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Assessing heterogeneous 
groundwater 
systems: Geostatistical 
interpretation of well logging 
data for estimating essential 
hydrogeological parameters
Musaab A. A. Mohammed 1,2*, Yetzabbel G. Flores 1, Norbert P. Szabó 1 & Péter Szűcs 1

This research presents an unsupervised learning approach for interpreting well-log data to 
characterize the hydrostratigraphical units within the Quaternary aquifer system in  Debrecen area, 
Eastern Hungary. The study applied factor analysis (FA) to extract factor logs from spontaneous 
potential (SP), natural gamma ray (NGR), and resistivity (RS) logs and correlate it to the petrophysical 
and hydrogeological parameters of shale volume and hydraulic conductivity. This research indicated 
a significant exponential relationship between the shale volume and the scaled first factor derived 
through factor analysis. As a result, a universal FA-based equation for shale volume estimation is 
derived that shows a close agreement with the deterministic shale volume estimation. Furthermore, 
the first scaled factor is correlated to the decimal logarithm of hydraulic conductivity estimated with 
the Csókás method. Csókás method is modified from the Kozeny-Carman equation that continuously 
estimates the hydraulic conductivity. FA and Csókás method-based estimations showed high 
similarity with a correlation coefficient of 0.84. The use of factor analysis provided a new strategy 
for geophysical well-logs interpretation that bridges the gap between traditional and data-driven 
machine learning techniques. This approach is beneficial in characterizing heterogeneous aquifer 
systems for successful groundwater resource development.
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The characterization of heterogeneous groundwater aquifers is one of the challenges that requires the integration 
of advanced geological and geophysical techniques to address the inherent  complexities1,2. This spatial heteroge-
neity complicates the ability to accurately estimate parameters such as hydraulic conductivity and the contami-
nants  distribution3–6. Traditional geological and hydrogeological methods can provide valuable insights, but they 
often fall short of capturing the full lithological variability within the  aquifers7–9. On the other hand, Geophysical 
well logging offers a unique opportunity to attain a more comprehensive understanding of the aquifer system as it 
gives a continuous estimation of the aquifer  characteristics10–13. The petrophysical and hydraulic parameters can 
be obtained by analyzing well-logging data using deterministic and inverse  modeling14–17. However, formulating 
the mathematical problem that relates the hydrogeological parameters to the measured geophysical data is often 
complex and associated with a high  uncertainty18,19.

The challenging and ill-posed nature of the hydrogeophysical inverse problem has limited the application 
of inversion-based models to estimate hydrogeological  parameters20,21. One critical parameter in hydrogeology, 
hydraulic conductivity, presents particular difficulties due to its nonlinearity to other petrophysical and fluid 
properties, making its accurate prediction from geophysical data  problematic22,23. Consequently, groundwater 
researchers often resort to pumping  experiments24, which are costly and time-consuming to quantify hydraulic 
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 conductivity25. In this context, Csókás26 introduced an improved methodology for estimating hydraulic con-
ductivity in loosely consolidated hydrogeological units, exclusively relying on well-logging data. The successful 
application of this method necessitates the interpretation of geophysical logs sensitive to lithology and water 
 saturation27. The main advantage of well logging-based methods is their ability to give continuous profile esti-
mation for petrophysical and hydrogeological parameters crucial to simulating and understanding the hydro-
dynamic conditions of the heterogeneous groundwater  systems28,29.

Recent advancements in machine learning have opened up new possibilities for interpreting well-logging 
 data30–34. Unsupervised learning methods offer efficient insights into petrophysical and hydrogeological charac-
teristics. Among them, factor analysis, a powerful multivariate statistical approach, allows to reveal the complex 
interdependencies within well-logging  data35,36 and can be used to extract details from multidimensional datasets 
that are not immediately  observable37. Several works on using factor analysis for the interpretation of well logs 
data are reported in the  literature38,39. For instance, Li et al.40 applied factor analysis for the characterization of 
gas-bearing formation in Sichuan Basin, China, and proved its efficiency in formation evaluation compared to 
the other conventional methods. A study conducted by  Asfahani41 indicated the effectiveness of factor analysis 
for lithology identification.  Puskarczyk42 identified the finer-scale variation of the lithofacies in a shale formation 
within the Carpathian Basin using principal component analysis (PCA). The study indicated that PCA can be 
successfully employed in mapping the gas-saturated and sandstone-claystone formations.

