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q‑Rung orthopair fuzzy 2‑tuple 
linguistic WASPAS algorithm 
for patients’ prioritization based 
on prioritized Maclaurin symmetric 
mean aggregation operators
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Due to the fuzziness of the medical field, q‑rung orthopair fuzzy 2‑tuple linguistic (q‑RF2L) set is the 
privileged way to aid medical professionals in conveying their assessments in the patient prioritization 
problem. The theme of the present study is to put forward a novel approach centered around the 
merging of prioritized averaging (PA) and the Maclaurin symmetric mean (MSM) operator within 
q‑RF2L context. According to the prioritization of the professionals and the correlation among the 
defined criteria, we apply both PA and MSM to assess priority degrees and relationships, respectively. 
Keeping the pluses of the PA and MSM operators in mind, we introduce two aggregation operators 
(AOs), namely q‑RF2L prioritized Maclaurin symmetric mean and q‑RF2L prioritized dual Maclaurin 
symmetric mean operators. Meanwhile, some essential features and remarks of the proposed AOs are 
discussed at length. Based on the formulated AOs, we extend the weighted aggregated sum product 
assessment methodology to cope with q‑RF2L decision‑making problems. Ultimately, to illustrate 
the practicality and effectiveness of the stated methodology, a real‑world example of patients’ 
prioritization problem is addressed, and an in‑depth analysis with prevailing methods is performed.

Keywords q-Rung orthopair fuzzy 2-tuple linguistic term set, Maclaurin symmetric mean, Prioritized 
averaging, WASPAS, MCGDM

The global population is increasing, but healthcare resources are limited, posing challenges for healthcare institu-
tions in meeting public health needs. Prioritizing timely patient treatment is crucial, yet these institutions grapple 
with efficiently allocating scarce medical resources among  patients1,2. Ghanaian public healthcare facilities face 
a similar dilemma, as the country’s population growth has led to a rise in emergency cases, while the availability 
of sick beds remains insufficient. The shortage of sick beds in public healthcare institutions has sparked debates 
among various healthcare stakeholders in Ghana. Research by Sun et al.3 shows that limited medical resources 
often result in extended waiting times and treatment delays, increasing the likelihood of patients developing com-
plications and, in some cases, leading to  fatalities4. Numerous  scholars2,3,5 emphasize the crucial importance of 
prioritizing patients promptly for effective casualty treatment. This involves addressing several complex research 
questions in the context of multi-criteria group decision-making (MCGDM): How can we prioritize patients 
in situations where decision-making involves uncertainty and imprecision? What strategies can be employed to 
address patient prioritization when multiple experts with priority relationships are involved? How do we tackle 
patient prioritization when there are interdependencies among multiple input factors and priority relationships 
among evaluation criteria?

Numerous prior  studies2–4,6,7 have approached the issue of patient prioritization from diverse angles. For 
instance, Ashour and  Kremer6 introduced a dynamic patient grouping and prioritization method to enhance 
emergency department efficiency. Zhang et al.7 employed fuzzy multi-criteria decision-making (MCDM) tech-
niques to investigate patient prioritization, utilizing a hesitant fuzzy linguistic-VIekriterijumsko KOmpromisno 
Rangiranje (VIKOR) method. Similarly, Zhang et al.2 proposed an intuitionistic multiplicative rangement et 
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synthèse de données relarionnelles (ORESTE) method for hospitalization patient prioritization. Davodabadi 
et al.4 developed a fuzzy-technique for order of preference by similarity to ideal solution (TOPSIS) method with 
discrete event simulation for ICU patient prioritization. Nonetheless, these studies did not delve into the crucial 
aspect of evaluating the interdependence of criteria in real-world decision-making (DM). In contrast, Sun et al.3 
addressed patient prioritization using the hesitant fuzzy linguistic projection-based multi-attributive border 
approximation area comparison (MABAC) method and enhanced the traditional MABAC method by incorporat-
ing the Bonferroni mean to account for the relationship between two input factors. Nevertheless, these models do 
not tackle the interrelationships among multiple input factors. In sum, existing research has developed models 
for patient prioritization, but none have comprehensively addressed all the research challenges outlined above. 
Hence, there is a pressing need to develop an appropriate technique to effectively handle patient prioritization 
for hospital admissions in healthcare institutions while considering interdependencies.

DM processes frequently encounter inherent uncertainty and  vagueness8–11. Based on their level of expertise, 
health experts may hesitate in their assessments and opt to employ fuzzy data sets to express patient evaluations 
for hospital admission. To assist experts in making informed decisions,  Attansov12 introduced the concept of 
intuitionistic fuzzy sets (IFS). IFS enables experts to convey their expressions by incorporating both membership 
grade (MG) and non-membership grade (NMG), providing a more nuanced representation of their assessments. 
Szmidt and  Kacprzyk13 pioneered the exploration of medical applications using IFSs. Subsequently,  Yager14 
developed the Pythagorean fuzzy set (PyFS) concept. PyFS models exhibit greater robustness than IFS models 
in handling practical  applications15–18. However, both models encounter limitations. For instance, when DM sce-
narios involve opinions like (0.8, 0.9), both PyFSs and IFSs demonstrate an inability to apply their methodologies 
effectively. To address these limitations, Yager  introduced19 a more advanced and generalized form of fuzzy set, 
termed the q-rung orthopair fuzzy set (q-ROFS). This variant stands out because it incorporates the parameter 
‘q,’ which significantly expands the information space. Consequently, various methods have been formulated 
and refined within the q-ROFS framework by  researchers20–23. Akram and  Shahzadi20 advanced the notion of 
q-ROFS by developing a series aggregation operators (AOs) grounded in Yager’s norm. They also thoroughly 
explored and provided numerical evidence to support the relevant characteristics of these operators. Seikh and 
 Mandal21 established an MCDM method utilizing their Frank-operations-based AOs in a q-rung orthopair fuzzy 
(q-ROF) environment with unknown weights. Recently, Kumar and  Gupta24 addressed the challenge of project 
selection with their innovative DM algorithm, distinguished by its ability to incorporate confidence levels for 
the alternatives. Numerous other scholars have also introduced novel AOs and their implementations in the 
context of  MCDM25–28.

The 2-tuple linguistic (2TL) learning approach, known for its efficacy in minimizing information distortion 
and loss, was first conceptualized by scholars  in29. This paradigm, integral for dealing with human language in 
DM, has led to the development of numerous methodologies and 2TL AOs. In this realm, Deng et al.30 intro-
duced generalized 2TL Pythagorean fuzzy Heronian mean AOs, integrating generalized Heronian mean with 
2TL Pythagorean fuzzy numbers. Wei and  Gao31 further contributed by proposing Pythagorean fuzzy 2TL power 
AOs, merging power geometric and average operations with Pythagorean fuzzy 2TL data, aimed at resolving 
MCDM issues. Wei et al.32 expanded this framework by introducing the q-rung orthopair fuzzy 2TL (q-RF2L) 
sets, allowing the expression of MG and NMG of elements in relation to 2TL variables, along with operational 
laws. They also developed various q-RF2L Heronian mean AOs. Abbas et al.33 pioneered a clustering algorithm 
that processes data in the q-RF2L format, adeptly handling situations with unspecified weight information. 
Complementing the advancements of q-RF2L set, Ju et al.34 formulated a strategy for tackling MCGDM prob-
lems using q-RF2L input. This strategy includes q-RF2L weighted averaging and geometric operators and the 
novel q-RF2L Muirhead mean and dual Muirhead mean operators. However, all these existing AOs within the 
q-RF2L framework fall short in addressing scenarios where criteria and experts simultaneously exhibit interde-
pendence and varying priorities. This gap is particularly relevant in real-world situations, such as prioritizing 
patient admissions in hospitals.

Maclaurin35 initially introduced the Maclaurin symmetric mean (MSM), later expanded by Detemple and 
 Robertson36. MSM effectively models the interconnections among multiple inputs provided by experts. This 
concept led to Qin and  Liu37 proposing the dual Maclaurin symmetric mean (DMSM), which, alongside MSM, 
has garnered significant attention in the field of information aggregation. For instance, Mu et al.38 introduced an 
interval-valued Pythagorean fuzzy power MSM operator for MCGDM, and  Ali39 developed partitioned MSM 
operators using hesitant fuzzy numbers. However, many MSM and DMSM operators overlook the prioritization 
of experts and criteria. Addressing this,  Yager40 proposed the prioritized averaging (PA) operator.  Ali41 then 
utilized PA’s prioritizing capabilities to create probabilistic hesitant bipolar fuzzy Hamacher prioritized AOs 
for DM. Similarly, Akram et al.42 explored MCGDM with spherical fuzzy prioritized weighted AOs, and Rong 
et al.43 applied complex q-RF2L MSM and DMSM operators to emergency program selection. Despite these 
advancements, the PA operator has not yet been adapted to the q-RF2L context. Given the strengths of PA, MSM, 
and DMSM, there’s a clear opportunity to integrate these operators, developing new q-RF2L AOs for MCGDM 
methods that can effectively tackle prioritized DM challenges.

