ.

The feature map f  , obtained by Eq. (3), is split into two tensors: f h ∈ RC/r×H and f w ∈ RC/r×W , along the 
horizontal and vertical directions, respectively. Following this, two 1 × 1 convolution kernels, Fh and Fw , are 

(1)zhc (h) =
1

W

∑

0≤i<W

xc(h, i)

(2)zwc (w) =
1

H

∑

0≤j<H

xc
(

j,w
)

(3)f = δ(F1(Z))

Figure 1.  YOLOv7-tiny network structure.
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Figure 2.  CDI-YOLO network structure.

Figure 3.  CA module.
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used to convert f h and f w into tensors gh and gw , respectively, with the same number of channels as the input 
X . These are computed as shown in Eq. (4) and Eqs. (5).

 where σ is the sigmoid activation function. Then the outputs gh and gw from Eq. (4) and Eq. (5) are multiplied 
as weights with the initially input feature map X . Finally, the output Y  of the coordinate attention module is 
shown in Eq. (6).

Through these steps, CA module can adjust feature weights based on location importance, improving the 
model’s ability to capture spatially structured information. This mechanism enhances the model’s accuracy in 
perceiving and understanding important spatial locations in computer vision tasks.

DSConv module
DSConv24 is a variant of the traditional convolutional layer. By replacing the ordinary convolution with DSConv, 
it is possible to achieve lower computation and higher detection speed. The principle of DSConv is shown in 
Fig. 4.

DSConv decomposes the operation of a traditional convolutional layer into Variable Quantized Kernel (VQK) 
and Distribution Shifts. VQK is the quantised component of DSConv with the same size (cho, chi , k, k) as the 
original convolution tensor. Here, cho denotes the number of output channels, chi denotes the number of input 
channels, and k denotes the size of the convolution kernel. The parameter values are obtained by quantising the 
original floating-point model into variable bit-length integer values. Once the parameter values have been quan-
tised, they cannot be changed. Distribution shifts are used to adjust the distribution of the VQK by two tensors: 
the Kernel Distribution Shifter (KDS) and the Channel Distribution Shifter (CDS). The KDS are used to carry 
out distribution shifts on each (1,BLK , 1, 1) slice of the VQK, on which the distribution is shifted. BLK is a 
hyperparameter that determines the block size for the VQK depth values in each displacement operation. Each 
value in the KDS corresponds to a displacement operation that shifts BLK depth values of the VQK. The size of 
the KDS is 2 ·

(

cho,CEIL
(

chi
BLK

)

, k, k
)

 where CEIL(x) is an upward rounding operator used to ensure that the 
computed dimensions satisfy the requirements. The size of CDS is 2 · (cho) . The CDS distributes the displace-
ments on each channel by performing a distributed displacement operation on each (1, chi , k, k) slice.

Inner‑CIoU loss
The YOLOv7-tiny model employs the CIoU bounding box regression loss function. However, this function has 
the disadvantage of slow convergence. To address this issue, we use the Inner-CIoU  loss25 as the bounding box 
regression loss function.

The Inner-CIoU loss calculates the loss based on the CIoU loss using an auxiliary bounding box, which is 
defined as shown in Eq. (7).

(4)gh = σ

(

Fh

(

f h
))

(5)gw = σ
(

Fw
(

f w
))

(6)yc
(

i, j
)

= xc
(

i, j
)

× ghc (i)× gwc
(

j
)

(7)Linner−CIoU = LCIoU + IoU − IoUinner

Figure 4.  Basic principle of DSConv.
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where LCIoU denotes the CIoU loss function, IoU  denotes the intersection and concatenation ratio of the pre-
dicted and real frames, and IoUinner is defined as shown in Eq. (8).

The definitions of inter and union are shown in Eq. (9) and Eqs. (10):

 where bgtr  , br , b
gt
l  , bl , b

gt
b  , bb , b

gt
t  and bt are defined as follows.

As shown in Fig. 5, xc and yc denote the coordinates of the centroid of the prediction box, xgtc  and ygtc  denote 
the coordinates of the centroid of the true box, w and h denote the width and height of the prediction box, wgt and 
hgt denote the width and height of the true box, and ratio denotes the scaling factor for generating the auxiliary 
bounding box, which generally takes a range of values between [0.5, 1.5].

