
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7221  | https://doi.org/10.1038/s41598-024-57488-y

www.nature.com/scientificreports

An epidemiological modeling 
framework to inform 
institutional‑level response 
to infectious disease outbreaks: 
a Covid‑19 case study
Zichen Ma 1,2 & Lior Rennert 2*

Institutions have an enhanced ability to implement tailored mitigation measures during infectious 
disease outbreaks. However, macro‑level predictive models are inefficient for guiding institutional 
decision‑making due to uncertainty in local‑level model input parameters. We present an institutional‑
level modeling toolkit used to inform prediction, resource procurement and allocation, and policy 
implementation at Clemson University throughout the Covid‑19 pandemic. Through incorporating 
real‑time estimation of disease surveillance and epidemiological measures based on institutional data, 
we argue this approach helps minimize uncertainties in input parameters presented in the broader 
literature and increases prediction accuracy. We demonstrate this through case studies at Clemson and 
other university settings during the Omicron BA.1 and BA.4/BA.5 variant surges. The input parameters 
of our toolkit are easily adaptable to other institutional settings during future health emergencies. 
This methodological approach has potential to improve public health response through increasing the 
capability of institutions to make data‑informed decisions that better prioritize the health and safety 
of their communities while minimizing operational disruptions.

The Covid-19 pandemic has caused major devastation and disruption globally. Institutions, including industry, 
health systems, and educational institutions, faced the particularly difficult task of operating during Covid-191–4. 
Many public health guidelines to mitigate Covid-19 spread were undeveloped at the time such institutions 
reopened (e.g., pre-arrival testing for university students)5. While disease mitigation policies implemented 
by governments in broad geographic regions were  effective6, policies informed by state or county data were 
insufficient and/or inefficient for disease mitigation at the local  level7,8. Population characteristics in institutes 
of higher education (IHE) can be substantially different in terms of social networks and health seeking behavior 
relative to the general  population9. For example, standard mitigation policies, including social distancing and 
masking, were not effective for preventing outbreaks in university student populations due to high social contacts 
and congregated  housing10.

Institutions with flexibility and ability to implement mitigation measures tailored to their populations 
have utilized predictive modeling at the local level to guide decision making throughout the pandemic. IHE 
implemented predictive models to inform testing strategies, mask and vaccine mandates, online instruction, 
and other mitigation strategies to help curb disease transmission in their student and employee  populations11–14. 
Accurate models are especially useful for IHE in the United States (US) and abroad, since (1) IHE students, 
faculty, and staff account for 7% of the US population and indirectly impact tens of millions including families 
and local  communites13, (2) increased disease transmission among students due to increased social contacts 
and congregated  living10, and (3) IHE are able to implement mitigation policies and behavioral  interventions13.

Several predictive Covid-19 models have been developed since the onset of the pandemic for case projections 
and intervention evaluation in other institutional  settings15, including healthcare  facilities16, long-term care 
 facilities17, and K-12  schools18–20. However, many of these models rely on input parameters derived from broad 
geographic regions which can lead to inaccurate projections for local  populations7. When models are not 
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tailored to local populations, uncertainty in local-level input parameters, including initial model states (e.g., 
population immunity)21, disease transmission (e.g., vaccine protection)9, human behavior (e.g., voluntary testing 
compliance)22, and the unpredictable nature of the  pandemic23, further amplify model  inaccuracy24. While 
predictive models can be useful for comparing the relative effectiveness of  interventions13,25,26, inaccurate point 
estimates for disease incidence can ultimately complicate institutional decision making and  policy27. Accurate 
case projections are needed to inform institutional resource planning and procurement, such as testing kits, 
isolation beds, ventilators, staffing, etc.5,11,28. Fortunately, many large institutions have rich data sources that can 
directly estimate input parameters to guide predictive models. Such modeling frameworks allow institutions to 
make informed decisions that better prioritize the health and safety of their local communities while minimizing 
operational disruptions.

In this study, we describe the development and implementation of a novel epidemiological modeling toolkit 
for institutional Covid-19 surveillance, prediction, resource procurement, and evaluation of institutional 
mitigation strategies. This modeling framework formed the basis for Clemson University’s decision-making 
throughout the Covid-19 pandemic. A novel feature of our toolkit is the utilization of the entire pipeline of 
institutional data in all stages of the modeling framework, including (1) estimation of local disease surveillance 
metrics, (2) statistical modeling of local disease transmission dynamics, and (3) compartment-based modeling 
framework for Covid-19 prediction based on input parameters estimated in (1), (2), and publicly available data. 
We argue that this strategy helps minimize uncertainties in model input parameters presented in the broader 
literature, and demonstrate that this institutional-level modeling toolkit can accurately predict the number of 
Covid-19 cases, inform resource procurement, and evaluate the relative effectiveness of mitigation measures. 
Moreover, the generalized version of this (publicly available) toolkit can yield reasonably accurate predictions in 
other university settings. The input parameters of this toolkit are adaptable to other institutional settings during 
(respiratory) infectious disease outbreaks.

Results
Model structure
For each affiliate subpopulation (in-state residential student, out-of-state residential student, non-residential 
student, faculty, staff, community), individuals were assigned into an immunity (or protection) level: no 
immunity, previous SARS-CoV-2 infection only, full vaccination, boosted, full vaccination with previous 
infection, boosted with previous infection (additional detail provided in Methods and Supplementary Text). 
Within each affiliate/immunity level subpopulation, individuals were placed in one of the compartments detailed 
in Fig. 1. Details on statistical models, estimation of protection parameters, disease transmission and transition 
parameters, including those derived from scientific literature or institutional protocol, is provided in Methods 
Supplementary Text. Initial compartment states and disease transmission/transition parameters were then 
inserted as input parameters into the compartment-based modeling (CBM) framework. The CBM provides 
predictions of the weekly number of cases and infection rates, the daily number of isolated individuals, and the 
daily number of isolated and quarantined individuals (by affiliate subpopulation). In addition, the toolkit also 
displays a summary of the initial states and the estimated disease transmission dynamics. A step-by-step tutorial 
of this publicly available toolkit is included as a supplement to this article.