From the discussions and analyses previously outlined, the motivations for this study can be summarized 
as follows: 

• The q-RF2L theory represents a hybrid model for information representation, skillfully integrating the notable 
aspects of q-ROFS and the 2-tuple linguistic model into a cohesive framework. This model allows for a precise 
representation of assessment values within predefined LTS in uncertain environments. Despite the distinct 
attributes of the q-RF2LS, to date, only a few scholarly  works32–34 explore this context.
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• Information fusion is crucial in consolidating the preference information of decision experts. Moreover, many 
practical issues require consideration of the correlation between identified criteria while also necessitating 
the modeling of priority relationships. However, the current q-RF2L AOs lack the capability to effectively 
manage such scenarios, rendering them inadequate for numerous practical applications.

• The WASPAS method is renowned for its ability to assess and rank alternatives with a heightened level of 
reliability, as evidenced in various  studies44–46. Given these strengths, there’s a compelling need to expand the 
WASPAS approach into the q-RF2L setting. This extension would not only leverage the method’s inherent 
strengths but also enhance its applicability in more complex and uncertain environments to capitalize further 
on its assessment and ranking capabilities in this advanced context.

• Taking into account the benefits of q-RF2LS, it is likely that health experts would favor this framework for 
patient assessment. The WASPAS method has demonstrated its efficacy in DM for such issues. However, there 
is a noticeable research gap in applying this method within a q-RF2L environment specifically for addressing 
the problem of patient prioritization.

Motivated by the considerations mentioned above, this paper aims to devise an innovative decision-making 
approach for evaluating patient prioritization issues. To fulfill this goal, we initially develop appropriate AOs 
to aggregate q-RF2L information. Subsequently, our focus shifts to constructing a decision algorithm that can 
effectively prioritize patients in emergency departments. Finally, it is essential to validate the effectiveness and 
advantages of the proposed decision algorithm from various perspectives. Consequently, the specific aims of 
this article are outlined as follows: 

• To introduce two innovative AOs, namely q-RF2LPMSM and q-RF2LPDMSM, designed to account for the 
interdependence among criteria while simultaneously modeling their priority relationships.

• To thoroughly elucidate the characteristics of the proposed operators, focusing on its monotonicity and 
boundedness, and to detail special cases supported by rigorous proof.

• To devise an MCGDM method that integrates the WASPAS technique with the proposed operators. This 
method aims to address the traditional limitation of WASPAS by considering the interdependence of evalu-
ation criteria in its decision process while also factoring in the priority relationships among these criteria.

• To showcase the practicality of the proposed framework by applying it to solve the problem of prioritizing 
patients for hospital admission.

Preliminaries
This section mainly addresses several basic ideas and operators regarding LTS, q-RFLS, MSM, and DMSM 
operators.

Suppose  represents an LTS with an odd cardinality. Any label,  signifies the pos-
sible value for a linguistic variable, and it has to adhere with the  stipulations29,47 listed below: 

1. Ordered set: 
2. Negation operator: , such that 
3. Max operator:  if 
4. Min operator: Min operator:  if 

For instance, S can be defined as

In light of the concept of symbolic translation, Herrera and  Martinez29,47 set up the 2-tuple fuzzy linguistic 
representation approach. It is employed to convey linguistic assessment information as a 2-tuple  where 

 is a linguistic label from the pre-defined linguistic term set S, △ is the measure of symbolic translation, and 
△∈ [−0.5, 0.5).

Definition  129,47  Let ϑ be the calculated result of an aggregation of the indices of a set of labels assessed in 
an LTS S, i.e., the outcome of a symbolic aggregation operation, ϑ ∈ [0, ℓ] , with ℓ being the cardinality of S. 
If r = round(ϑ) and △= ϑ − r are two numbers such that r ∈ [0, ℓ] and △∈ [−0.5, 0.5) , then △ is known as a 
symbolic translation.

Definition  229,47  Let  be an LTS and ϑ ∈ [0, ℓ] be a numerical value representing the 
linguistic symbolic aggregation outcome. Then, the function � that retrieves the 2-tuple linguistic information 
equivalent to ϑ is then described as

S =

{

�0 = extremely poor, �1 = very poor, �2 = poor, �3 = medium, �4 = good, �5 = very good,
�6 = extremely good

}

.

(1)� : [0, ℓ] −→ S × [−0.5, 0.5),

(2)� (ϑ) =

{

�r , r = round(ϑ)
△= ϑ − r, △∈ [−0.5, 0.5).
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where round (.) is the conventional round function, �r is the index label closest to ϑ , and △ is the symbolic 
translation value.

Definition  329,47  Let  be an LTS and 
(

�r ,△
)

 be a 2-tuple. There is always a function 
� can be described, such that, from a 2-tuple 

(

�r ,△
)

 it yield its equivalent numerical value ϑ ∈ [1, ℓ] , which is

Definition  432  A q-RFLS F  on a universal set Z is described as

where �r(zi) ∈ S , △ (zi) ∈ [−0.5, 0.5) , m(zi), n(zi) ∈ [0, 1] , with the restriction 0 ≤ m
q(zi)+ n

q(zi) ≤ 1 
(

q ≥ 1
)

 
∀ zi ∈ Z . The numbers m(zi), n(zi) symbolize the MG and NMG of the element zi to linguistic variable 
(

�r(zi),△ (zi)
)

 , respectively. Furthermore, πF (zi) = 1− (mq(zi)+ n
q(zi))

1/q is named refusal grade, and the 
q-rung orthopair fuzzy 2-tuple linguistic number (q-RFLN) is marked by ∂ =

((

�r ,△
)

, �m, n�
)

.

Definition  532  Let ∂1 =
((

�r1 ,△1

)

, �m1, n1�
)

 and ∂2 =
((

�r2 ,△2

)

, �m2, n2�
)

 be two q-RFLNs. Then, their basic 
operational rules are listed as: 

1. ∂1 ⊕ ∂2 =
(

�
(

�
(

�r1 ,△1

)

+�
(

�r2 ,△2

))

,
〈

(

m
q
1 +m

q
2 −m

q
1m

q
2

)1/q
, n1n2

〉)

;

2. ∂1 ⊗ ∂2 =
(

�
(

�
(

�r1 ,△1

)

·�
(

�r2 ,△2

))

,
〈

m1m2,
(

n
q
1 + n

q
2 − n

q
1n

q
2

)1/q
〉)

;

3. α∂1 =

(

�
(

α �
(

�r1 ,△1

))

,

〈

(

1−
(

1−m
q
1

)α
)1/q

, nα1

〉)

α > 0;

4. ∂α1 =

(

�
((

�
(

�r1 ,△1

))α)
,

〈

m
α
1 ,
(

1−
(

1− n
q
1

)α
)1/q

〉)

α > 0;

5. ∂c1 =
((

�r1 ,△1

)

, �n1,m1�
)

.

Definition  632  Let ∂1 =
((

�r1 ,△1

)

, �m1, n1�
)

 be a q-RFLN. Then its score function ⁀S(∂1) and accuracy function 
⁀A(∂1) are described as:

Definition  732  Let ∂1 =
((

�r1 ,△1

)

, �m1, n1�
)

 and ∂2 =
((

�r2 ,△2

)

, �m2, n2�
)

 be two q-RFLNs. Then, they can be 
compared according to the following laws:

1. If ⁀S(∂1) > ⁀S(∂2), then ∂1 ≻ ∂2;
2. If ⁀S(∂1) = ⁀S(∂2), then:

 (i) if ⁀A(∂1) > ⁀A(∂2), then ∂1 ≺ ∂2;
 (ii) if ⁀A(∂1) = ⁀A(∂2), then ∂1 = ∂2.

