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Explainable machine learning 
for early predicting treatment 
failure risk among patients 
with TB‑diabetes comorbidity
An‑zhou Peng 1,4, Xiang‑Hua Kong 1,4, Song‑tao Liu 1, Hui‑fen Zhang 1, Ling‑ling Xie 1, 
Li‑juan Ma 1, Qiu Zhang 2* & Yong Chen 2,3*

The present study aims to assess the treatment outcome of patients with diabetes and 
tuberculosis (TB-DM) at an early stage using machine learning (ML) based on electronic medical 
records (EMRs). A total of 429 patients were included at Chongqing Public Health Medical Center. 
The random-forest-based Boruta algorithm was employed to select the essential variables, and 
four models with a fivefold cross-validation scheme were used for modeling and model evaluation. 
Furthermore, we adopted SHapley additive explanations to interpret results from the tree-based 
model. 9 features out of 69 candidate features were chosen as predictors. Among these predictors, 
the type of resistance was the most important feature, followed by activated partial throm-boplastic 
time (APTT), thrombin time (TT), platelet distribution width (PDW), and prothrombin time (PT). 
All the models we established performed above an AUC 0.7 with good predictive performance. 
XGBoost, the optimal performing model, predicts the risk of treatment failure in the test set with an 
AUC 0.9281. This study suggests that machine learning approach (XGBoost) presented in this study 
identifies patients with TB-DM at higher risk of treatment failure at an early stage based on EMRs. The 
application of a convenient and economy EMRs based on machine learning provides new insight into 
TB-DM treatment strategies in low and middle-income countries.

Tuberculosis (TB) remains a global infectious disease and one of the leading causes of death worldwide. In 
2020, The World Health Organization (WHO) estimated the number of people newly diagnosed with TB was 
5.8 million1. The End TB Strategy of WHO of 2014 aims for zero mortality and morbidity from TB2. However, 
high-risk comorbidities, such as HIV, malnutrition, and dysglycemia, are preventing people from achieving this 
goal. A recent study has reported that persistent dysglycemia was independently associated with unfavorable 
treatment outcomes (adjusted odds ratio (AOR): 6.1; 95% CI: 1.9–19.6)3. Thus, identifying the patients with 
TB-DM who are more prone to unfavorable treatment failure from a large amount of miscellaneous EMRs data 
at an early stage is important.

Previous studies have demonstrated a relationship between diabetes mellitus (DM) and the progression of 
TB3–6. A recent systematic review from China showed that the prevalence Of DM among TB patients was 7.8% 
after screening 7043 articles and 43 eligible studies. The highest prevalence was in Northeast China (21.9%), 
followed by the East Coast (8.3%), Western China (5.9%), and Central China (5.1%)6. Another previous study 
reported that dysglycemia influences laboratory, clinical and radiographic manifestations of patients with TB, 
resulting in unfavorable treatment outcomes and a higher possibility of relapse and death4. Therefore, to improve 
TB-DM treatment outcomes and ease personal and societal healthcare burdens, clinicians would be better off 
identifying patients who are more prone to unfavorable treatment outcomes at an early stage. Then, precision 
treatment strategies can aid them afterward. In sum, it is necessary to establish a stable and reliable clinical 
prediction model to identify the high risk of treatment failure in patients with TB-DM.

In recent years, machine learning approaches have been applied to diagnosing and treating TB, providing 
valuable information for clinical decision-making7–9. ML approaches are growing fast and have been proven to 
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predict risk factors for various diseases based on large population datasets10. ML algorithms can easily integrate 
and interpret a vast amount of heterogeneous data, which is beyond the human’s brain power. Previous ML 
studies, to our knowledge, have not been employed to study the treatment outcome of TB-DM. Hence, in this 
study, we aimed to apply supervised and unsupervised ML algorithms to a comprehensive set of clinical, demo-
graphic, laboratory, and CT (computed tomography) data to construct an interpretable and reliable predictive 
ML model for the treatment failure of TB among patients with TB-DM in Chongqing Public Health Medical 
Center (CPHM), an infectious diseases hospital in Chongqing, in the southwest of China.