Main analysis—Clemson University Analysis (Spring 2022)
There were 27,516 individuals in the main-campus population, including 22,634 students (4853 in-state 
residential students, 2265 out-of-state residential students, 15,516 non-residential students) and 4882 employees 
(1611 faculty, 3271 staff). Also included were 17,681 from the local  community29. The residential population 
was split into in-state and out-of-state, since out-of-state residential students were more likely to use university-
provided housing (if SARS-CoV-2 positive) due to travel restrictions. Students and employees were subject to 
mandatory arrival testing and weekly surveillance testing during in-person instruction. Initial values for students 
and employees in each compartment are based on empirical data with adjustments for underreporting (Table S1) 
at the start of the prediction period (January 10, 2022). During this period, the omicron BA.1 variant accounted 
for 99.2% of SARS-CoV-2 cases in South  Carolina9.

Estimated student and employee disease prevalence at baseline (January 6th through 9th) was 15.1% and 4.8%, 
respectively. The number of individuals in each immunity level, along with estimated protection by immunity 
level, is provided in Table S9. The disease reproductive number for each subpopulation was validated using 
empirical data from the Spring and Fall 2021 semesters and published literature (Methods and Supplementary 
Appendix 1). Predicted SARS-CoV-2 cases under weekly surveillance testing for students and employees during 
the 5-week follow-up period (January 10–February 13, 2022) are provided in Fig. 2. Observed cases represent the 
total number of tests with positive results during the indicated prediction period. Predicted cases represent the 
total number of students and employees tested positive during the indicated prediction period. Total predicted 
student and employee cases (%) during this 5-week period was 4947 (21.9%) and 891 (19.2%). Total observed 
cases (%) for these populations were 4876 (21.5%) and 876 (17.9%), respectively.

Further, the percent-agreement for total detected cases was 98.6% for students and 93.2% for employees. In 
addition, the percent agreement for the peak number of weekly detected cases is 81.9% for students (observed 
N = 2035; predicted N = 1667) and 79.5% for employees (observed N = 308; predicted N = 245). The predicted 
peak for students concurred with the observed peak at Week 1 (Jan. 10–16), but the predicted peak for employees 
occurred a week later than the observed peak.

Observed and predicted students in isolation over the 5-week prediction period are presented in Fig. 3. 
Clemson University’s Isolation and Quarantine (I/Q) policies were based on the latest CDC  guidelines30. We were 
interested in the maximum number of students in isolation, since this is directly linked to procurement of rooms. 
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Predicted and observed peak isolation counts were 1710 and 1881, respectively, corresponding to an agreement 
of 91.8%. The residential population is of particular interest since this population lives in congregated housing 
and, therefore, cannot isolate/quarantine in place. Among residential students, predicted and observed peak 
isolation counts were 673 and 649 (% agreement: 96.3%). In addition, among out-of-state residential students, 
predicted and observed peak isolation capacity were 264 and 194 (% agreement: 73.5%).

There was some daily variation in observed peak isolation (relative to predicted). Of note is the discrepancy 
between peak capacity towards the end of week 2 (predicted peak: 1086, observed peak: 1515; agreement: 72%). 
This was primarily due to daily fluctuation in student testing schedules and limited weekend testing, which was 
not incorporated into the modeling framework.

Prior to the start of each semester, we were tasked with evaluating the impact of testing strategies on mitigating 
disease spread. This has been extensively studied for previous variants (prior to omicron), which have concluded 
that testing at least once per week is sufficient for mitigating disease  spread12,13. Here we compared the projected 
cases during the five-week projection period under four different testing strategies: weekly, bi-weekly, monthly, 
and voluntary testing. We consider two time periods: Spring 2022 semester (omicron BA.1 variant) and Fall 
2022 semester (omicron BA.5 variant).

For voluntary testing, we estimated that only 10% of total SARS-CoV-2 infections would be detected for 
students and 15% for employees. Results for the Spring 2022 semester are presented in Fig. 4. Weekly testing led 

Figure 1.  Modeling framework. The modeling framework of the toolkit includes estimating local disease 
surveillance metrics, statistical modeling of local disease transmission dynamics, and compartment-based 
modeling framework for Covid-19 prediction based on estimated input parameters and publicly available data.
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to 1.10, 1.50, and 2.57 times more detected student cases compared to bi-weekly, monthly, and voluntary testing 
(weekly: 4947, bi-weekly: 4492, monthly: 3293, voluntary: 1928) and 1.02, 1.30, and 1.92 times more detected 
employee cases compared to bi-weekly, monthly, and voluntary testing (weekly: 891, bi-weekly: 871, monthly: 
688, voluntary: 463), respectively. The opposite was true for total cases (both symptomatic and asymptomatic). 
Here, voluntary testing led to 1.65, 1.19, and 1.06 times more total student cases compared to weekly, bi-weekly, 
and monthly testing (weekly: 5669, bi-weekly: 7859, monthly: 8851, voluntary: 9379) and 1.79, 1.29, and 1.10 
times more total employee cases compared to weekly, bi-weekly, and monthly testing (weekly: 1206, bi-weekly: 
1671, monthly: 1954, voluntary: 2153), respectively. Based on these findings, Clemson University continued with 
weekly testing during the first half of the Spring 2022 semester. While similar (relative) trends were observed 
when comparing testing strategies prior to the Fall 2022 semester (Fig. S1), overall predicted cases were lower 
under the four testing strategies. This is primarily due to the substantial increase in population immunity from 
the Omicron BA.1 variant, which resulted in a lower susceptible  population9,31.

Extension to other institutions and time periods
We generalized the modeling framework above to obtain predictions in three other settings. The first two 
projections were conducted for the University of Georgia (UGA) and Pennsylvania State University (PSU) during 
the Spring ’22 semester. These institutions were natural choices for external validation, as both are land-grant 
universities with publicly accessible data on weekly Covid-19 cases. Because institutional vaccination data was 
unavailable, we used literature-based estimates of vaccine protection for these populations (Table S7). The third 
set of projections utilized the generalized modeling framework for predictions at Clemson University during 
the Fall 2022 semester (omicron BA.5 variant).

For UGA and PSU, we obtained the total number of students and employees in each university and the 
number of infections during the week prior to the prediction start (January 10th, 2022) from institutional 

Figure 2.  Predicted student and employee Covid-19 cases (percent of population) under weekly testing during 
first 5 weeks of Spring ’22 at Clemson University. Week 1 started on January 10, 2022. Over the five weeks, 
the observed student cases were 2035, 1678, 732, 296, and 135, respectively (total observed cases = 4876; % 
agreement = 98.6%). The observed employee cases over the five weeks were 308, 264, 160, 90, and 54, respectively 
(total observed cases = 876; % agreement = 93.2%). The % Agreement is calculated as min(Oij,Pij)/max(Oij,Pij), 
where Oij and Pij are the observed and predicted Covid-19 cases in week i for subpopulation j.