Definition  848  Let ∂1 =
((

�r1 ,△1

)

, �m1, n1�
)

 and ∂2 =
((

�r2 ,△2

)

, �m2, n2�
)

 be two q-RF2LNs. Then the Ham-
ming distance between ∂1 and ∂2 is defined as

Definition  940  Let €={€1,€2....€n } be a collection of criteria with a prioritization relationship € 1 ≻€2 ≻ .... ≻ € n , 
where ≻ means “higher priority”. The value € j(a) represents the criterion value of the alternative a with respect 
to criteria € j and satisfies the condition € j(a) ∈ [0, 1] . If

then PA is called the prioritized averaging operator, where ,   and T1 = 1

.

(3)� : S × [−0.5, 0.5) −→ [0, ℓ],

(4)�
(

�r ,△
)

= r+ △= ϑ .

(5)F =
{((

�r(zi),△ (zi)
)

, �m(zi), n(zi)�
)}

,

(6)⁀S(∂1) =
�
(

�r1 ,△1

)

·
(

1+m
q
1 − n

q
1

)

2ℓ
,

(7)⁀A(∂1) = �
(

�r1 ,△1

)

·
(

m
q
1 + n

q
1

)

.

(8)d(∂1, ∂2) =
1

2ℓ

[∣

∣

(

1+m
q
1 − n

q
1

)

.�
(

�r1 ,△1

)

−
(

1+m
q
2 − n

q
2

)

.�
(

�r2 ,△2

)∣

∣

]

.

(9)
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Definition  1035  Let Ni (i = 1, 2, . . . , �) be a set of non-negative numbers, then the MSM operator is character-
ized as follows:

where  is a parameter and   are  integer values taken from the collection {1, 2, . . . , �} 
of � integer values,  represent the binomial coefficient.

The MSM operator exhibits the following characteristics: 

1. 

2.  if Ni = N(i = 1, 2, . . . �);

3.  if Ni ≤ Ňi for all i.

4. 

According to the MSM operator’s definition, Qin and  Liu37 proposed its dual form, as articulated below.

Definition  1137  Let Ni (i = 1, 2, . . . , �) be a set of non-negative numbers, then the DMSM operator is char-
acterized as follows:

where  is a parameter and   are  integer values taken from the collection {1, 2, . . . , �} 
of � integer values,  represent the binomial coefficient.

Similarly to the MSM operator, the DMSM operator also exhibits the aforementioned characteristics.

q‑RF2L prioritized aggregation operators
This section introduces the concept of the q-RF2LPMSM operator and the q-RF2LPDMSM operator. We delve 
into a comprehensive discussion of other appealing properties inherent to these operators, such as boundary 
and monotonicity, along with a detailed exploration of their specific instances.

q‑RF2L prioritized Maclaurin symmetric mean aggregation operators
Considering the context provided by Definitions 9 and 10, the definition of the q-RF2LPMSM operator is pre-
sented as follows:

Definition 12 Let ∂i =
((

�ri ,κi

)

, �mi , ni�
)

(i = 1, 2, . . . , �) be a family of q-RF2LNs, then q-rung orthopair fuzzy 
2-tuple linguistic prioritized Maclaurin symmetric mean (q-RF2LPMSM) is given by

where  ,  (i = 2, . . . , �) , T1 = 1 , ⁀S(∂t) is the score function value of ∂t and 

 are  integer values taken from the collection {1, 2, . . . , �} of � integer values,  represent 
the binomial coefficient.

Theorem 1 Let ∂i =
((

�ri ,κi

)

, �mi , ni�
)

(i = 1, 2, . . . , �) be a family of q-RF2LNs, where , then the 
aggregated value by using the q-RF2LPMSM operator is also a q-RF2LN, and

(10)

(11)

(12)
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where  and , (i = 2, . . . , �) , T1 = 1 , ⁀S(∂t) is the score 

function value of ∂t and   are  integer values taken from the collection {1, 2, . . . , �} of � 
integer values,  represent the binomial coefficient.

Proof By using operational laws, we formulate the aggregated results of q-RF2LPMSM as follows: 

  �

(13)
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Theorem 2 Let ∂i =
((

�ri ,κi

)

, �mi , ni�
)

(i = 1, 2, . . . , �) and ∂̆i =
((

�̆ri , κ̆i

)

,
〈

m̆i , n̆i
〉

)

 (i = 1, 2, . . . , �) be two col-

lections of q-RF2LNs, if ∂i ≤ ∂̆i,∀i . Then

Proof Because ∂i ≤ ∂̆i , then we have 
(

�ri ,κi

)

≤
(

�̆ri , κ̆i

)

,mi ≤ m̆i and ni ≥ n̆i ∀(i = 1, 2, . . . , �) . Then 

Further, since mi ≤ m̆i , we have

Similar to the testify of non-membership degrees, we attain 

From the above inequalities, we attain

That proves the monotonicity of q-RF2LPMSM operator.   �

Theorem 3 Let ∂i(i = 1, 2, . . . , �) be a family of q-RF2LNs. If ∂+i =

(

max
1≤i≤�

(

�ri ,△i

)

,

〈

max
1≤i≤�

mi , min
1≤i≤�

ni

〉)

 and 

∂−i =

(

min
1≤i≤�

(

�ri ,△i

)

,

〈

min
1≤i≤�

mi , max
1≤i≤�

ni

〉)

 , then

Proof According to Theorem 1, we have 

(14)q− RF2LPMSM(∂1, ∂2, ..., ∂�) ≤ q− RF2LPMSM(∂̆1, ∂̆2, ..., ∂̆�).

q− RF2LPMSM(∂1, ∂2, ..., ∂�) ≤ q− RF2LPMSM(∂̆1, ∂̆2, ..., ∂̆�).

(15)
q− RF2LPMSM(∂−1 , ∂−2 , ..., ∂−� ) ≤ q− RF2LPMSM(∂1, ∂2, ..., ∂�) ≤ q− RF2LPMSM(∂+1 , ∂+2 , ..., ∂+� ).
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From Theorem 2, we have
q− RF2LPMSM(∂−1 , ∂−2 , ..., ∂−� ) ≤ q− RF2LPMSM(∂1, ∂2, ..., ∂�) ≤ q− RF2LPMSM(∂+1 , ∂+2 , ..., ∂+� ).
  �

In the next, several novel operators shall be attained through assigning diverse values of . 

1. If , the q-RF2LPMSM operator is yielded to q-RF2LP averaging (q-RF2LPA) operator, displayed as 
below: 

2. If , the q-RF2LPMSM operator is yielded to q-RF2LP Bonferroni mean (q-RF2LPBM) operator, dis-
played as below:

(16)
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3. If , the q-RF2LPMSM operator is yielded to q-RF2LP generalized Bonferroni mean (q-RF2LPGBM) 
operator, displayed as below: 

4. If , the q-RF2LPMSM operator is yielded to q-RF2LP geometric mean (q-RF2LPGM) operator, dis-
played as below: 

q‑RF2L prioritized dual Maclaurin symmetric mean aggregation operators

Definition 13 Let ∂i =
((

�ri ,κi

)

, �mi , ni�
)

(i = 1, 2, . . . , �) be a family of q-RF2LNs, then q-rung orthopair fuzzy 
2-tuple linguistic prioritized dual Maclaurin symmetric mean ( q-RF2LPDMSM) is given by

where , (i = 2, . . . , �) , T1 = 1 , ⁀S(∂t) is the score function value of ∂t and 

  are  integer values taken from the collection {1, 2, . . . , �} of � integer values,  
represent the binomial coefficient.

(17)

(18)

(19)

(20)
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Theorem 4 Let ∂i =
((

�ri ,κi

)

, �mi , ni�
)

(i = 1, 2, . . . , �) be a family of q-RF2LNs, and , then the 
aggregated value by using the q-RF2LPDMSM operator is also a q-RF2LN, and

where  and , (i = 2, . . . , �) , T1 = 1 , ⁀S(∂t) is the score func-

tion value of ∂t and   are  integer values taken from the collection {1, 2, . . . , �} of � integer 
values,  represent the binomial coefficient.