Methods
Study design and population
Five hundred and eight patients with TB-DM at CPHM between February 2019 and January 2021 were included 
in this retrospective study. Seventy-nine patients were excluded because of incomplete electronic medical records 
or lack of treatment outcome follow-up records. Finally, 429 patients were included in this study (Fig. 1). The 
main inclusion criteria are similar to our previous study5: age greater than 18 years; antituberculosis therapy for 
no more than one week before hospitalization in CPHM within five years; the diagnostic criterion of active PTB 
conforms to at least one of the following laboratory test: sputum or bronchial lavage fluid (BALF) smear posi-
tive, sputum or BALF bacterial culture positive, GeneXpert Mycobacterium tuberculosis/ rifampicin resistance 
in sputum or BALF positive.

Treatment outcome
According to WHO guidelines, TB treatment outcome was defined as failure or cure11 (Supplementary 
Tables 1–2). In this study, both cured and completed treatment were identified as successful TB treatment.

Laboratory tests
The obtained variables in this study were as follows: white blood cell count (WBC), neutrophil count (NEUT), 
lymphocyte count (LYMPH), monocyte count (MONO), platelet count (PLT), red blood cell count (RBC), hemo-
globin (HGB), hematocrit (HCT), mean platelet volume (MPV), plateletcrit (PCT), platelet distribution width 
(PDW), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), total protein (TP), albumin (ALB), total 
cholesterol (T_CHOL), high density lipoprotein (HDL), Low Density Lipoprotein (LDL), triglyceride (TG), Ala-
nine transaminase (ALT), Aspartate Aminotransferase (AST), total bilirubin (TBil), calcium (Ca), chlorine (Cl), 
kalium (K), natrium (Na), activated partial throm-boplastic time (APTT), fibrinogen (FIB), prothrombin time 
(PT), thrombin time (TT), urea nitrogen, creatinine, Uric Acid, fasting blood-glucose (FBG), CD4, and CD8.

Basic feature
Age, sex, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), type of resistance, 
comorbidity ≥ 2, cough, expectoration, hemoptysis, fever, night sweats, asymptomatic, history of TB, antidiabetic 
(metformin, sulfonylureas, insulin), smoking, drinking history, family history of DM.

Figure 1.   The flow chart of the study.
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CT feature
In this study, two experienced radiologists who were blinded to the related clinical data examined the CT images, 
and a senior TB expert made the final decision if the explanations of imaging results from the two radiologists 
were different. The number of pulmonary lobes involved, small patchy shadow, small nodules, air bronchial sign, 
large segmented leafy shadow, thick-walled cavity, single cavity, multiple cavities, calcification, fibrosis, lymph 
node enlargement, and Pleural effusion. This detail information was shown in Supplementary Table 3.

Definition of some variables
Comorbidities ≥ 2
Some patients included in this study have more than 2 comorbidities, such as hypertension, dyslipidemia, pneu-
monia, chronic obstructive pulmonary disease, coronary heart disease, bronchiectasis, hypoproteinemia, renal 
failure, and so on.

Smoking history
Smoking status was defined as having smoked at least 100 cigarettes in life: Yes (smoker) or No (non-smoker).

Drinking history
It was defined as having ever consumed 1 drink of any alcoholic beverages, including liquor, beer, wine, wine 
coolers, and any other type of alcoholic beverage in thier entire life, not counting small tastes or sips.

Type of resistance
Sensitive: Drug-susceptible TB; Mono-R: mono-resistant tuberculosis; Poly-R: Poly—resistant tuberculosis; 
MDR: Multi-drug resistant tuberculosis; XDR: Extensively drug-resistant tuberculosis.