Figure 3.  Observed and predicted number of maximum student isolation beds needed each week under weekly 
testing during first 5 weeks of Spring ’22 at Clemson University.
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websites and Covid-19  dashboards32,33. Because UGA and PSU did not implement mandatory surveillance testing, 
reported Covid-19 cases are from voluntary testing and therefore overall case prevalence is underreported. 
We adjust these estimates by an (estimated) constant to obtain the asymptomatic/undetected infection rate at 
baseline (see Methods and Supplementary Appendix 1). Due to lack of information on vaccination and previous 
infection rates, we estimate these quantities using a combination of Clemson institutional data and data from the 
Centers for Disease Control and Prevention (CDC)34. The calculation of subpopulation sizes and other details 
are provided in Supplementary Appendix 1.

We used our toolkit to predict the number of weekly cases and the maximum number of weekly cases 
for university students and employees at UGA and PSU over the 5-week period (January 10 to February 13, 
2022). The results are provided in Table 1. Additional information on the initial values, estimated individuals 
in each protection level, and model input parameters is given in the Supplementary Materials (Table S3–4, S7, 
S10–11). The percent agreement for the total detected cases over the prediction period was 96.7% for UGA 
(observed N = 2550; predicted N = 2467) and 89.5% for PSU (observed N = 1708; predicted N = 1983). In addition, 
we examined the peak number of cases during the five weeks, as this informs decisions on health resources 
(isolation beds, meals, medical staff, contact tracers, etc.). The percent agreement for peak weekly cases was 65.4% 
(observed N = 1003; predicted N = 656) for UGA and 75.6% (observed N = 631; predicted N = 477) for PSU. In 
both scenarios, the predicted peak occurred one week after the observed peak.

Clemson University Analysis (Fall 2022)
We used the model to project the number of cases and number in isolation for the beginning of the Fall ’22 
semester (August 24–September 27, 2022) at Clemson University, where the BA.5 omicron variant was the 
dominant SARS-CoV-2 in the  population35. The notable difference, compared to the main analysis, is that the 
University implemented a voluntary/symptomatic testing strategy mid-way through the Spring ’22 semester. 
Consequently, many infections between this period and the Fall ’22 semester went unreported. We therefore 
imputed estimates of unreported infections during periods of voluntary testing (December 12, 2021–January 2, 
2022 and April 2–May 22, 2022) into the previously infected compartments. Estimated unreported infections 
occurring in the 90-day window between May 23, 2022 and the start of follow-up were imputed into the recovered 
compartment. Estimated unreported infections during the 90-day window prior to start of the Fall 2022 semester 
(May 23–August 21, 2022) were added to the recovered compartment. Details on the estimation procedures are 
provided in Methods and Supplementary Text. Due to lack of mandatory pre-arrival or arrival testing which 
resulting in small sample sizes at the semester start, these predictions no longer utilize statistical models to 
estimate protection from vaccine or previous infection. Rather, the protection parameter for each protection 

Figure 4.  Comparison of predicted cases under different SARS-CoV-2 testing strategies at Clemson University 
during first 5 weeks of Spring ’22.
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level was set according to existing  literature36. Full details on initial values and model input parameters for this 
analysis are provided in Supplementary Materials (Table S5 and S8, respectively).

There were 24,264 individuals in the main-campus population, including 19,082 students (4670 in-state 
residential students, 2323 out-of-state residential students, 12,089 non-residential students) and 5183 employees 
(1754 faculty, 3429 staff). Estimated student and employee disease prevalence at baseline was 29.3% and 14.1%, 
respectively. The number of individuals in each immunity level, along with estimated protection by immunity 
level, is provided in Table S12. Predicted Covid-19 symptomatic infections for students and employees during 
the follow-up period are provided in Fig. 5.

Predicted student and employee symptomatic infections (% of population) during this 5-week period were 
644 (3.4%) and 183 (3.6%). Total observed cases (% of population) for these populations were 636 (3.3%) and 
118 (2.2%), respectively. Figure 5 provides a weekly comparison between the projected and observed number 
of detected cases during the five-week prediction period. The percent agreement for total detected cases was 
98.8% for students and 64.5% for employees. In addition, the percent agreement for the peak number of weekly 
detected cases is 61.0% for students (observed N = 254; predicted N = 155) and 40.7% for employees (observed 
N = 33; predicted N = 81). The predicted peak occurred two weeks later than the observed peak for students and 
one week prior to the observed peak for employees.

Input parameter sensitivity
Sensitivity of predictions to model input parameters have been extensively studied for Covid-1912,13,37,38. In this 
section, we explore sensitivity to some of the parameters unique to our modeling framework. One novel feature 

Table 1.  Comparison of observed and predicted cases (detected) at UGA and PSU during first 5 weeks of 
Spring ’22. The % Agreement is calculated as min(Oi,Pi)/max(Oi,Pi), where Oi and Pi are the observed and 
predicted Covid-19 cases in week i.

Observed cases Predicted cases % Agreement

University of Georgia

 1/10–1/16 1003 529

 1/17–1/23 929 656

 1/24–1/30 363 526

 1/31–2/6 166 326

 2/7–2/13 89 329

 Total 2550 2467 96.7%

Pennsylvania State University

 1/10–1/16 539 286

 1/17–1/23 631 455

 1/24–1/30 340 477

 1/31–2/6 128 436

 2/7–2/13 70 329

 Total 1708 1983 89.5%

Figure 5.  Predicted student and employee Covid-19 cases under voluntary testing during first 5 weeks of Fall 
’22 at Clemson University. Week 1 started on August 24, 2022. Over the five weeks, the observed student cases 
were 197, 254, 115, 49, and 21, respectively (total observed cases = 636; % agreement = 98.8%). The observed 
employee cases over the five weeks were 32, 33, 22, 15, and 16, respectively (total observed cases = 118; % 
agreement = 64.5%). The % Agreement is calculated as min(Oij,Pij)/max(Oij,Pij), where Oij and Pij are the 
observed and predicted Covid-19 cases in week i for subpopulation j.
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is accounting for protection from previous infection. We conduct a sensitivity analysis ignoring this assumption 
by assuming no protection from previous infection. In all settings, cases were substantially overestimated (range: 
5.7–62.7%, see Table S13–S15). At Clemson University, ignoring this assumption would have led to an estimated 
increase in necessary I/Q capacity of 137.7% during the Fall 2022 semester, but is estimated to have had no impact 
on I/Q during the Spring 2022 (which is expected, since previous infection offered little protection against the 
omicron BA.1 variant).