Proof By using operational laws, we formulate the aggregated results of q-RF2LPDMSM as follows: 

  �

(21)
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Theorem 5 Let ∂i =
((

�ri ,κi

)

, �mi , ni�
)

(i = 1, 2, . . . , �) and ∂̆i =
((

�̆ri , κ̆i

)

,
〈

m̆i , n̆i
〉

)

 (i = 1, 2, . . . , �) be two col-

lections of q-RF2LNs, if ∂i ≤ ∂̆i,∀i . Then

Proof Because ∂i ≤ ∂̆i , then we have 
(

�ri ,κi

)

≤
(

�̆ri , κ̆i

)

,mi ≤ m̆i and ni ≥ n̆i ∀(i = 1, 2, . . . , �) . Then 

Further, since mi ≤ m̆i , we have

Similarly, for non-membership grades, we have 

From the above inequalities, we get

That proves the monotonicity of q-RF2LPDMSM operator.   �

Theorem 6 Let ∂i(i = 1, 2, . . . , �) be a family of q-RF2LNs. If ∂+i =

(

max
1≤i≤�

(

�ri ,△i

)

,

〈

max
1≤i≤�

mi , min
1≤i≤�

ni

〉)

 and 

∂−i =

(

min
1≤i≤�

(

�ri ,△i

)

,

〈

min
1≤i≤�

mi , max
1≤i≤�

ni

〉)

 , then

Proof According to Theorem 4, we have 

(22)q− RF2LPDMSM(∂1, ∂2, ..., ∂�) ≤ q− RF2LPDMSM(∂̆1, ∂̆2, ..., ∂̆�).

q− RF2LPDMSM(∂1, ∂2, ..., ∂�) ≤ q− RF2LPDMSM(∂̆1, ∂̆2, ..., ∂̆�).

(23)
q− RF2LPDMSM(∂−1 , ∂−2 , ..., ∂−� ) ≤ q− RF2LPDMSM(∂1, ∂2, ..., ∂�) ≤ q− RF2LPDMSM(∂+1 , ∂+2 , ..., ∂+� ).
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From Theorem 5, we have
q− RF2LPDMSM(∂−1 , ∂−2 , ..., ∂−� ) ≤ q− RF2LPMSM(∂1, ∂2, ..., ∂�) ≤ q− RF2LPDMSM(∂+1 , ∂+2 , ..., ∂+� ).   

 �

A few novel operators shall be attained through assigning diverse parameter values of . 

1. If , the q-RF2LPDMSM operator is yielded to q-RF2L prioritized geometric mean ( q− RF2LPGM ) 
operator, displayed as below: 

2. If , the q-RF2LPDMSM operator is yielded to q-RF2L prioritized geometric Bonferroni mean 
(q-RF2LPGBM) operator, displayed as below: 

(24)
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3. If , the q-RF2LPDMSM operator is yielded to q-RF2L prioritized generalized geometric Bonferroni 
mean (q-RF2LPGGBM) operator, displayed as below: 

4. If , the q-RF2LPDMSM operator is yielded to q-RF2L prioritized averaging mean (q-RF2LAM) opera-
tor, displayed as below: 

A novel MCGDM approach with q‑RF2L information
This section elaborates on a novel approach called the q-RF2LP MCGDM method. We extend the existing 
WASPAS technique to accommodate situations that involve q-rung orthopair fuzzy 2-tuple linguistic contexts. 
Furthermore, we improve the WASPAS method by integrating the q-RF2LPMSM and q-RF2LPDMSM operators. 
These enhancements are made to efficiently tackle q-RF2LP MCGDM challenges.

Description of the MCGDM problem
Let’s consider a scenario where we have a finite set of alternatives, denoted as ¡ =

{

¡1,¡2, ...,¡m

}

 , and a set 
of criteria, denoted as €= {€1 , € 2, ..., € �} . These criteria come with priority information indicating their relative 
importance, where € 1 > € 2 > ... > € � , signifying that criterion  holds a higher priority than criterion € ζ  if 

. Additionally, we have a group of decision-makers (DMs), denoted as Œ = Œ1,Œ2, ...,Œp , and they 
are ranked in a linear order of importance: Œ1 > Œ2 > ... > Œp . In this ranking, DM Œz holds a higher 

(25)

(26)

(27)
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priority than DM Œt if z < t . Each DM is tasked with expressing their viewpoints using q-RF2LNs: 
, which represents the q-RF2L evaluations of the alternatives concerning the 

criteria, provided by the expert Œ(t) . Thus, the q-RF2LP matrix can be constructed as follows: 

where  symbolizes q-RFOLN 

provided by tth DM to which alternative ¡i meets that the criteria  having the constraint that 
.

WASPAS approach with q‑RF2LNs
Considering that the individual decision matrix M(t) includes both benefit and cost criteria, it is essential to 
normalize these criteria. This normalization process involves converting the cost-type criteria into benefit-type 
criteria, which can be accomplished using the following equation:

where  represents the complement of .

Using Definition 9 and the normalized individual decision matrix  as a basis, we proceed to 

compute the priority degrees among the experts in the following manner:

As per the setup of the MCGDM problem, it is necessary to aggregate the individual normalized decision matrices 
into a collective decision matrix. This collective decision matrix can be generated using either the q-RF2LPMSM 
or q-RF2LPDMSM operator. To calculate the aggregated value of alternative “ ¡i ” concerning the criteria “ ”, 
we use the Eq. (13) or Eq. (21) in the following manner:

(28)

(29)

(30)
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where  

Based on the outcomes from q-RF2LPMSM and q-RF2LPDMSM operators, we derive an integrated group deci-
sion matrix denoted as . The construction of the decision matrix M is accomplished as: 

The element  in the decision matrix M represents the collective assessment of 
alternative ¡i concerning criterion . Regarding Definition 6 and the collective decision matrix M, the process 
of determining the priority levels among the criteria is performed in the following manner:

Using the foundational concept of the WASPAS method and the collective decision matrix M, we compute the 
measures of the q-RF2L prioritized sum model (q-RF2L-PSM) ⊲⊳(1)i  for each alternative ¡i . This calculation 
involves applying the q-RF2LPMSM operator in the following manner:

(31)

(32)

(33)
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Similarly, we ascertain the measures of the q-RF2L prioritized product model (q-RF2L-PPM) ⊲⊳(2)i  for each 
alternative ¡i using the q-RF2LPDMSM operator in the following manner:

Hence, according to Definition 6, the scores ⁀S(⊲⊳(1)i ) and ⁀S(⊲⊳(2)i ) in Eqs. (33) and (34) can be determined, respec-
tively. Additionally, we obtain the combined measure of the q-RF2LPWASPAS method ⊲⊳i for each alternative by 
merging the measures of q-RF2L-PSM and q-RF2L-PPM. This result is calculated using the following formula:

where θ represents the aggregating coefficient of decision precision, and θ ∈ [0, 1] . Finally, we rank the alterna-
tives in descending order based on the value of ⊲⊳i.

Decision making procedure
This section is devoted to outlining an approach based on utilizing the q-RF2LPMSM, q-RF2LPDMSM, and the 
WASPAS method. The key steps of this novel decision-making process are presented as follows: 

Step 1  Considering the real-world decision-making scenario, we establish the set of feasible alternatives 
denoted by ¡ = {¡1,¡2, ...,¡m} and the set of evaluation criteria represented by € = {€1 , € 2, ..., € �} , 
along with their respective priority information. Let Œ = {Œ1,Œ2, ...,Œp} be the group of DMs, with 
a specific prioritization among them. Consequently, we generate the q-rung orthopair fuzzy 2-tuple 
linguistic decision matrix , provided by expert Œ(t).

Step 2  By the application of Eq. (28), we standardize the individual decision matrix M(t) by 
(i = 1, 2, . . . ,m ; ).

Step 3  Utilizing Eq. (29), we determine the priority degrees among the DMs.
Step 4  Once the value of  is given, we employ q-RF2LPMSM and Eq. (30) or q-RF2LPDMSM and Eq. (31) to 

aggregate the normalized individual decision matrices into a unified collective decision matrix. Then, 
we construct the collective decision matrix  .

Step 5  Based on Eq. (32), we calculate the priority degrees among the criteria.
Step 6  Using Eq. (33), we compute the measures of q-RF2LPSM ⊲⊳(1)i  for each alternative ¡i.
Step 7  Using Eq. (34), we calculate the measures of q-RF2LPPM ⊲⊳(2)i  for each alternative ¡i.
Step 8  Next, we apply Eq. (35) to obtain the aggregated measure of WASPAS ⊲⊳i for each alternative ¡i.
Step 9  Finally, we rank all the alternatives in descending order based on the ⊲⊳i values.

The developed MCGDM approach is visually illustrated in Fig. 1.

Application
In this section, we implement the proposed method to address the prioritization problem of patients in a promi-
nent teaching hospital in Ghana. Furthermore, we perform sensitivity and comparison analyses to showcase the 
validity and reliability of our proposed approach.