Supervised ML approach
Given the high dimensionality of EMR data and the possible overfit, the Boruta algorithm12 was applied to select 
the best predictors of treatment failure of TB-DM in the feature selection stage. The Boruta algorism is a random 
forest-based feature selection method performing multiple random forest runs to compare shuffled random 
variables to the original variables. Then, scores standing for importance are assigned to each feature. All selected 
features were split into rejected, tentative, and confirmed ones according to their importance scores. In brief, 
confirmed features that may contribute positively to the predictive model has a performance that is better than 
the best random feature, indicated as ‘‘shadowMax’’. Finally, those confirmed features are considered into the ML 
model. Then, we split the data 70%/30% temporally and adopted a fivefold Cross-Validation on the training set 
to estimate the skill of the model. The remain data (test set) was used to assess the models (Fig. 2).

Four models, including XGBoost algorithm, random forest (RF), support vector machine (SVM), and logistic 
regression (LR), were established by ML approach using the R package ‘caret’, ‘xgboost’, and ‘e1071’. Meanwhile, 
model performance metrics contained accuracy score, receiver operating characteristic curve (ROC), kappa 
value, sensitivity, specificity, precision, recall, and F1 were also evaluated. We used a grid search to configure the 
best combination of hyperparameters to tune the model parameters (Supplementary Table 4).

Popular feature attribution methods may be inconsistent, which means they may reduce a feature’s assigned 
significance when its real impact is raised13,14. To address this problem, we adopted SHAP (Shapley Additive 
exPlanation) values based on game theory, which quantifies the contribution of each feature to the models.

Comparison of the performance of the conventional statistic, ML model using all features, and ML model 
plus CT features with the optimal ML model.

To validate the performance of the optimal ML model, we constructed a conventional measure, logisti-
cal regression, for comparison and the ML model using all features (69 features) from the dataset. For the 

Figure 2.   Modeling step of machine learning method (five-fold cross validation based on the data).
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conventional method, based on the previous studies3,15–17 and the relevance of clinical practice, we selected the 
sex, age, BMI, smoking, alcoholism, fasting glucose, HbA1C, type of resistance, and multiple cavities as potential 
confounding factors to construct a multiple analysis logistic regression model. For the ML model plus CT fea-
tures, the optimal ML model combined with all CT features, including the number of pulmonary lobes involved, 
small patchy shadow, small nodules, air bronchial sign, large segmented leafy shadow, thick-walled cavity, single 
cavity, multiple cavities, calcification, fibrosis, lymph node enlargement, and Pleural effusion.

Statistical analysis
Continuous variables were represented as mean ± standard or Median, Interquartile Range (IQR; 25–75%). 
Normally distributed continuous variables were compared using Student’s t-test, while non-normally distributed 
continuous variables were compared using the Mann–Whitney U test. Categorical variables were expressed as 
percentages (%). Comparison between groups was performed using the Χ2 test or Fisher exact test as appropriate. 
The clinical application was investigated by decision curve analysis (DCA).

RStudio (version 1.4.1717) was adopted to analyze all data in this study. For all analyses, differences with 
p < 0.05 were statistically significant.

Ethics approval and consent to participate
This study was approved after agreement from the Ethics Committee of Chongqing Public Health Medical Center 
(no. 2021-023-02-KY). Due to the retrospective nature of the study, the Ethics Committee of Chongqing Public 
Health Medical Center waived the requirement for patient informed consents. The patients were anonymized 
and their information was nonidentifiable. In general, all data in this study was obtained in accordance with the 
Helsinki declaration.

Results
Baseline characteristics according to treatment outcome of TB‑DM
A total of 429 patients were included in this study (age: 56.2 ± 11.2 (mean ± median)); male: 17.2%). Treatment 
failure of TB-DM occurred in around one-third of the case. The baseline characteristics are summarized in 
Table 1.

Clustering of laboratory tests patterns between two treatment outcomes
In terms of utility and convenience, the combination of the multiple blood biomarkers may outperform single 
in evaluating the treatment outcome of TB-DM. Thus, we assessed the prediction of treatment outcome of the 
combination of different blood biomarkers by the unsupervised ML approach.