Multivariate statistical and inverse modeling approaches are mainly applied for characterizing gas and oil 
reservoirs. While gas and oil reservoirs have been extensively investigated, the heterogeneous groundwater aqui-
fers present a more challenging environment due to their complex lithological  nature18. The primary objective of 
this study is to use the exploratory factor analysis integrated with the Csókás method for characterization of the 
Quaternary aquifer in the Debrecen area. The present research stands out for its innovative interpretation of the 
well-logging data that bridges the gap between conventional and unsupervised learning data-driven techniques.

Study area
Geography
The research site is situated around the Debrecen area, Eastern Hungary, encompassing approximately 650  km2 
(Fig. 1). It is integral to the Great Hungarian Plain (GHP) in which substantial variations in land elevation have 
transpired due to contemporary tectonic movements, erosion, and extensive sedimentation  processes43. The 
geological movements have notably influenced the topography in the study area, leading to an elevation ranging 
from 88 to 160 m above sea level (a.s.l). The region’s climate can be characterized as predominantly continental, 
with annual mean temperatures ranging from 10° to 11 °C. The annual precipitation varies from 550 to 600 mm, 
and potential evapotranspiration ranges between 600 and 700 mm/year44.

Figure 1.  Geographic map created with ArcGIS Desktop v. 10.845, showing the location of the study area within 
the Eastern part of Hungary.
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Geology
The research consists of diverse geological formations including Mesozoic basement rocks, Miocene deposits, 
Pannonian layers, and Quaternary Formation (Fig. 2). The Mesozoic rocks are composed of metamorphic and 
igneous rocks, and they are primarily associated with the Tisza Mega-Unit46,47. These rocks encompass a variety 
of rock types, such as granites, gabbros, and basalts, alongside schists and  phyllites48. The Miocene Formation 
is characterized by an assortment of sedimentary rocks, encompassing marl, sandstones, and  claystone49. The 
Pannonian sediments are classified into two distinct parts, namely the Lower and Upper  Pannonian47. During 
the early stages of the Lower Pannonian period, the initially deposited coarse-grained sandstone and coastal 
sandy conglomerates underwent lateral transformations into siltstone, known as the Algyő Formation. Simul-
taneously, there was the development of calcareous marl and limestone, referred to as the Endrőd  Formation49. 
Conversely, the Upper Pannonian era comprises a succession of sedimentary layers, encompassing sandy delta 
plain and delta front sediments, interspersed with alluvial siltstone, sandstone, clay, marl, and quartz pebbles. 
These particular deposits are observed within the Újfalu and Zagyva  formations50. The surface of the GHP pre-
dominantly consists of Quaternary deposits. These deposits encompass fluvial sediments, river sediments, and 
sandy loess. The thickness of Quaternary deposits in the research area varies from 80 to 150 m. These deposits 
are categorized into three segments: upper, middle, and lower Pleistocene  beds47. The lower and upper sections 
predominantly comprise river and overbank sediments, while the middle section predominantly encompasses 
coarse-grained fluviolacustrine  sediments51.

Hydrogeology
In the Great Hungarian Plain (GHP), five hydrostratigraphic units were identified based on their lithology and 
chronostratigraphy. These units are the Pre-Neogene impermeable layer, the Pre-Pannonian aquifer, the Endrőd 
confining layer, the Algyő confining layer, and the Nagyalföld water-bearing  stratum49. The Nagyalföld Aquifer, 
which encompasses the Újfalu and Zagyva Formations along with Quaternary sediments, has been recognized 
as the main aquifer with a permeability exceeding 1000  mD49,53.