Background
Ghana’s growing population has led to an increase in health-related cases in recent years, posing significant chal-
lenges for healthcare institutions like the Komfo Anokye Teaching Hospital (KATH), especially with the limited 
availability of beds. To enhance the patient admission process, KATH established an inpatient Admission Service 
Unit (ASU) aimed at optimizing hospital admissions and ensuring efficient allocation of medical resources. This 
initiative is particularly focused on promptly admitting patients with severe illnesses. Previously, the hospital 
relied on an artificial screening process for patient admission, which was flawed due to human intervention in 

(34)

(35)
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bed allocation and the complexity of decision-making, as noted  in2. The process involved balancing conflicting 
factors and managing uncertainty in information. To improve the efficiency of the ASU, we are implementing 
the q-rung orthopair fuzzy 2-tuple linguistic WASPAS method to prioritize patient admissions effectively. Three 
health experts from the ASU, denoted as Œ = {Œ1,Œ2,Œ3} , will assess patients post-initial examination by 
doctors, with a priority order of Œ1 > Œ2 > Œ3 . The evaluation criteria adopted by the experts, based on studies 
 from2,3,7, and relevant to Ghana’s context, include disease severity, emergency degree, priority for special dis-
eases, and type of medical insurance. These criteria are prioritized as € 1 > € 2 > € 3 > € 4 . To manage the inherent 
uncertainty of information, the health experts will use q-RF2LTNs to provide their preference values for various 
alternatives ¡i(i = 1, 2, 3, 4, 5) relative to the criteria . The resulting q-rung orthopair fuzzy 
2-tuple linguistic decision matrices from these evaluations are presented in Tables 1, 2, and 3.

Group of experts

Normalization

Collective decision
matrix

Individual decision
matrices

Priority degrees of
experts

Priority degrees of
criteria

Weighted product
model

Weighted sum
model

Aggregated measure
of WASPAS

Ranking

Figure 1.  Graphical illustration of the developed MCGDM approach.
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Method implementation process
Step 1 The initial evaluation matrices provided by three DMs Œ1,Œ2 and Œ3 are listed in Tables 1,2, and 3, 
respectively.

Step 2 Referring to Eq. (28), it is required to normalize the individual decision matrices M(1) to M(3) . However, 
since all the criteria are benefit criteria, normalization is unnecessary.

Step 3 Utilizing the information provided in Tables 1, 2 and 3 and Eq. (29), we compute the priority degrees 
 among the DMs, and the results are given below: 

Next, we will use the q-RF2LPMSM and q-RF2LFPDMSM operators for further analysis. In what follows, we 
begin by addressing the problem using the q-RF2LPMSM operator, followed by applying the q-RF2LPDMSM 
operator.

Solving problem via the WASPAS method with PMSM operator
In this part, we utilize the q-RF2L PMSM operator to integrate information from individual decision matrices 
ranging from M(1) to M(3).

Step 4: Taking , we use Eq. (30) to determine the overall preference value of alternative ¡i in relation 

to   to form the collective decision matrix depicted in Table 4.

Table 1.  q-RF2L decision matrix M(1).

€1 €2 €3 €4

¡1

((

�2, 0
)

, 〈0.6, 0.3〉
) ((

�3, 0
)

, 〈0.4, 0.5〉
) ((

�5, 0
)

, 〈0.5, 0.4〉
) ((

�4, 0
)

, 〈0.6, 0.3〉
)

¡2

((

�1, 0
)

, 〈0.5, 0.4〉
) ((

�3, 0
)

, 〈0.6, 0.4〉
) ((

�2, 0
)

, 〈0.7, 0.3〉
) ((

�4, 0
)

, 〈0.8, 0.7〉
)

¡3

((

�2, 0
)

, 〈0.7, 0.1〉
) ((

�1, 0
)

, 〈0.8, 0.3〉
) ((

�4, 0
)

, 〈0.4, 0.1〉
) ((

�5, 0
)

, 〈0.6, 0.1〉
)

¡4

((

�1, 0
)

, 〈0.3, 0.4〉
) ((

�3, 0
)

, 〈0.7, 0.1〉
) ((

�4, 0
)

, 〈0.5, 0.5〉
) ((

�2, 0
)

, 〈0.5, 0.1〉
)

¡5

((

�4, 0
)

, 〈0.5, 0.4〉
) ((

�2, 0
)

, 〈0.4, 0.3〉
) ((

�1, 0
)

, 〈0.6, 0.2〉
) ((

�3, 0
)

, 〈0.7, 0.3〉
)

Table 2.  q-RF2L decision matrix M(2).

€1 €2 €3 €4

¡1

((

�5, 0
)

, 〈0.6, 0.5〉
) ((

�6, 0
)

, 〈0.4, 0.3〉
) ((

�2, 0
)

, 〈0.5, 0.5〉
) ((

�3, 0
)

, 〈0.6, 0.3〉
)

¡2

((

�4, 0
)

, 〈0.5, 0.4〉
) ((

�3, 0
)

, 〈0.6, 0.3〉
) ((

�1, 0
)

, 〈0.7, 0.3〉
) ((

�6, 0
)

, 〈0.6, 0.3〉
)

¡3

((

�5, 0
)

, 〈0.6, 0.4〉
) ((

�3, 0
)

, 〈0.7, 0.5〉
) ((

�6, 0
)

, 〈0.9, 0.1〉
) ((

�1, 0
)

, 〈0.8, 0.2〉
)

¡4

((

�2, 0
)

, 〈0.4, 0.3〉
) ((

�1, 0
)

, 〈0.6, 0.5〉
) ((

�3, 0
)

, 〈0.7, 0.2〉
) ((

�5, 0
)

, 〈0.8, 0.1〉
)

¡5

((

�5, 0
)

, 〈0.5, 0.3〉
) ((

�2, 0
)

, 〈0.6, 0.3〉
) ((

�6, 0
)

, 〈0.8, 0.1〉
) ((

�5, 0
)

, 〈0.8, 0.2〉
)

Table 3.  q-RF2L decision matrix M(3).

€1 €2 €3 €4

¡1

((

�1, 0
)

, 〈0.5, 0.4〉
) ((

�3, 0
)

, 〈0.6, 0.5〉
) ((

�4, 0
)

, 〈0.7, 0.1〉
) ((

�5, 0
)

, 〈0.8, 0.4〉
)

¡2

((

�2, 0
)

, 〈0.6, 0.1〉
) ((

�1, 0
)

, 〈0.6, 0.1〉
) ((

�3, 0
)

, 〈0.5, 0.4〉
) ((

�4, 0
)

, 〈0.9, 0.1〉
)

¡3

((

�4, 0
)

, 〈0.7, 0.4〉
) ((

�5, 0
)

, 〈0.8, 0.6〉
) ((

�1, 0
)

, 〈0.1, 0.2〉
) ((

�6, 0
)

, 〈0.4, 0.1〉
)

¡4

((

�5, 0
)

, 〈0.8, 0.3〉
) ((

�1, 0
)

, 〈0.9, 0.1〉
) ((

�2, 0
)

, 〈0.6, 0.2〉
) ((

�3, 0
)

, 〈0.5, 0.5〉
)

¡5

((

�6, 0
)

, 〈0.8, 0.5〉
) ((

�2, 0
)

, 〈0.7, 0.4〉
) ((

�1, 0
)

, 〈0.6, 0.5〉
) ((

�4, 0
)

, 〈0.6, 0.6〉
)
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Step 5 Based on Table 4, we calculate the priority degrees  for the set of criteria. The outcomes are computed 

as follows (Table 5): 

Step 6 Using Eq. (33), along with , we calculate the prioritized sum model for each alternative ¡i 
( i = 1, 2, 3, 4, 5 ), as shown in Table 6.

Step 7 Similarly, applying Eq. (34), , we compute the prioritized product model for each alternative, also 
presented in Table 6.

Step 8 To obtain the combined measure ⊲⊳i for each alternative, we utilize Eq. (35) and display the outcomes 
in Table 6.

Step 9 Based on the values of ⊲⊳i (i = 1, 2, 3, 4, 5), we establish the following ranking for the alternatives: 
¡5 > ¡3 > ¡1 > ¡4 > ¡2 . As a result, the most significant patient is ¡5.

Solving problem via the WASPAS method with PDMSM operator
In the present part, we consider the q-RF2L PDMSM operator to derive the integrated information from indi-
vidual decision matrices ranging from M(1) to M(3).