Feature selection
9 features were selected from the 69 features in this study based on the random forest-based Boruta algorithm 
(Fig. 3): drug-susceptible type of resistance, APTT, TT, HDL, PDW, PT, HbA1c, TP, and history of TB. In addi-
tion, other variables (rejected or tentative) with an importance score lower than shadowMax were all identified 
as unimportant and excluded.

Predictive performance comparison of different classifiers
After selecting the optimal features through the Boruta algorism, we plugged them into four classifiers for further 
modeling, respectively. The primary confusion matrix performance and ROC scores of all ML classifiers were 
summarized in Table 2 and (Fig. 4). The four models have good performance as a whole (all ROC scores of mod-
els ≥ 0.7). The most promising model that predicts treatment failure of TB-DM is XGBoost, which obtained better 
model evaluation scores than any other ML classifiers (Table 2). Based on the decision curve analysis (DCA), the 
XGBoost classifier demonstrated the best net benefit along with the threshold probability than other classifiers, 
suggesting that XGBoost classifier was the optimal model with helpful clinical utility (Fig. 5).

The conventional method showed AUC 0.8632 and 83.7% accuracy, XGBoost using all features demonstrated 
0.8858 and 0.81%, respectively. XGBoost plus.

CT features showed 0.9048 and 80.5%. While, the machine learning model, XGBoost, showed AUC 0.9281 
and 84.4% accuracy. Considering the sensitivity and specificity, the conventional method showed 0.7333 and 
0.8844, respectively. classifiers using all features showed 0.6222 and 0.9157, respectively. XGBoost plus CT fea-
tures produced 0.6667 and 0.8795. ML model produced 0.7111 and 0.9167, respectively (Table 3).

After the above analysis, we calculated SHAP values of XGBoost model. Figure 6 showed the distribution of 
feature contributions to predictions of treatment failure of TB-DM using SHAP values of each feature for every 
observation. Each dot is an individual prediction. For instance, the type of resistance is associated with low and 
positive values on the target. Where low comes from the color and positive from the x value. In other words, 
people who are less drug resistant may be more likely to be cured. When APTT is high (or true) then SHAP 
value is high. Patients with high APTT may result in treatment failure. In addition, the high value dots of HbA1c 
mainly concentrates on the right side of x-axis, which means high HbA1c increases the risk of treatment failure.

Discussion
In this study, we have shown the feasibility and stability of applying ML approaches to a comprehensive set of 
demographic, clinical, laboratory tests, and radiology features acquired for evaluating the treatment outcome 
of patients with TB-DM upon admission. Moreover, all four models we established predicted treatment failure 
of TB-DM with an AUC above 0.7. XGBoost is the optimal model for predicting the risk of treatment failure in 
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Characteristics

Cure Failure

P valueN = 294 N = 135

Age 57.1 (10.9) 54.1 (11.6) 0.011

Female 52 (17.7%) 22 (16.3%) 0.829

BMI 21.3 [19.3–23.7] 21.7 [19.9–24.1] 0.137

Type of resistance  < 0.001

 MDR 5 (1.70%) 42 (31.1%)

 Mono-R 25 (8.50%) 31 (23.0%)

 Poly-R 9 (3.06%) 14 (10.4%)

 Sensitive 253 (86.1%) 35 (25.9%)

 XDR 2 (0.68%) 13 (9.63%)