In addition, there are many individuals whose infection history was unknown. We overcome this limitation by 
estimating the number of individuals who were previously infected by omicron but not recorded in institutional 
databases. If we ignore this assumption and assume that no previously infected individuals were missed, this 
lead to substantial overestimation in the number of predicted cases (range across scenarios: 64.2% to 343.0%, 
see Table S13–S15). At Clemson University, ignoring this assumption would have led to an estimated increase 
in necessary I/Q capacity of 39.8% (Spring 2022) and 96.5% (Fall 2022).

The proportion of individuals who voluntarily seek a Covid-19 test when infected is an important assumption 
in prediction modeling. Increasing the proportion of infectious individuals who seek a Covid-19 test from our 
assumption of 10% to 20% for students and from 15 to 30% for employees, the predicted number of cases in 
Spring 2022 when mandatory weekly testing was implemented, increased by 0.3% for students and 2.2% for 
employees. This result is expected, as increasing voluntary testing rates under mandatory weekly testing would 
only impact how soon symptomatic individuals would seek a test after infection, but would not impact their 
decision to obtain a test. In Fall 2022, when mandatory testing was no longer in place, doubling the proportion 
of infectious individuals who seek a Covid-19 test would have led to an estimated 77.0% increase in detected 
cases among students and a 69.4% increase among employees.

At multiple periods throughout the pandemic, this toolkit was used to inform the removal of mitigation 
measures, including social distancing requirements, mask mandates, and mandatory testing. Because it is difficult 
to model the precise impact of a masking or social distancing mandate, we instead compared predicted cases 
under two scenarios: strong effect of the mitigation measure versus no effect of the mitigation measure. For 
example, our team was tasked with evaluating the impact of the classroom mask mandate mid-way through the 
Spring 2022 semester (after the omicron BA.1 wave had resided). To evaluate sensitivity of model predictions 
to changes in mitigation measures, we incorporated six daily time steps (4 h each) into our model. Under the 
reference setting (corresponding to 4 weekday time steps), which was assumed to represent non-work or school 
hours, we assumed minimal contact between students and employees or community  members13. During class 
hours (1 weekday time step) and work/study hours (1 weekday time step), we assumed increased contact between 
students and faculty, but decreased rates of transmission. Weekend time steps assumed increased transmission 
rates and higher contact rates between students and employees with community members. Transmission rates 
across time steps were calibrated to correspond to reference transmission levels (on average). Full details on the 
contact network matrix and transmission rates by time step are provided in Supplementary Appendix 1.

Assuming masks decrease disease transmission by 50%39, we conservatively assumed absence of a mask 
mandate would double transmission during the classroom time step. During the first 5 weeks of the Spring 2022 
semester, removing the mask mandate would have led to an estimated increase of 171 student cases and 119 
employee cases. During the first 5 weeks of the Fall 2022 semester, implementing the mask mandate would have 
led to a decrease of 15 student cases and 9 employee cases. Negligible differences in Fall 2022 are not surprising 
given that most high-density social interactions occur outside of the classroom. Since Covid-19 prevalence was 
relatively low compared to previous states of the pandemic and a high majority of the population had protection 
from previous infection or vaccination, a mask mandate implemented during a period of the day in which social 
contact was reduced would have minimal impact on overall disease spread.

Our results were not overly sensitive to the choice of contact network structure. To assess sensitivity to 
assumptions of contact network, we increased contact rates between students and employees/community 
members by 25%. This led to a decrease of 21 student cases and an increase of 13 employee cases in Spring 2022 
and a decrease of 6 student cases and an increase of 3 employee cases in Fall 2022.

Discussion
The methodological approach applied in this study is novel in that it utilizes the entire pipeline of institutional 
data in all stages of the modeling framework, incorporating real-time estimation of disease surveillance and 
epidemiological measures based on institutional data. This institutional-level modeling toolkit can accurately 
predict the number of Covid-19 cases, inform resource procurement, and evaluate the relative effectiveness of 
mitigation measures. Therefore, through incorporation of (1) estimation of local disease surveillance metrics, (2) 
statistical modeling of local disease transmission dynamics, and (3) compartment-based modeling framework 
for Covid-19 prediction based on input parameters estimated in (1), (2), and publicly available data into the 
modeling framework, there models can minimize uncertainties in model input parameters presented in the 
broader literature. Moreover, the generalized version of this (publicly available) toolkit can yield reasonably 
accurate predictions in other university settings. The input parameters of this toolkit are easily adaptable to other 
institutional settings during (respiratory) infectious disease outbreaks.

The modeling framework presented in this study was directly used to inform resource allocation and decision 
making around both implementing, and removing, mitigation measures at Clemson University beginning in 
the Fall 2020 semester. Early versions of this modeling framework helped inform the number of Covid-19 
testing kits needed for arrival and surveillance testing strategies, phased reopening strategies, and the number of 
necessary isolation/quarantine rooms prior to reopening in the fall of  20205,11,12. Due to the changing nature of 
the pandemic, including added protection from previous  infection40,  vaccination41, and the introduction of new 
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SARS-CoV-2 variants which altered disease transmission  dynamics9,42, our toolkit was continuously modified 
to evaluate effective testing strategies in future semesters.

Beginning in summer of 2021, this toolkit was also used to scale back testing strategies and other mitigation 
measures that were projected to have a small impact on disease spread. For example, the weekly Covid-19 testing 
mandate for student and employee populations was not predicted to have a substantial impact on disease spread 
during summer 2021 due to strong protection from vaccination and previous infection combined with low 
disease prevalence. Findings of reduced impact of mitigation measures during periods of low disease prevalence 
in IHE settings are consistent with other  settings43. The testing mandate was subsequently removed during this 
time, but reimplemented at the start of the Fall 2021 semester as the Delta variant began  circulating41. The weekly 
testing mandate was again removed after the omicron (BA.1) wave had subsided in mid-spring of 2022.