Step 4 Fixing , we apply Eq. (31) to compute the overall preference value of each alternative ¡i concern-
ing  . These preference values are then consolidated to form the collective 
decision matrix, illustrated in Table 5.

Step 5 In view of Table 5 and Eq. (32), we derive the priority degrees for the criteria set. The outcomes are 

obtained as follows: 

Table 4.  Aggregated decision matrix obtained via q-RF2L PMSM operator.

€1 €2 €3 €4

¡1

((

�1, 0.3168
)

, 〈0.8796, 0.2415〉
) ((

�2,−0.4661
)

, �0.8171, 0.2991�
) ((

�2,−0.3446
)

, �0.8326, 0.2924�
) ((

�2,−0.3901
)

, �0.8735, 0.2093�
)

¡2

((

�1, 0.0381
)

, 〈0.8929, 0.2348〉
) ((

�1, 0.4579
)

, 〈0.8749, 0.2295〉
) ((

�1, 0.2364
)

, 〈0.9162, 0.1942〉
) ((

�2,−0.3328
)

, �0.9185, 0.3314�
)

¡3

((

�1, 0.3495
)

, 〈0.9011, 0.1420〉
) ((

�1, 0.0451
)

, 〈0.9455, 0.2347〉
) ((

�2,−0.4277
)

, �0.8303, 0.0867�
) ((

�2,−0.4513
)

, �0.8946, 0.095�
)

¡4

((

�1, 0.0195
)

, 〈0.8822, 0.2127〉
) ((

�1, 0.3674
)

, 〈0.8965, 0.1637〉
) ((

�2,−0.4036
)

, �0.8709, 0.2378�
) ((

�1, 0.3364
)

, 〈0.8838, 0.1307〉
)

¡5

((

�2,−0.3250
)

, �0.8453, 0.2623�
) ((

�1, 0.2793
)

, 〈0.9129, 0.1944〉
) ((

�1, 0.0501
)

, 〈0.9153, 0.1633〉
) ((

�2,−0.4619
)

, �0.9048, 0.246�
)

Table 5.  Aggregated decision matrix obtained via q-RF2L PDMSM operator.

€1 €2 €3 €4

¡1

((

�1,−0.2865
)

, �0.3898, 0.8256�
) ((

�1, 0.0642
)

, 〈0.2885, 0.8077〉
) ((

�1, 0.0774
)

, 〈0.3526, 0.7835〉
) ((

�1, 0.1164
)

, 〈0.4331, 0.7414〉
)

¡2

((

�0, 0.3563
)

, 〈0.3106, 0.8493〉
) ((

�1,−0.1986
)

, �0.4045, 0.7517�
) ((

�0, 0.4180
)

, 〈0.4625, 0.7943〉
) ((

�1, 0.3896
)

, 〈0.5618, 0.7780〉
)

¡3

((

�1,−0.1934
)

, �0.4527, 0.7893�
) ((

�0, 0.3735
)

, 〈0.4948, 0.8701〉
) ((

�1, 0.2081
)

, 〈0.4136, 0.5964〉
) ((

�1,−0.0810
)

, �0.4799, 0.6492�
)

¡4

((

�0, 0.2796
)

, 〈0.2220, 0.8658〉
) ((

�1,−0.4433
)

, �0.4649, 0.7863�
) ((

�1, 0.0039
)

, 〈0.3963, 0.7482〉
) ((

�1,−0.2407
)

, �0.4009, 0.7173�
)

¡5

((

�1, 0.3417
)

, 〈0.3833, 0.7711〉
) ((

�1,−0.4962
)

, �0.3107, 0.8071�
) ((

�0, 0.4376
)

, 〈0.4253, 0.7780〉
) ((

�1, 0.1233
)

, 〈0.5101, 0.7292〉
)

Table 6.  Measures for q-RF2LPMSM-based WASPAS.

⊲⊳
(1)

i
⊲⊳

(2)

i
⊲⊳i

¡1 0.1497 0.0056 0.0776

¡2 0.1472 0.0047 0.0737

¡3 0.1505 0.0060 0.0782

¡4 0.1419 0.0045 0.0732

¡5 0.1580 0.0071 0.0826
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Step 6 Referring to Eq. (33), along with , we compute the evaluations for each alternative ¡i (i = 1, 2, 3, 4, 5) 
using the Prioritized Sum Model ⊲⊳(1)i  . The outcomes are presented in Table 7.

Step 7 Following Eq. (34), , we determine the evaluations for each alternative ¡i using the prioritized 
product Model ⊲⊳(2)i  as tabulated in Table 7.

Step 8 By applying Eq. (35), we combine the overall preference value ⊲⊳i for each alternative, as displayed in 
Table 7.

Step 9 Considering the values of ⊲⊳i (i = 1, 2, 3, 4, 5) , we arrange the alternatives in the following order: 
¡5 > ¡3 > ¡1 > ¡4 > ¡2 . As a result, the most significant patient is ¡5.

Parameter analysis
This section presents an analysis of how sensitive the proposed model is to changes in the parameters θ and q, 
using the numerical example provided in “Background” section.

Sensitivity analysis with respect to θ
The subsequent analysis focuses on understanding the impact of coefficient θ variations on our results. We employ 
the q-RF2LMSM-based WASPAS method to assess different scenarios in patient prioritization, considering a 
range of θ values from 0 to 1. The outcomes for each decision alternative ¡i (i = 1, 2, 3, 4, 5 ) at varying θ levels are 
detailed in Table 8. An examination of Table 8 and Fig. 2 reveals a trend where the values of ⊲⊳i ( i = 1, 2, 3, 4, 5 ) 
rise with an increase in θ from 0 to 1. Notably, alternative ¡5 consistently emerges as the top choice, indicating 
the robustness of the proposed method against changes in the strategy values set by experts.

Next, we apply the q-RF2LDMSM-based WASPAS method to re-examine the patient prioritization decision-
making process, varying θ within the 0 to 1 range. The outcomes for each option ¡i ( i = 1, 2, 3, 4, 5 ) under these 
different θ values are shown in Table 9 and Fig. 3. Table 9 shows a similar pattern of increasing ⊲⊳i ( i = 1, 2, 3, 4, 5 ) 
values as θ escalates from 0 to 1. Interestingly, alternative ¡5 is again identified as the preferred option in all 
scenarios, affirming the stability of our method. The rankings of the other alternatives remain largely consist-
ent, except the scenario where θ equals 0, further underscoring the resilience of the proposed approach amidst 
substantial modifications in expert strategy values.

Sensitivity analysis with respect to q
This section examines the impact of the parameter q on the results. Initially, we alter the qvalues within the 
q-RF2LPMSM-based WASPAS framework, keeping the other parameter, θ , constant at 0.5. The results, summa-
rized in Table 10 and Fig. 4, show a distinct trend: as q increases, the scores for all alternatives decrease. However, 
the overall ranking of alternatives remains unaffected by changes in q.

Table 7.  Measures for q-RF2LPDMSM-based WASPAS.

⊲⊳
(1)

i
⊲⊳

(2)

i
⊲⊳i

¡1 0.1249 0.00008 0.0625

¡2 0.1139 0.00002 0.0569

¡3 0.1288 0.000006 0.0645

¡4 0.1113 0.00001 0.0556

¡5 0.1418 0.0001 0.0710

Table 8.  Ranking results of q-RF2LPMSM-based WASPAS with varying θ values.

θ ¡1 ¡2 ¡3 ¡4 ¡5 Ranking relation

θ = 0.0 0.00555 0.00469 0.00597 0.00450 0.00715 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.1 0.01996 0.01849 0.02042 0.01824 0.02224 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.2 0.03437 0.03229 0.03488 0.03198 0.03733 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.3 0.04878 0.04610 0.04933 0.04571 0.05242 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.4 0.06319 0.05990 0.06378 0.05942 0.06751 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.5 0.07660 0.07370 0.07820 0.07320 0.08259 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.6 0.09201 0.08750 0.09269 0.08693 0.09769 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.7 0.10642 0.10131 0.10714 0.10067 0.11277 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.8 0.12083 0.11511 0.12159 0.11440 0.12787 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.9 0.13524 0.12891 0.13604 0.12814 0.14296 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 1.0 0.14965 0.14271 0.15050 0.14188 0.15804 ¡5 > ¡3 > ¡1 > ¡2 > ¡4
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Similarly, a comparable pattern emerges when adjusting q within the q-RF2LPDMSM-based WASPAS 
method: scores fluctuate with changes in q. Yet, the ranking order of alternatives stays consistent (see Table 11 
and Fig. 5). This consistency across different q values highlights the robustness and stability of the proposed 
approach about its parameters.