Comorbidity ≥ 2 155 (52.7%) 61 (45.2%) 0.178

Cough 254 (86.4%) 126 (93.3%) 0.053

Expectoration 185 (62.9%) 101 (74.8%) 0.021

Hemoptysis 71 (24.1%) 31 (23.0%) 0.884

Fever 45 (15.3%) 30 (22.2%) 0.106

Night sweats 24 (8.16%) 23 (17.0%) 0.010

Asymptomatic 20 (6.80%) 3 (2.22%) 0.084

History of TB 82 (27.9%) 66 (48.9%)  < 0.001

Antidiabetic

 Metformin 112 (38.1%) 47 (34.8%) 0.585

 Sulfonylureas 56 (19.0%) 20 (14.8%) 0.352

 Insulin 115 (39.1%) 45 (33.3%) 0.297

Smoking history 199 (67.7%) 91 (67.4%) 1

Drinking history 163 (55.4%) 57 (42.2%) 0.015

Family history of DM 49 (16.7%) 24 (17.8%) 0.884

Laboratory tests

 Sbp 125 (17.9) 125 (17.1) 0.984

 Dbp 79.1 (11.5) 79.0 (10.4) 0.955

 WBC 6.59 [5.46–8.08] 6.69 [5.72–8.61] 0.338

 NEUT 4.63 [3.57–6.35] 5.14 [3.76–6.59] 0.219

 LY 1.18 [0.81–1.60] 1.22 [0.82–1.58] 0.763

 MON 0.56 [0.43–0.74] 0.55 [0.44–0.72] 0.867

 RBC 4.08 [3.77–4.54] 4.27 [3.87–4.64] 0.043

 Hb 119 [107–133] 122 [110–135] 0.085

 HCT 36.0 [32.2–39.6] 37.1 [34.0–41.5] 0.014

 PLT 247 [195–322] 230 [182–297] 0.062

 PCT 0.24 [0.20–0.31] 0.22 [0.18–0.29] 0.038

 MPV 9.90 [8.70–11.0] 9.80 [8.90–11.0] 0.787

 PDW 15.5 [11.7–16.2] 16.0 [15.6–16.3]  < 0.001

 ESR 51.0 [28.0–84.8] 49.0 [24.0–76.0] 0.134

 CRP 37.1 [8.78–76.9] 39.5 [14.1–65.0] 0.653

 PT 11.7 [11.1–12.4] 12.6 [11.7–13.7]  < 0.001

 TT 17.4 [16.5–18.4] 15.8 [14.8–17.3]  < 0.001

 FIB 4.75 [3.66–5.95] 4.25 [3.50–5.12] 0.009

 APTT 27.9 [26.3–30.9] 37.6 [30.1–42.2]  < 0.001

 ALT 15.5 [11.0–27.0] 16.0 [11.0–20.5] 0.501

 AST 18.0 [14.0–26.0] 18.0 [13.0–24.0] 0.467

 TP 63.9 [59.3–68.0] 64.6 [61.0–70.9] 0.006

 ALB 35.7 [32.5–39.3] 36.9 [34.1–40.8] 0.035

 TBIL 11.4 [8.65–15.2] 10.6 [8.30–15.2] 0.322

 BUN 4.89 [3.63–6.38] 4.72 [3.60–5.74] 0.202

 Creatinine 54.6 [44.9–68.3] 54.9 [45.3–66.6] 0.960

 Urea 294 [212–392] 284 [225–388] 0.998

 TG 1.27 [0.97–1.70] 1.25 [0.98–1.71] 0.775

 CHO 3.88 [3.32–4.63] 4.20 [3.63–4.85] 0.016

 HDL 0.93 [0.76–1.14] 1.01 [0.80–1.33] 0.002

Continued
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TB-DM, with a high sensitivity of 71.1%, specificity of 91.7%, and an AUC of 0.9218 on the cross-validated test 
set. In addition, nine features were selected as predictors of treatment failure in TB-DM and certain laboratory 
tests were identified as critical potential predictors.

In our study, seven routine blood parameters, such as PDW, PT, TT, APTT, TP, HDL, and HbA1c, are par-
ticularly important in our models after feature selection. It is challenging to accurately interpret predictions from 
tree-based ML models, such as tree gradient boosting machines and random forests. Feature attribution for trees 
is often heuristic and not personalized for each prediction. SHAP can address the above problems. Thus, we found 
higher APTT, HbA1c, and PDW and lower TT, HDL and PT may increase the risk of treatment failure of TB-DM 
by using SHAP values to analyze the results from the XGboost model. Verma et al. have reported a significant 
correlation between platelet abnormalities and stroke in patients with tuberculous meningitis (TBM)18. In their 
study, they found platelet distribution width (PDW) (p < 0.001) was significantly associated with infarction in 
patients with TBM. In 2018, Dong et al. found hemostasis and dyslipidemia were related to exacerbated lung 
damage in TB, especially in patients with TB-DM, by comparing inflammatory biomarkers and hematologic 
and biochemical parameters between the two groups of patients, one with TB-DM and the other with TB19. Of 
note, other studies have reported the similar results20,21.