Utilizing a contact matrix that broke down social contact patterns and disease transmission by time of day, 
day of week, and between student, employee, and community populations, we were able to evaluate sensitivity 
to additional mitigation measures including on-campus social distancing and mask mandates. For example, we 
projected that social distancing policies had little impact on overall transmission rates due to the majority of 
social interactions, and hence disease transmission, occurring off campus or in residential halls. Similarly, the 
toolkit showed that when disease prevalence is low and protection in the population is high, classroom mask 
mandates no longer had a substantial impact on overall cases due to low adherence to masking off-campus (where 
the majority of transmission occurs).

Utilizing the entire pipeline of Clemson Institutional Data, our toolkit was able to predict cases with high 
accuracy (students: 98.6%, employees: 93.2%). Furthermore, incorporating input parameter estimates based 
on Clemson data yielded high prediction accuracy for total Covid-19 cases at other institutions (UGA: 96.7%, 
PSU: 89.5%). Lower prediction accuracy for PSU relative to UGA may be explained by the relatively closer 
demographic similarities between Georgia and South Carolina. When replacing institutional-level estimates of 
disease transmission parameters with literature-based estimates, the modeling toolkit still yielded fairly high 
predictions for the omicron BA.5 variant during the Fall 2022 semester at Clemson University for students 
(accuracy: 98.8%) but overestimated total employee cases (accuracy: 64.5%).

Similar to other studies conducted prior to introduction of the Omicron variant, we found that high-frequency 
testing was effective in reducing SARS-CoV-2  transmission12,13. This finding was consistent throughout each 
semester despite the introduction of more transmissible variants and the introduction of effective  vaccinations41, 
as the impact of higher transmission was offset by increased protection in the  population40,41. However, the 
introduction of the omicron variant that plagued the nation in early 2022 complicated selection of optimal testing 
strategies, since increased disease transmission and lower vaccine  protection9 reduced the effectiveness of weekly 
testing strategies relative to previous variants. While institutions could theoretically increase the frequency of 
testing, this would have required procuring additional testing kits, lab equipment, and personnel in a relatively 
short time period. Without sufficiently scaling up in a timely manner, which was unrealistic for many institutions 
in the month between introduction of the Omicron variant and the start of Spring 2022 semester, an increase in 
frequency of testing would have caused a significant lag in test diagnostics, thus allowing infectious individuals to 
transmit the disease for a longer period of time and potentially reducing the effectiveness of the testing  strategy44.

In addition to predicting the total number of cases, the toolkit was reasonably accurate in predicting the 
maximum number of isolations at Clemson University during the Spring 2022 semester (90.9% accuracy) and 
Fall 2022 semester (79.5% accuracy). At Clemson University, this had important implications for procuring 
sufficient isolation/quarantine rooms between Fall of 2020 through Spring of 2022. Based on these predictions, 
the university procured an off-campus hotel that could house over 800 students.

Due to unavailability of isolation/quarantine data at other institutions, we predicted the peak number of 
weekly cases and the timing of the peak as a surrogate for total isolations each week. Prediction accuracy ranged 
from 79.9 to 83.3%. While reasonable for model-based predictions, the model underestimated the maximum 
number of weekly infections by 17–20%. Furthermore, the predicted timing of the peak was off by one week. 
However, this has little implications for decision making as isolation/quarantine rooms must be procured well 
in advance.

One of the biggest factors leading to more precise predictions was the ability of the modeling toolkit to 
accurately estimate initial model states and protection from previous infection. In particular, there are a 
substantial number of individuals in this population with unrecorded previous infections, which has a substantial 
impact on predictions in  IHE13 and other  settings45. Specifically, we showed that ignoring these features leads to 
underestimating the amount of immunity in the population and thus substantially overestimating the number 
of infections.

Extension to other institutional settings
With some modifications, our modeling framework can be applied to other institutional settings. Large health 
care systems or hospitals are the most natural setting for extension, since such institutions are both impacted by, 
and required to respond to, health  emergencies16. Furthermore, such institutions have agency to implement their 
own policies and presumably have access to most, if not all, of the necessary data sources. However, additional 
compartments may need to be added if the focus is on severe health outcomes (e.g., hospitalizations or deaths).

Even without the entire pipeline of institutional data, our modeling framework was fairly accurate for 
external predictions in IHE settings through extrapolation of Clemson institutional data or through use of 
publicly available CDC/Census data in conjunction with literature-based estimates for input parameters. The 
framework for our modeling toolkit can serve large workforces and other private or public institutions, including 
K-12 schools, requiring updates to initial state input parameters that reflect subpopulations in each institution. 
However, disease transmission and transition parameters during Omicron are unlikely reflective of current 
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or future variants. The predictive performance of such models for new scenarios will therefore depend on 
the accuracy of the input parameters provided by the user. Furthermore, for each institutional setting, the 
current IHE-based contact network matrix would need to be updated to reflect reasonable assumptions for 
that institution. Additionally, as noted by a Reviewer, the risk of infection can vary by subpopulation type 
which would require furthermore modification of the contact  matrix46,47. Future adaptations of this framework 
may benefit from leveraging digital traces and other contextual information to estimate contact networks 
and  transmission48–50. In the absence of this information, one could use an “equal coupling” contact  matrix51. 
However, incorrect specification may result in biased predictions.

Extension to other diseases
Our proposed toolkit is readily adaptable to other respiratory infectious diseases. This would require data sources 
relevant to the disease of interest or literature-based estimates. For example, new SARS-CoV-2 variants or other 
respiratory viruses would require updating the disease reproductive number/transmissibility, infectivity period, 
level of protection in the population, and other disease transition and transmission parameters that are disease-
specific. However, estimation procedures for initial model states and disease transmission parameters, along 
with the compartments in the prediction framework, would remain the same. For non-respiratory infectious 
diseases, additional modifications to the compartments would also be needed.

Limitations
Our proposed modeling framework faces many of the limitations shared by other modeling studies. First, the 
high prediction accuracy of our toolkit does not imply that estimates of model input parameters and disease 
transmission parameters are necessarily accurate. Due to the large number of parameters, there are likely several 
reasonable combinations of parameters that yield similar predictions. This can have important implications to 
model predictions given strong sensitivity to input  parameters13. In our framework, we attempted to minimize 
the impact of parameter uncertainty through estimation of influential model parameters using over 1 million 
data records, internal validation, and external validation through comparison to estimates in the published 
literature. As an extension to this modeling framework, a stochastic component can be incorporated to provide 
credible intervals for predicted point estimates in order to account for uncertainty in model input parameters 
(e.g., disease reproductive number)13.