Validation of results
This section evaluates the proposed model’s comparability with existing methodologies, highlighting its effi-
ciency and superiority. Given the limited number of studies that utilize multi-criteria modeling methods like 
WASPAS in conjunction with prioritized operators, our options for comparison with MCGDM approaches are 
somewhat restricted. Consequently, we undertake a step-by-step comparison of the proposed approach against 
each existing method.

q‑RF2L PROMETHEE II method
In this section, we contrast our developed approach with the q-RF2L preference ranking organization method 
for enrichment evaluation (PROMETHEE) II technique, as introduced by Li et al.48. This comparison aims to 
assess the logical validity of our method, beginning with the aggregated decision matrix presented in Table 4.

Based on Eq. (36), the deviations between the two assessment values are calculated in Table 11.

(36)
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Figure 2.  Ranking results via q-RF2LPMSM operator with different values of θ.

Table 9.  Ranking results of q-RF2LPDMSM-based WASPAS with varying θ values.

θ ¡1 ¡2 ¡3 ¡4 ¡5 Ranking relation

θ = 0.0 0.00008 0.00002 0.00006 0.00001 0.0001 ¡5 > ¡1 > ¡3 > ¡2 > ¡4

θ = 0.1 0.01256 0.01141 0.01293 0.01114 0.01427 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.2 0.02504 0.02279 0.02581 0.02227 0.02844 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.3 0.03753 0.03418 0.03868 0.03334 0.04261 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.4 0.05001 0.04557 0.05155 0.04452 0.05678 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.5 0.06249 0.05696 0.06443 0.05565 0.07095 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.6 0.07497 0.06835 0.07730 0.06678 0.08512 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.7 0.08745 0.07973 0.09018 0.07791 0.09290 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.8 0.09999 0.09112 0.10305 0.08904 0.11346 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 0.9 0.11242 0.10251 0.11593 0.10017 0.12760 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

θ = 1.0 0.12490 0.11390 0.12880 0.11130 0.14180 ¡5 > ¡3 > ¡1 > ¡2 > ¡4
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where  is the Hamming distance between  and 48.

where . Here, f (·) is the preference function.
Following Eq. (37), the global preference of each patient is conducted shown follows: 

According to Eqs. (38) and (39), the positive flow �+(¡i) and negative flow �−(¡i) of each option are calculated, 
respectively, as given below:

�+(¡1) = 0.3429, �+(¡2) = 0.2217, �+(¡3) = 0.3161, �+(¡4) = 0.2042, �+(¡5) = 0.3456.

�−(¡1) = 0.1641, �−(¡2) = 0.3645, �−(¡3) = 0.2746, �+(¡4) = 0.3753, �−(¡5) = 0.2944.

(37)

(38)ψ+
(

¡i

)

=
1

m− 1

∑∐

(¡i ,¡r),

(39)ψ−
(

¡i

)

=
1

m− 1

∑∐

(¡r ,¡i).
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Figure 3.  Ranking results via q-RF2LPDMSM operator with different values of θ.

Table 10.  Ranking results of q-RF2LPMSM-based WASPAS with varying q values.

q ¡1 ¡2 ¡3 ¡4 ¡5 Ranking relation

3 0.0776 0.0737 0.0782 0.0732 0.0826 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

5 0.0767 0.0732 0.0774 0.0728 0.0821 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

7 0.0758 0.0726 0.0768 0.0721 0.0814 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

9 0.0750 0.0720 0.0762 0.0715 0.0809 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

11 0.0743 0.0716 0.0758 0.0711 0.0804 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

13 0.0737 0.0711 0.0754 0.0706 0.0801 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

15 0.0732 0.0708 0.0750 0.0704 0.0800 ¡5 > ¡3 > ¡1 > ¡2 > ¡4
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Using the values of �+(¡i) and �−(¡i) , the net flows �(¡i) = ψ+
(

¡i

)

− ψ−
(

¡i

)

 for each alternative are 
determined as follows:

�(¡1) = 0.1789, �(¡2) = −0.1428, �(¡3) = 0.0415, �(¡4) = −0.1711, �(¡5) = 0.0512.

Thus, the ranking with q-RF2L PROMETHEE II  method48 is ¡1 > ¡5 > ¡3 > ¡2 > ¡4.

q‑RFOL Muirhead mean aggregation operators‑based method
This section focuses on obtaining results using the q-RF2L Muirhead mean (q-RF2LMM) AOs-based method, 
as detailed  in34. The process is outlined through the following steps:

To aggregate q-RF2L assessment values  for each alternative ¡i across all criteria  into 
a single overall assessment value ∂i , as shown in Table 4, we utilize the q-RF2LMM operator. This operator is 
detailed in Eq. (40), and is applied with the parameter P = (1, 1, 2, 1) to aggregate the values for each alternative 
¡i(i = 1, 2, 3, 4, 5) (Table 12).
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Figure 4.  Ranking results via q-RF2LPMSM operator with different values of q.

Table 11.  Ranking results of q-RF2LPDMSM-based WASPAS with varying q values.

q ¡1 ¡2 ¡3 ¡4 ¡5 Ranking relation

3 0.0625 0.0569 0.0645 0.0555 0.0710 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

5 0.0617 0.0566 0.0637 0.0556 0.0699 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

7 0.0607 0.0562 0.0632 0.0553 0.0688 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

9 0.0602 0.0559 0.0624 0.0551 0.0680 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

11 0.0598 0.0557 0.0621 0.0548 0.0674 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

13 0.0592 0.0553 0.0618 0.0546 0.0669 ¡5 > ¡3 > ¡1 > ¡2 > ¡4

15 0.0588 0.0551 0.0616 0.0545 0.0664 ¡5 > ¡3 > ¡1 > ¡2 > ¡4
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Figure 5.  Ranking results via q-RF2DLMSM operator with different values of q.

Table 12.  Deviations of pairwise evaluations.

€1 €2 €3 €4

1.5124 0.0000 1.3771 0.0000

0.0000 1.4568 0.3521 0.0420

1.7063 0.0000 0.0000 1.4499

0.0000 0.3028 2.5221 0.0528

0.0000 0.3069 0.0000 0.8057

0.0000 1.7637 0.0000 0.8478

0.1939 0.2438 0.0000 2.2557

0.0000 0.6097 1.1449 0.8585

0.4821 0.0000 0.0000 0.0000

1.9945 0.0000 1.0251 0.0000

2.1884 0.0000 0.0000 1.4079

0.0000 0.0000 2.1699 0.0000

0.0000 0.0631 0.2053 0.0000

0.0000 0.0000 1.5826 0.0000

0.0000 1.5199 0.5574 0.0000

0.0000 0.3659 2.7274 0.0000

1.6088 0.0000 0.0000 0.0000

3.1212 0.0000 0.0000 0.0000

1.1267 1.1540 0.0000 0.0108

3.3151 0.0000 0.0000 1.3971
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where P = (P1, P2, ..., P�) is a vector of parameters and  is a permutation of (1, 2, . . . , �) and 
S� is a set of all permutations of (1, 2, . . . , �).

After the implication of Eq. (41) the overall assessment values of alternatives ¡i(i = 1, 2, 3, 4, 5) are obtained 
as:

According to Eq. (6), the score values of overall assessment value ∂i(i = 1, 2, 3, 4, 5) are determined as given below:

Based on the above score values, the ranking of all patients is obtained: ¡1 > ¡5 > ¡3 > ¡2 > ¡4.
Based on the outcome provided above, it is evident that there exists a minor distinction in the ranking of 

the two approaches, i.e., the alternative ¡1 only changes the position while the remaining alternatives have the 
same rank.

q‑Rung orthopair fuzzy Macularin symmetric mean operators‑based method
The effectiveness of the proposed method is further substantiated through a comparative analysis with the q-rung 
orthopair Maclaurin symmetric mean (q-ROFMSM) operators-based method created by Wei et al.49. In order 
to align the Wei et al. method with the specific issue at hand, we have excluded the linguistic terms and their 
corresponding symbolic translations, as detailed in the data presented in Table 4. This modification enables us 
to derive the subsequent calculated results, which are comprehensively displayed in Table 13.

where ai = �mi , ni�(i = 1, 2, . . . , �) represent family of q-ROFNs, , and 
. 