Experimental results and analysis
Experimental environment and model parameters
Experimental environment
The operating system used in this experiment is Windows 11 64-bit operating system, the CPU is Intel(R) 
Core(TM) i5-13400F @ 2.60 GHz, the GPU is NVIDIA GeForce RTX 3060 with 12 GB of video memory, the 

(8)IoUinner
=

inter

union

(9)inter =
(

min
(

b
gt
r , br

)

−max
(

b
gt
l , bl

))

∗

(

min
(

b
gt
b , bb

)

−max
(

b
gt
t , bt

))

(10)union =
(

wgt
∗ hgt

)

∗ (ratio)2 + (w ∗ h) ∗ (ratio)2 − inter

(11)b
gt
r = x

gt
c −

wgt
∗ ratio

2
, b

gt
r = x

gt
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wgt
∗ ratio

2

(12)b
gt
t = y
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2
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gt
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2
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2
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2
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2
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2

Figure 5.  Auxiliary bounding box.
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running memory is 16 GB, the programming language is Python 3.8, the deep learning framework is Pytorch 
1.8.1, and CUDA version is CUDA 11.1.

Model parameters setting
In the training process of the model, the input image size is 608 × 608, the batch size is 8, the number of training 
rounds is 200, the optimizer is Adam optimizer, the momentum is 0.937, the weights decay is 0.0005, the initial 
learning rate is 0.01, and the learning rate is reduced by a cosine function.

Dataset preprocessing. The experiment utilised the PCB Defect dataset, released by the Intelligent Robot Open 
Laboratory of Peking University (http:// robot ics. pkusz. edu. cn/ resou rces/ datas et/). The dataset comprises 693 
images of PCB defects, which were cropped to produce 10,668 images. The dataset consists of 10,668 images, 
each containing one of six types of defects: missing hole, mouse bite, open circuit, short, spur, and spurious cop-
per. Table 1 shows the number of images for each defect type. The defects in the PCB images were labeled using 
the LabelImg tool and stored in the Pascal VOC dataset format. The dataset was then divided into a training set 
and a test set in an 8:2 ratio. Figure 6 displays images of defects in the PCB Defect dataset. The red boxed areas 
indicate the defective parts.

Table 1.  Dataset of PCB defect.

Type of defects Number of original images Number of expanded images

Missing hole 115 1832

Mouse bite 115 1852

Open circuit 116 1740

Short 116 1732

Spur 115 1752

Spurious Copper 116 1760

Total 693 10,668

Figure 6.  PCB defects.

http://robotics.pkusz.edu.cn/resources/dataset/
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Evaluation metrics
We use mean Average Precision (mAP), Parameters, GFLOPs, and FPS as evaluation metrics. mAP is the average 
of the AP values of different PCB defects, defined as in Eq. (15).

where N denotes the number of PCB defect types and AP is the area enclosed by the PR curve, the calculation 
formula is shown in Eq. (16).

P is the precision, which indicates the probability of being correctly classified in the predicted positive sample 
and is calculated as shown in Eq. (17).

where TP denotes the number of samples that are predicted to be positive and true positive samples and FP 
denotes the number of samples that are predicted to be positive but true negative samples.

R is the Recall, which represents the probability of being correctly classified among all positive samples and 
is calculated as shown in Eq. (18).

where FN denotes the number of samples that are predicted to be negative but true to be positive.

Analysis of results
Ratio setting of inner‑CIoU loss
To determine the appropriate ratio, we conducted experiments using the CDI-YOLO network model on the 
PCB Defect dataset by setting the ratio of Inner-CIoU to 0.6, 0.7, 0.8, 0.9, and 1.1, respectively. Table 2 shows 
the results of the comparative experiments conducted on the PCB Defect dataset.

By observing the experimental results in Table 2, we can see that when the ratio parameter is set to 0.7, the 
optimal values of P, R,  mAP50, and  mAP50:95 are obtained. Based on this observation, we decided to set the ratio 
of Inner-CIoU to 0.7.

Ablation experiment
To evaluate the impact of the CA module, DSConv, and Inner-CIoU loss functions on the performance of the 
YOLOv7 tiny network model, we performed comparative experiments on the PCB Defect dataset. Table 3 shows 
the results of the removal experiments. In the table, we use Model_1 to denote the baseline YOLOv7-tiny model, 
Model_2 to denote the introduction of the CA module, Model_3 to denote the introduction of DSConv, Model_4 
to denote the introduction of the Inner-CIoU loss function, Model_5 to denote the simultaneous introduction 
of the CA module and DSConv, and Model_6 to denote the simultaneous introduction of the CA module and 
the Inner-CIoU loss function, Model_7 to denote the simultaneous introduction of DSConv and the Inner-CIoU 
loss function, and Model_8 to denote the CDI-YOLO network model. The results of these ablation experiments 
allow us to evaluate the impact of each module on the model performance.