Additional limitations of our modeling framework include the simplifying assumptions often made in 
compartment-based modeling, including homogeneity of input parameters within each subpopulation, uniform 
transmission rates over infectivity period that do not vary by days since infection or severity of infection, and 
assuming the community is a homogeneous population. To reduce the impact of homogeneous populations, 
we split the populations into subpopulations including non-residential and residential students (both in-state 
and out-of-state), faculty, staff, and community. The contact network structure for these subpopulations was 
based on reasonable approximations from existing literature and input from university students, faculty, staff, 
and administrators. However, validation of the proposed network structure is not feasible due to parameter 
identifiability issues previously discussed. While model predictions were not overly sensitive to the choice of 
contact network structure in the IHE setting of this study, such features may not translate to other institutional 
settings.

Due to underreporting of booster doses at Clemson University, use of Clemson vaccination data to define 
protection levels yields (1) a boosted group containing only a fraction of the individuals receiving a booster 
dose and (2) a fully vaccinated group containing a mix of fully vaccinated and boosted individuals. We therefore 
supplemented analyses based on Clemson vaccination data with CDC-based estimated, which yielded similar 
results. Given the population-averaged nature of compartment-based models, this finding is not surprising given 
the use of institutional data to estimate both vaccine protection and vaccination groups. Vaccine protection is 
estimated from this mixed population and, therefore, represents a weighted estimate of vaccine effectiveness in 
fully vaccinated and boosted individuals, limiting the downstream impact of misclassification on predictions.

However, prediction accuracy may not translate to future waves of the Covid-19 pandemic. For example, 
estimation of population-level immunity from previous infection will become more difficult given the decreasing 
in testing or use of at-home testing  kits52,53. One potential solution in the absence of reliable data or estimation is 
to simplify the model through merging of  compartments24. For example, merging asymptomatic and symptomatic 
infections into single infectious compartment, merging vaccination groups, or merging previously infected 
individuals into the reference compartment. While such a shift does not directly mimic the natural course of 
disease progression, reasonable predictions can still be obtained given that compartment-based models are 
population-averaged models to begin with. Studies suggest that in the absence of reliable data for model input 
parameters (including initial states and disease transmission/transition parameters), this strategy will result 
in improved prediction  accuracy24,54. Even if prediction accuracy is reduced, previous studies have shown that 
evaluation of mitigation measures can be robust to variation of model input  parameters12,13.

Conclusions
The institutional modeling framework developed in this study is informative for disease monitoring and 
projections, procurement and allocation of resources, and intervention implementation, and the publicly available 
modeling toolkit can be directly used to guide institutional-level decision-making. Covid-19 will unlikely be 
the last pandemic in our lifetime. It is very possible that high impact pathogens, including coronaviruses and 
influenza A viruses, will emerge and  reemerge55. The methodological approach presented here advances the 
field of public health preparedness and response by improving the ability of institutions to make data-informed 
decisions that better prioritize the health and safety of their communities while minimizing operational 
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disruptions. Institutions must therefore be prepared and ensure that proper data collection and processing 
protocols are in place. In the event of a future respiratory infectious disease outbreak, our proposed modeling 
framework can easily be adapted to inform decision-making in large institutional settings.

Methods
Data collection
Testing
Prior to the start of each semester at Clemson University (through Spring 2022), all students and employees 
were required to submit a pre-arrival testing result through the COVID-19 Test Upload Tool within 10 days of 
in-person instruction. Accepted tests for pre-arrival testing included nasal, throat or saliva-based polymerase 
chain reaction (PCR) tests or antigen tests. Testing was available on campus through the University’s clinical 
diagnostics lab, Student Health Services, or could upload their PCR test result through an online portal. 
Additional details on testing protocols for the Spring ’22, Fall ’21, Spring ’21, and Fall ’20 semesters are provided 
 elsewhere9,12,40,41. Testing records, and associated individual demographics (including location of residence), were 
collected by Rymedi software and provided in excel files.

Vaccination records
Full vaccination is defined as being vaccinated with one dose of Ad26.COV2.S or two doses of any other vaccine at 
least 14 days prior to the prediction  start41. Individuals are boosted if they received a booster dose of BNT162b2, 
mRNA-1273 or Ad26.COV2.S at least 7 days prior to the prediction start. Individuals are considered as having 
no protection from vaccination if they are either unvaccinated or only received one dose of an mRNA vaccine.

During the Fall 2021 semester, the university created a Covid-19 vaccine upload toolkit and provided 
strong financial incentives to individuals uploading proof of complete vaccination. While data on whether an 
individual received full vaccination was likely captured with high  accuracy41, data on the number of individuals 
with a booster dose is subject to  underreporting9. Therefore, the fully vaccinated group in the compartment-
based modeling framework likely contains a mixed population of fully vaccinated and boosted  individuals9. 
Because estimated protection for the fully vaccinated group is based on this population as well, the resulting 
downstream bias in model prediction is expected to be minimal. We assess sensitivity to this assumption by 
replacing institutional level estimates of the number of boosted individuals for each population with CDC 
demographic data of vaccination rates by age group and replace institutional level estimates of protection with 
literature-based estimates.

Isolation/quarantine
Student isolation and quarantine was tracked using a management system, including the software Atlassian 
 Jira56. A description for the data application and collection processes are illustrated in McMahan et al. (Figure 
S1)57. Ethical review for this study and obtained by Institutional Review Board of Clemson University (IRB # 
2021-043-02).

Additional data sources are provided in Table 2.

Modeling framework
Compartment‑based model
We developed a metapopulation compartmental model that projects weekly SARS-CoV-2 cases, symptomatic 
cases, and daily isolations and quarantines. This model generalizes the metapopulation SEIR  model51. A diagram 
of the dynamics across all compartments is presented in Fig. 1.

Each compartment comprises of six sub-populations—in-state residential students, out-of-state residential 
students, non-residential students, faculty, staff, and community. In addition, each compartment is indexed by 
j = 0, 1, . . . , 5 , representing each of the following six protection levels:

• j = 0 : unprotected (unvaccinated, no previous infection)

Table 2.  Data sources for the Spring ’22 and Fall ’22 analyses at Clemson University. Testing, vaccination, 
and demographic data partially come from the Clemson Computing and Information Technology (CCIT). 
Community characteristics come from the Center for Disease Control (CDC) and US Census Bureau.