By employing the q-ROFMSM operator (see Eq. (41)), the overall assessment values for the alternatives 
¡i(i = 1, 2, 3, 4, 5) are calculated as follows:

(40)

∂1 =
((

�2,−0.4676
)

, �0.8509, 0.2654�
)

, ∂2 =
((

�1, 0.3420
)

, �0.9007, 0.2574�
)

,

∂3 =
((

�1, 0.3719
)

, �0.8925, 0.1619�
)

, ∂4 =
((

�1, 0.3198
)

, �0.8835, 0.1949�
)

,

∂5 =
((

�1, 0.3749
)

, �0.8944, 0.2230�
)

.

⁀S(∂1) = 0.1748, ⁀S(∂2) = 0.1643, ⁀S(∂3) = 0.1672, ⁀S(∂4) = 0.1586, ⁀S(∂5) = 0.1674.

(41)

Table 13.  q-rung orthopair fuzzy group decision matrix.

c1 c2 c3 c4

¡1 〈0.8796, 0.2415〉 〈0.8171, 0.2991〉 〈0.8326, 0.2924〉 〈0.8735, 0.2093〉

¡2 〈0.8729, 0.2348〉 〈0.8749, 0.2295〉 〈0.9162, 0.1942〉 〈0.9185, 0.3314〉

¡3 〈0.9011, 0.1420〉 〈0.9455, 0.2347〉 〈0.8303, 0.0876〉 〈0.8946, 0.0951〉

¡4 〈0.8822, 0.2127〉 〈0.8964, 0.1647〉 〈0.8709, 0.2378〉 〈0.8838, 0.1307〉

¡5 〈0.8453, 0.2623〉 〈0.9129, 0.1944〉 〈0.9153, 0.1633〉 〈0.9048, 0.2460〉
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Based on the score function of q-ROFNs19, the score values of overall assessment value ai(i = 1, 2, 3, 4, 5) are 
determined as outlined below:

Based on the above score values, the ranking of all patients is obtained: ¡3 > ¡5 > ¡2 > ¡4 > ¡1.

From Table 12, it can be seen that all the ranking results of the two approaches are different except ¡4 . The 
difference is due to the absence of linguistic terms in the approach of Wei et al.49. It is basically developed on 
q-ROFSs, which only process the uncertain data in quantitative form. This technique is unsuitable for modeling 
decision information when DMs prefer utilizing linguistic values.

Discussion

(i)  Analysis of Table 14 reveals that alternative ¡5 , initially deemed optimal, ranks second when evaluated 
through existing methodologies. Specifically, in the method proposed by Lie et al.48, the q-RF2LWA opera-
tor is utilized for the aggregation phase in decision-making. A notable limitation of this operator is its 
failure to account for the interrelationships among multiple input arguments. Additionally, the Lie et al. 
method lacks mechanisms to prioritize criteria and experts. Although it includes weight determination 
strategies, these are not sufficient for practical problems where prioritization of both criteria and DMs is 
crucial. In such contexts, our proposed approach demonstrates superior adaptability and effectiveness.

(ii)  When compared with the Ju et al.  method34, it’s evident that the overall rankings diverge from those 
obtained using our proposed approach. This discrepancy primarily arises because the existing approach 
focuses solely on the interrelationship among input arguments, as evident from Eq. (40). It also overlooks 
the crucial aspect of modeling the prioritization relationships among experts and the set criteria. In 
contrast, our proposed methods, which leverage the q-RF2LPMSM and q-RF2LPDMSM, adeptly handle 
the interrelationships among multiple input arguments and duly consider the prioritization among both 
DMs and criteria. Additionally, our method integrates the q-RF2LPMSM and q-RF2LPDMSM operators 
within the WASPAS method framework. These distinctive features render our proposed methods notably 
more practical and adaptable.

(iii)  From Table 14, we can see that most of the alternative ranking positions obtained via the Wei et al.49 
approach is inconsistent with that obtained through our proposed method. This discrepancy primar-
ily stems from the fact that the operator in Eq. (41) evaluates alternatives using q-rung orthopair fuzzy 
data but disregards linguistic terms and their symbolic translations. In contrast, the q-RF2LPMSM and 
q-RF2LPDMSM operators introduced in our study focus on q-RF2L data and effectively incorporate these 
linguistic aspects. When the linguistic terms and their symbolic translations are omitted, these operators 
essentially become the q-rung orthopair fuzzy prioritized MSM and DMSM operators, respectively. The 
inclusion of linguistic terms and symbolic translations, along with the prioritization feature, enables our 
operators to mirror the subjective perspectives of DMs more accurately. The omission of these aspects in 
Wei et al.’s approach results in a loss of crucial information, potentially leading to erroneous outcomes. 
Furthermore, the approach of Wei et al. is limited to MCDM problems and does not adequately address 
DM scenarios involving multiple experts.

From the preceding discussion, the key advantages of our initiated approach are summarized as follows: 

1. The foremost benefit of our proposed approach lies in the design of the formulated operators, which adeptly 
incorporate interdependencies among arguments. Additionally, these operators facilitate prioritization 
among criteria and DMs within the DM process.

2. The proposed method demonstrates robust stability, even with significant adjustments made to the involved 
parameters, θ and q. This stability is evidenced by the consistent ranking order, as detailed in “5.3” section.

3. The AOs developed in our study (Eqs. (13) and (21)) are advanced generalizations of numerous existing 
AOs. For details and insights into their extended capabilities, please refer to “3.1” and “3.2” sections.

4. Unlike the existent  methods34,49, our developed approach is not solely reliant on AOs. It innovatively inte-
grates the formulated operators, q-RF2LPMSM and q-RF2LPDMSM, with the WASPAS method within 

a1 = �0.8519, 0.2632�, a2 = �0.9014, 0.2513�, a3 = �0.8957, 0.1462�, a4 = �0.8836, 0.1909�, a5 = �0.8959, 0.2199�.

S(a1) = 0.8000, S(a2) = 0.8502, S(a3) = 0.8578, S(a4) = 0.8415, S(∂5) = 0.8543.

Table 14.  Decision results obtained by using different methods.

Method Ranking results

q-RFL PROMETHEE II  method48 ¡1 > ¡5 > ¡3 > ¡2 > ¡4

q-RF2LMM AOs-based  method34 ¡1 > ¡5 > ¡3 > ¡2 > ¡4

q-ROFMSM operators-based  method49 ¡3 > ¡5 > ¡2 > ¡4 > ¡1

Proposed method ¡5 > ¡3 > ¡1 > ¡4 > ¡2
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a q-RF2L environment. This integration significantly enhances the adaptability and applicability of our 
methodology, setting it apart from existing methods.

In addition to the aforementioned advantages, it is noteworthy that the proposed prioritized AOs exhibit certain 
limitations. Specifically, these AOs lack the property of idempotency, wherein the weighted average value of 
equivalent fuzzy numbers fluctuates with their prioritized weights. Moreover, the designed AOs do not conform 
to the MSM/DMSM when their prioritized weights are equal, thus indicating a deficiency in reducibility property.

Concluding remarks
The pressing need for efficient allocation of limited medical resources has led many healthcare facilities to 
prioritize patient hospitalization. In response, this paper introduced a novel MCGDM technique to address 
patient prioritization effectively. This technique, which acknowledges the importance of prioritization relation-
ships, integrates the MSM and the DMSM operators with the PA operator, leading to the development of the 
q-RF2LPMSM and q-RF2LPDMSM operators. We have thoroughly verified the key characteristics of these 
newly proposed prioritized aggregation operators and examined various special cases. Building on these opera-
tors, we have enhanced the WASPAS method to create an innovative ranking mechanism tailored for q-RF2L 
MCGDM challenges. The q-RF2LPMSM and q-RF2LPDMSM operators are not only adept at managing the 
interdependence among multiple input parameters but also effectively consider the prioritization among experts 
and criteria, reflecting the experts’ attitudinal perspectives. The created method is highly flexible, which makes 
it suitable for resolving similar prioritization challenges that utilize q-RF2L information for evaluating alterna-
tives. However, this study has a limitation in that it does not consider the weights of DMs and the absence of 
a consensus-building model among them. Future research should aim to improve information aggregation by 
determining the weights of DMs and refining the formulations of prioritized operators to ensure compliance 
with the properties of idempotency and reducibility.

Data availability
All data generated or analysed during this study are included in this published article.
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