From the experimental results of Model_2, it can be seen that the introduction of the CA module improves 
the feature extraction capability of the model for PCB defects and increases the  mAP50 to 96.4. Compared to 
YOLOv7-tiny, an improvement of 1% is achieved. However, this improvement is accompanied by a small increase 
in the number of model parameters and a decrease in FPS. This is because when we introduce the CA module, 
we need to introduce coordinate encoding parameters to represent position information, and these parameters 
increase the number of model parameters. In addition, the CA module needs to operate on each position in 
the feature map during the computation process, which increases the computational complexity of the model 
and leads to an increase in the computation time for each forward propagation step, which decreases the FPS. 

(15)mAP =

∑N
i=1 APi

N

(16)AP =

∫ 1

0

P(R)dR

(17)P =
TP

TP + FP

(18)R =
TP

TP + FN

Table 2.  Performance comparison of inner-CIoU with different ratios.

Ratio P (%) R (%)
mAP50
(%)

mAP50:95
(%)

0.6 96.3 93.0 96.6 47.7

0.7 97.1 96.4 98.3 51.1

0.8 97.1 95.6 97.9 51.0

0.9 96.1 93.6 97.2 49.2

1.1 95.4 92.5 96.2 47.6
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As can be seen from the experimental results of Model_3, we can observe that after replacing some of the ordi-
nary convolutions of YOLOv7-tiny with DSConv, the GFLOPs of the model decreased by 4.5%, while the FPS 
increased by 6.1%. This shows that DSConv can reduce the computational complexity of the model and increase 
the speed of recognition. With the experimental results of Model_4, we can see that after using Inner-CIoU as the 
loss function of YOLOv7-tiny, the convergence speed of the model is improved, the bounding box prediction is 
more accurate, and the detection accuracy and speed are also improved, making the model’s  mAP50 reach 97.0%.

In the experimental results of Model_5, we observe that after the introduction of both the CA module and 
DSConv, DSConv can compensate to some extent for the decrease in FPS caused by the introduction of the CA 
module and reduce the model’s GFLOPs. The experimental results of Model_6 show that under the combined 
effect of the CA module and the effect of the Inner-CIoU loss function, the model’s  mAP50 improves by 2.2%. 
Similarly, the experimental results of Model_7 show that with the combined effect of the DSConv and Inner-CIoU 
loss functions, the model’s  mAP50 improves by 2.0% and FPS improves by 6.9%. Finally, in the experimental 
results of Model_8, we can see that after the simultaneous introduction of these three modules, the model’s  mAP50 
reaches 98.3%, which is the best performance among all the models. Model_8 has the best performance in terms 
of  AP50 for the six PCB defect types, except that the  AP50 of the missing hole is lower than that of Model_5, and 
the other five PCB defect types have the  AP50 are all the highest.

In summary, compared to YOLOv7-tiny, CDI-YOLO performs well in all performance metrics except for a 
slight increase in the number of parameters and lower FPS.

Comparison experiment
To validate the advantages of the CDI-YOLO network model, we compared its performance with the existing 
mainstream methods (YOLOv3, YOLOv3-SPP, YOLOv4, YOLOR, YOLOv5s, YOLOv7, and YOLOv7-tiny) on 
the PCB Defect dataset. The results of the comparison experiments are shown in Table 4.

Table 4 compares the performance of the different models in terms of P, R,  mAP50,  mAP50:95, Parameters, 
GFLOPs, and FPS. CDI-YOLO achieves the best results in terms of P, R,  mAP50,  MAP50:95, and GFLOPs. CDI-
YOLO’s results are slightly worse than YOLOv7-tiny only in terms of Parameters and FPS.

In general, compared with the existing mainstream methods, CDI-YOLO is slightly inferior to YOLOv7-
tiny in terms of the number of parameters and detection speed, but the gap is not large. It is worth noting that 
CDI-YOLO shows higher detection accuracy on the PCB Defect dataset. This proves that CDI-YOLO can solve 
the problems that the existing methods cannot achieve at the same time in terms of high detection accuracy, 
fast detection, and fewer parameters, making it a suitable choice for real-time detection deployed on hardware 
devices.