Data Sources Use

Testing records Rymedi, Student Health Services, CCIT Test upload toolkit Surveillance, infection history/protection levels, estimation of disease initial 
model states and disease transition/transmission parameters, prediction

Vaccination CCIT vaccination upload toolkit Protection levels, estimation of initial model states and disease transition/
transmission parameters

Isolation/Quarantine Atlassian Jira Initial states for isolation/quarantine, effectiveness of isolation/quarantine 
policies

Demographic and place of residence CCIT, Rymedi Estimation of initial model states and disease transition/transmission 
parameters by subpopulation

Course records Clemson Records and Registration Student affiliation status, initial model states

Community characteristics CDC/US Census Inform estimates of initial model states and disease transition/transmission 
parameters for community subpopulation
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• j = 1 : fully vaccinated without previous infection
• j = 2 : boosted without previous infection
• j = 3 : previously infected, unvaccinated
• j = 4 : fully vaccinated with previous infection
• j = 5 : boosted with previous infection

Within each protection level, individuals are assigned into one of the following compartments at baseline: 
susceptible individuals (Sj), individuals exposed to the disease but not yet infectious (Ej), symptomatic ( ISj ) 
or asymptomatically/mild ( IAj ) infectious, exposed or infectious individuals testing positive ( TEj and TIj , 
respectively), individuals in isolation housing (Hj), quarantine for close-contacts of infected individuals who 
did not contract disease and remain susceptible ( QSj ), quarantine for close-contacts of infected individuals who 
were exposed to the disease ( QEj ), and recovered (Rj) for all individuals no longer infectious or susceptible to 
the disease during the follow-up period. Projections were carried out using the forward Euler method. Each 
day is divided into six time-steps, four hours each. Details of all model equations of the forward Euler method 
are provided in Table S1.

Since the five-week projection period is short, we assume that there is no transition from one protection level 
to another during the projection period. Specifically, there is no transition from unvaccinated to fully vaccinated 
or from fully vaccinated to boosted. For instance, unprotected susceptible individuals (S0) do not transition into 
fully vaccinated without previous infection (S1) during the projection period.

In addition, we also assume that symptomatic individuals are voluntarily tested and automatically moved 
to isolation housing. On the other hand, asymptomatic individuals are only tested under mandatory testing 
policies. The implication is that under voluntary testing strategy the detected cases are all symptomatic, while 
under mandatory testing the detected cases include both symptomatic and asymptomatic cases.

Transmission
Transmission is governed by the basic reproductive number (R0), contact matrix, and infectivity period. For the 
no immunity group, R0 is computed by affiliation subpopulation for each SARS-CoV-2 variant based on scientific 
literature and is internally validated using institutional data. Transmission in the no immunity group is modeled 
by the parameter β0 = R0 × ϕ, where 1/ϕ is the infectivity  period58. For the other immunity groups j = 1,2,…,5, the 
transmission parameter is βj = β0 × (1 − hrj), where hrj is the estimated protection for level j (estimation discussed 
in next section). These parameters, along with the contact network matrix, are adjusted to reflect time-dependent 
changes within and between subpopulations. These time steps correspond to time of day and day of week in order 
to reflect varying social engagements, including time spent in class, work, and weekends.

R0 for each affiliation in the Spring ’22 analysis is validated using testing data collected during the Fall ’21 
semester. Holding all other parameters constant, we searched for the optimal R0 that minimizes the mean squared 
error between the projected cases and the observed cases in Fall ’21.

Estimated protection
In the main analysis (Clemson University Spring ’22), we estimated the protection rj due to vaccination and/
or previous infection using a Cox proportional hazard model. The outcome was the testing results during the 
pre-arrival testing period prior to semester start between December 31, 2021 and January 9, 2022. Information 
of vaccination status and previous infections prior to January 9, 2022 was collected from institutional data. To 
account for the differences between students and employees, we fitted two separate models.

For the ith subject, the hazard function is given by

where Vi is an indicator for fully vaccinated without booster, Bi an indicator for boosted, and Pi an indicator for 
previously infected. Based on preliminary analyses, the interaction between vaccination status and previous 
infection is not statistically significant (student P-values: PV×P = 0.719 , PB×P = 0.308 ; employee P-values: 
PV×P = 0.157 , PB×P = 0.070 ). Hence the effects due to vaccination and due to previous infection are additive.

For protection level j = 1, …, 5, the estimated protection is given by 1 − hrj, where hrj is the hazard ratio relative 
to the unprotected individuals. Specifically,

1. Fully vaccinated without previous infection: hr1 = exp(aV )
2. Boosted without previous infection: hr2 = exp(aB)
3. Previously infected without vaccination: hr3 = exp(aP)
4. Fully vaccinated with previous infection: hr4 = exp(aV + aP)
5. Boosted with previous infection: hr5 = exp(aB + aP)

These estimates for the hazard ratio and the protection level were used in the Spring ’22 analysis for Clemson 
University, UGA, and PSU. For the Clemson University Fall ’22 analysis, we adopted estimates for the relative 
risk of infection/reinfection from recent literature, which studied the effect of vaccination and previous infection 
against the omicron strain.

h(t|Vi ,Bi , Pi) = h0(t)× exp(aV × Vi + aB × Bi + aP × Pi),
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Contact matrix
The interaction among the six subpopulations (in-state residential student, out-of-state residential student, non-
residential student, faculty, staff, and community) is modeled via the contact matrix C. Individuals in each 
protection level j transition from the susceptible to the exposed compartment at a rate of

where Itot is the total number of infectious individuals, N is the subpopulation size. Following Lloyd and Jansen 
(2004), C is a 6× 6 matrix, where the component Ckl represents the proportion of individuals in subpopulation k 
making contacts with individuals in subpopulation l in each time step, with k, l = 1, …, 6 denoting subpopulations 
in the order of in-state residential student, out-of-state residential student, non-residential student, faculty, staff, 
and community.

To account for different interaction patterns across different time periods of the day and day of the week, 
the contact matrix C assumes different structures during (1) classroom time (weekday, time step 1), (2) work 
time (weekday, time step 2), (3) after hours (weekday, time step 3–6), and (4) weekend. Full specification of the 
contact matrix is presented in the Supplementary Appendix 1.