In our study, we demonstrated that each selected feature contributed positively or negatively to the prob-
ability of treatment failure of TB-DM, as indicated SHAP values. The resistance type is the strongest predictor 
of treatment outcome, and lower-level drug resistance has a more apparent negative relationship with treatment 
failure, as expected. Not surprisingly, patients who have a history of TB are at an increased risk of unfavora-
ble treatment outcome. Although none of radiology features were selected into the ML models, some of their 
manifestations, such as multiple cavities, thick-walled cavity, the number of pulmonary lobes involved, and 
nodules, have been shown to be potential factors to predict the treatment outcome of TB-DM to some extent 
in previous studies5,22,23. In addition, Yang. et al. reported that radiological features, which are obtained using a 
single experienced radiologist reading per image, can be used for predicting drug-resistant TB (DR-TB), and that 
automatic discrimination between DR-TB and drug-sensitive TB (DS-TB) is possible24. Another study has also 
demonstrated that the ML model they constructed showed that radiologist observations of CT are a promising 
predictive method for the treatment outcome of TB25. Deep learning and artificial intelligence (AI) are extensively 
being utilized in medical image processing to assign labels and annotations to features with the aim of aiding 
diagnosis and prognosis. Recently, AI methods have shown superior performance compared to radiologists 

Characteristics

Cure Failure

P valueN = 294 N = 135

 LDL 2.55 [2.17–3.04] 2.79 [2.38–3.31] 0.002

 Na 137 [134–139] 137 [134–139] 0.717

 K 4.04 [3.74–4.32] 4.09 [3.70–4.35] 0.862

 Ca2+ 2.17 [2.09–2.27] 2.20 [2.10–2.30] 0.219

 Cl 101 [98.3–105] 101 [97.7–104] 0.293

 GLU 8.80 [6.39–12.6] 8.95 [6.28–13.0] 0.899

 HbA1c 9.10 [7.73–11.1] 9.50 [7.75–11.7] 0.403

 CD4 378 [256–514] 393 [256–543] 0.719

 CD8 245 [158–353] 203 [151–332] 0.278

CT features

 Number of pulmonary lobes involved 0.002

  0 0 (0.00%) 1 (0.74%)

  1 10 (3.40%) 9 (6.67%)

  2 50 (17.0%) 21 (15.6%)

  3 56 (19.0%) 14 (10.4%)

  4 119 (40.5%) 43 (31.9%)

  5 59 (20.1%) 47 (34.8%)