Table 3.  Ablation experiment. Significant values are in bold

Model

AP50 (%)

mAP50 (%) Parameters (M) GFLOPs FPSMissing hole Mouse bite Open circuit Short Spur Spurious copper

Model_1 98.7 95.0 94.3 95.9 95.1 93.0 95.4 5.74 13.1 131

Model_2 98.4 96.8 96.1 96.9 95.9 94.6 96.4 5.76 13.1 111

Model_3 98.5 96.4 95.8 95.9 95.3 95.4 96.2 5.74 12.5 139

Model_4 98.7 97.6 96.2 96.0 97.1 96.2 97.0 5.74 13.1 135

Model_5 99.0 97.0 95.6 97.3 95.5 96.2 96.8 5.76 12.6 120

Model_6 98.4 97.5 97.0 97.3 97.7 97.7 97.6 5.76 13.1 115

Model_7 98.5 97.5 96.3 96.9 97.6 97.6 97.4 5.74 12.5 140

Model_8 98.9 97.8 98.3 97.6 98.3 98.6 98.3 5.76 12.6 128

Table 4.  Comparison experiment. Significant values are in bold

Model P (%) R (%) mAP50 (%) mAP50:95 (%) Parameters (M) GFLOPs FPS

YOLOv3 91.1 89.5 94.1 46.6 58.7 154.6 57

YOLOv3-SPP 91.3 90.5 95.0 46.8 59.7 155.5 56

YOLOv4 92.4 91.2 95.8 47.5 44.3 114.1 60

YOLOR 93.2 90.1 96.1 47.7 44.3 114.1 58

YOLOv5s 92.7 91.0 95.9 47.3 6.73 16.3 115

YOLOv7 96.6 94.3 97.3 50.2 34.8 103.2 65

YOLOv7-tiny 95.2 90.4 95.4 46.9 5.74 13.1 131

CDI-YOLO 97.1 96.4 98.3 51.1 5.76 12.6 128
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Results of the test
Figure 7 shows a comparison of the detection results of the YOLOv7-tiny algorithm and the CDI-YOLO algo-
rithm on six types of PCB defects. The first column shows the location of the defect with a red box, the second 
column shows the detection results of the YOLOv7-tiny algorithm, and the third column shows the detection 
results of the CDI-YOLO algorithm. Each row uses the same image and the corresponding defect types are miss-
ing hole, mouse bite, open circuit, short, spur, and spurious copper.

Figure 7.  Comparison of the detection results of YOLOv7-tiny and CDI-YOLO.
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Looking at the detection results in row 1, we can see that the YOLOv7-tiny algorithm has a lower confi-
dence level in its detection results compared to the CDI-YOLO algorithm. In the detection results of row 2, 
the YOLOv7-tiny algorithm has a false detection situation. In the detection results of rows 3, 4, 5, and 6, the 
YOLOv7-tiny algorithm has a missed detection situation. Taken together, the detection results of the CDI-YOLO 
algorithm are better than those of the YOLOv7-tiny algorithm.

Conclusion
This paper proposes a PCB defect detection algorithm based on CDI-YOLO. The algorithm introduces a CA 
module into the YOLOv7-tiny object detection algorithm to better understand and utilize spatial information, 
thereby enhancing perception and reasoning capabilities for detecting defects at different positions on the PCB. 
Additionally, selected regular convolutional layers are replaced with DSConv to reduce model complexity and 
improve detection speed. Furthermore, Inner-CIoU is employed as the bounding box regression loss function, 
leveraging auxiliary bounding boxes to expedite the model’s bounding box regression speed. Experimental results 
demonstrate that CDI-YOLO achieves the highest mAP of 98.3% in terms of detection accuracy compared to 
existing methods. In terms of parameters, CDI-YOLO has 5.8 M parameters, slightly higher than YOLOv7-tiny 
but with negligible difference. In terms of detection speed, CDI-YOLO achieves a speed of 128 FPS, slightly lower 
than YOLOv7-tiny but capable of meeting real-time detection requirements. Therefore, the proposed method 
successfully addresses the simultaneous challenges of achieving high detection accuracy, fast detection, and 
reduced parameter count, providing an excellent solution for practical PCB defect detection systems.

However, in practical application scenarios, there are various interfering factors such as complex backgrounds, 
lighting variations, and noise, which can affect the accuracy of the model’s detection. To improve the detection 
accuracy of the model in real-world scenarios, we plan to augment our dataset of PCB defect samples with more 
instances that contain complex backgrounds. This will allow us to train our model and enhance its robustness. 
Additionally, annotating a large number of defect samples in PCB defect detection is a time-consuming and 
expensive task. Future research can explore the use of weakly supervised learning methods, such as weak labeling, 
unlabeled data, and semi-supervised learning, to improve the effectiveness of defect detection. This approach 
will help reduce the demand for a large amount of annotated data, thereby lowering costs and improving detec-
tion performance.

Data availability
The datasets analysed during the current study are available in the https:// robot ics. pkusz. edu. cn/ resou rces/ 
datas et/.
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