Initial model states
Here we give an overview of the estimation procedure for initial model states in the main analysis. Details are 
provided in the Supplementary Appendix 1. Briefly, the number of currently infected individuals are estimated 
by the total number of infections within 5-days prior to the follow-up period. Under mandated pre-arrival or 
arrival testing, infections are divided between the exposed, asymptomatic infectious, and symptomatic infectious 
compartments. The distribution of infections to each of these compartments is based on the symptomatic 
infection rate, test sensitivity, and length of the infectivity period for each compartment. The number of 
individuals in isolation/quarantine is estimated based on the total number of individuals with an exit date from 
isolation/quarantine after the prediction start date (infected individuals exiting form isolation/quarantine prior 
to start of follow-up are considered recovered if within 90 days of follow-up).

The recovered compartment consists of all individuals infected between 5 and 90 days prior to follow-up. 
The Spring 2022 and Fall 2022 analyses are subject to underreporting of both previously infected and recovered 
compartments due to shifts in university testing strategy (from weekly testing to voluntary testing). To account 
for underreporting, we estimate the number of unrecorded infections and add them to previously infected 
compartments (if > 90 days since infection) or recovered (if ≤ 90 days since infection)40.

In the community, the proportion of individuals in each protection level is assumed to be the same as 
the employee subpopulation at Clemson University. Initial values for the testing, isolation and quarantine 
compartments are all set to 0. The community baseline infection rate, baseline recovery rate, and the proportion 
of additional recovered individuals can all be customized in the toolkit.

Extension to other settings
The estimation of initial states for UGA and PSU has several major differences compared to the main analysis. 
First, from the university dashboard, we do not have sufficient information of the full vaccination rate, the booster 
rate, the proportion of the previously infected, or the recently recovered. For other institutions, we estimate the 
missing information using a combination of data collected by Clemson University and data provided by the 
Centers for Disease Control and Prevention (CDC). The calculation of subpopulation sizes and other details are 
provided in the Supplementary Appendix 1. Second, the reported positive cases during the week prior to the 
prediction start are based on results from voluntary testing, as opposed to mandatory arrival testing in the main 
analysis based on Clemson University. These cases are assumed to be Is(0) , the symptomatically infectious at the 
baseline. The initial in the exposed compartment is given by E(0) = Is(0)

seI
× σ

γ
 and the initial in the asymptotic 

infection compartment is given by IA(0) = Is(0)
seI

×
φ
γ

 , where 1/σ, 1/γ, and 1/ϕ are the mean incubation time, mean 
symptomatic infectious time before isolation, and mean asymptomatic infectious time.

Compared to the main analysis, in the Fall ’22 semester analysis the most notable difference is that the 
University implemented a voluntary testing strategy in the Fall ’22 semester instead of weekly surveillance 
testing. Consequently, all baseline infections were assumed to be symptomatic. Due to potential underreporting, 
potential unreported infections prior to May 23, 2022 (90 days before prediction start) when a voluntary testing 
policy was in place (December 12, 2021–January 2, 2022; April 2–May 22, 2022) were imputed and added to the 
previously infected compartments. This is similar to the calculation of additional recovered in the main analysis. 
In addition, comparing the ratio of Rymedi tests and self-uploaded tests between Summer ’21 and Summer ’22, 
there was substantial decrease in the self-uploaded testing results in Summer ’22 because of a lack of incentive 
to do so. We first calculated the additional symptomatic infections in Summer ’22 so that the ratio between 
self-uploaded results in Summer ’22 matched the results in Summer ’21, and then calculated the asymptomatic 
infections similar to the additional recovered the main analysis. The total number of additional recovered in 
Summer ’22 is the additional symptomatic and asymptomatic infections combined.

Output metrics
We now describe the output metrics in the Toolkit and the associated statistical methods. The Toolkit displays 
the projection of the weekly symptomatic SARS-CoV-2 cases and the weekly total cases. The weekly cases 
are provided in two versions: (1) residential students, non-residential students, faculty, staff; and (2) students, 
employees.

βj × C ×
Itot

N
,
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In addition, the Toolkit also displays the projected daily number of university students and employees in 
isolation housing or quarantine. The projected isolation and quarantine for students includes numbers for out-
of-state residential students, all residential students, and all students.

Daily and weekly symptomatic cases Daily symptomatic cases under this framework consist of two groups of 
individuals, those who are detected at the beginning of the day, and those who are isolated at each time step of 
the day. Let � be the time step in hours and h = �/24 be the time step in days, so that h−1 = 24/� is the number 
of time steps per day. The number of new symptomatic cases on day t is

where p is the daily testing proportion, seI is the testing sensitivity for symptomatic infections, and 1/γ is the 
mean time of symptomatic infection before isolation. Weekly symptomatic cases are computed by aggregating 
the daily symptomatic cases over 7 days.

Daily and weekly detected cases Daily detected cases include the daily symptomatic cases in Eq. (1), the daily 
detected asymptomatic cases, and the daily detected exposed individuals. The number of new detected cases 
on day t is

where seE is the testing sensitivity for the exposed individuals. Weekly detected cases are computed by aggregating 
the daily detected cases over 7 days.

Total cases Daily new cases on each day are calculated via the difference in the susceptible compartments 
between day t‑1 and t. The number of new cases on day t is given by

Weekly new cases aggregate daily new infections over 7 days. Note that the total cases include both detected 
and undetected cases.

Daily isolation The number of isolations on day t is the total number of individuals in all isolation 
compartments, i.e., H(t) =

∑5
j=0 Hj(t).

Daily isolation and quarantine The number of isolations and quarantine on day t is the number of individuals 
in all isolation/quarantine compartments, i.e., IQ(t) =

∑5
j=0

[

Hj(t)+ Qsj (t)+ QEj (t)
]

.

Data and materials availability
All data and R code needed to reproduce the conclusions of this paper are present in the Supplementary 
Materials. Data and code for this work, including the publicly available toolkit, can be accessed in the following 
links: https:// github. com/ Ziche nM/ Campu sPred ictio nApp and https:// zmsta ts. shiny apps. io/ Campu sPred iction/. 
Requests for additional aggregated, de-identified data related to this study should be submitted to L. Rennert 
(liorr@clemson.edu).
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