 Small patchy shadow 223 (75.9%) 119 (88.1%) 0.005

 Small nodules 204 (69.4%) 116 (85.9%)  < 0.001

 Air bronchial sign 41 (13.9%) 28 (20.7%) 0.102

 Large segmented leafy shadow 181 (61.6%) 80 (59.3%) 0.728

 Thick-walled cavity 179 (60.9%) 90 (66.7%) 0.297

 Single cavity 91 (31.0%) 50 (37.0%) 0.256

 Multiple cavities 92 (31.3%) 43 (31.9%) 0.997

 Calcification 19 (6.46%) 20 (14.8%) 0.009

 Fibrosis 23 (7.82%) 14 (10.4%) 0.492

 Lymph node enlargement 54 (18.4%) 28 (20.7%) 0.654

 Pleural effusion 47 (16.0%) 18 (13.3%) 0.571

Table 1.   Baseline characteristics according to treatment outcome of TB.
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in distinguishing TB from non-TB using chest radiographs. However, it is important to note that radiologist 
evaluations of medical images are still considered the definitive benchmark for supporting the advancement of 
AI26. Clinically, distinguishing the treatment outcome of patients with TB based solely on CT images using an 
ML model is challenging, because CT images of TB are complicated. For instance, TB patients with different 
conditions exhibit multiple nodules, funicular foci, patchy dense shadows, cavities, and buds. So far, there has 
been no research reporting the prediction of deep learning based on CT images analysis model for the treatment 
outcome of pulmonary tuberculosis. Most radiomics studies based on CT with ML in TB focus on differentiating 
between TB and lung cancer, identifying active TB, or predicting multidrug resistance. Moreover, these studies 
share a common characteristic in that they typically model one feature of tuberculosis imaging, such as nodules 
or lung cavitation, without incorporating multiple features of tuberculosis imaging into the model. To strength 
our results, we applied all the full set of CT features into our optimal model, and comparison the optimal ML 
model and ML model plus the full set of CT features27–31.

Several limitations in our studies should be mentioned. Firstly, this study is a retrospective and single-center 
study, which is not a nationally representative. Therefore, the differences in other ethnic groups should be con-
sidered when applying our model to other populations. Secondly, there is no external validation of our models, 
which may restrict their applicability. Thus, further research in the future should be conducted to verify the 
generalizability of our findings. Thirdly, bacillary load in sputum is not routinely measured in our lab, which 
might influence treatment outcome. Fourth, compared to the conventional method, the ML model, XGBoost, 
showed the marginal improvement in AUC-ROC and lower sensitivity. The sample size in the current study 
was relatively small from a ML perspective, which might be partially responsible for the poor sensitivity of the 
prediction model.

Despite the above limitations, ML models have several advantages such as handling non-linearity and cap-
turing complex interactions among features, which may not be effectively captured by the conventional model. 
The use of ML does not inherently imply automatic superiority over traditional methods, despite literature that 
has demonstrated so32,33. The effectiveness of predictive models in ML hinges on both the quality of the data 

Table 2.   Model performance metrics. RF, random forest; SVM, Support Vector Machine; LR, Logistic 
regression; AUC, area under the curve.

Parameters XGBoost RF SVM LR

AUC​ 0.9281 0.9153 0.9277 0.9137

Accuracy 0.8438 0.8359 0.8047 0.8125

Kappa 0.6465 0.6308 0.5836 0.5802

Sensitivity 0.7111 0.9306 0.8000 0.6889

Specificity 0.9167 0.7111 0.8072 0.8795

Precision 0.8205 0.8523 0.6923 0.7561

Recall 0.7111 0.9306 0.8000 0.6889

F1 0.7619 0.8722 0.7423 0.7209

Figure 4.   ROC curves of the four models on the testing set.
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utilized and the meticulous execution of the analysis. Furthermore, the results of this present study do not nec-
essarily indicate that machine learning is completely superior to conventional statistics, but rather it highlights 
an inherent advantage of ML.

Conclusions
In our study, four ML approaches for treatment failure of TB-DM yielded high predictions with functional and 
actionable interpretations based on ERM data. Our model is thus valuable for treating and managing TB-DM 
in developing countries and provides new insights for the WHO End TB Strategy.

Figure 5.   Decision curve analyses of the four models. The horizontal line here shows patients with favorable of 
treatment outcome, and the gray oblique line indicates patients with unfavorable of treatment outcome.

Table 3.   The performance metrics of the comparison between the optimal ML model, conventional method 
and optimal ML model using all features.

Parameters XGBoost (Optimal ML) Conventional method XGBoost (69 features) XGBoost + CT features

AUC​ 0.9281 0.8632 0.8858 0.9048

Accuracy 0.8438 0.8368 0.8125 0.8047

Kappa 0.6465 0.6202 0.5667 0.5604

Sensitivity 0.7111 0.7333 0.6222 0.6667

Specificity 0.9167 0.8844 0.9157 0.8795

Precision 0.8205 0.7444 0.8000 0.7500

Recall 0.7111 0.7333 0.6222 0.6667

F1 0.7619 0.7388 0.7000 0.7059
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The datasets used and/or analyzed during the current study are not publicly available due to its proprietary 
nature, supporting data cannot be made openly available. But are available from the corresponding author on 
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