Recently, Flores et al.44 conducted an extensive regional-level hydrostratigraphical investigation, concen-
trating on the upper section of the Nagyalföld aquifer. Their findings revealed that the key hydrostratigraphic 
components in their study encompass the Pre-Quaternary and Quaternary sequences (Fig. 3). The Pre-Qua-
ternary sequence of the Late Miocene is distinguished by substantial layers of silt with occasional intercalated 
fine sand. In contrast, the Quaternary sequence is characterized by three hydrostratigraphic divisions, ordered 
from older to younger. The first is an incised valley unit, described as an elongated body of sand and gravel with 
minimal clay content. Above it, the alluvial unit is depicted as a succession of three consecutive sand bodies 
with significant horizontal variability and deposits of silty clay. Finally, the coarsening upward unit is described 
as a sequence displaying pronounced heterogeneity, featuring clay, silt, and sand bodies. The observations have 
unveiled the existence of two distinct hydraulic systems in the study area. In the upper system, groundwater flow 
is predominantly governed by gravitational forces, while the lower system experiences  overpressure10. Hydraulic 
interaction between these two systems frequently occurs, particularly in areas where low-permeability layers 
exert outward  pressure52.

Figure 2.  Geological cross-section showing the main lithological formations in the study area modified after 
Juhász52 and Tóth and Almási49.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7314  | https://doi.org/10.1038/s41598-024-57435-x

www.nature.com/scientificreports/

Materials and methods
This study used geophysical well logging data to identify and characterize groundwater aquifers in the Eastern 
Hungary region surrounding Debrecen. In this work, the aquifer geometry and the petrophysical and hydro-
geological parameters of the Quaternary aquifers in the study region are defined utilizing data collected from 
twenty-four (24) boreholes. This study employed three well logs including spontaneous potential (SP), natural 
gamma ray (NGR), and deep normal resistivity (RS), and analyzed using Csókás method and factor analysis.

Csókás approach
Csókás26 model is used for estimating hydraulic conductivity from the well logs data. This method can be seen 
as an empirically refined version of the equations proposed by  Kozeny54 and  Carman55. The Kozeny-Carman 
equation takes into account several key parameters, such as the density of water (ρw), viscosity (μ), porosity (φ), 
the dominant grain size of the aquifer materials (d), and the acceleration due to gravity (g). The Kozeny-Carman-
based hydraulic conductivity  (KKC) can be estimated using Eq. (1).

Csókás approach proves to be particularly applicable in situations involving lossy geological formations. This 
suitability is established through an empirical connection between the effective grain size of water-saturated sedi-
ments  (d10) and the formation factor (F = R0Rw  ) (Eq. 2).  Alger56 investigation revealed that, apart from the porosity 
( ϕ ), the resistivity of water ( Rw ) also exerts an influence on the formation factor. In this research, the effective 
porosity is estimated using Eq. (3)57, considering the shale volume ( Vsh ) present in the geological formation. 
The shale volume however, is estimated using  Larianov58 equation (Eqs. 4 and 5). Consequently, the hydraulic 
conductivity (K, m/s), calculated using the Csókás method can be determined using Eq. (6).

where ϕe is the effective porosity, Iγ is the gamma-ray intensity, which is calculated using a linear formula that 
uses the gamma-ray response of the log (GRlog) , minimum (GRmin) and the maximum (GRmax) gamma-ray.  Ck 
is the proportionality constant and has the value 855.7 * 5.22 *  10–4.
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Figure 3.  The main hydrostratigraphical units within the Nagyalföld aquifer, modified after Flores et al.44.
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Exploratory factor analysis (FA)
Factor analysis is an unsupervised machine learning method that facilitates the reduction of complex datasets into 
a more manageable set of factors. In this study, factor analysis was employed to extract factor logs representing 
the largest portions of variance within the dataset from the analysis of the available well logs of SP, NGR, and 
 RS59. These factor logs are then linked to shale volume estimated using the  Larionov58 equation and hydraulic 
conductivity determined by the Csókás26 method. The correlation of factor logs with these parameters aids in 
developing site-specific equations that facilitate direct connections between the factor log and aquifer parameters 
that can be used as alternatives to the existing methods.

During the initial stages, standardization of well logs was necessary, given the use of different probes and, 
consequently, varying measurement units (Eq. 7), followed by the integration of data into a matrix (D) (Eq. 8), 
and the application of a factor analysis model (Eq. 9).

In this context, D̂il represents the scaled data for the n-th observation within the l-th well log. Dl corresponds 
to the average value of the unprocessed data from the l-th well log, where L is the total number of borehole geo-
physical tools, and N is the count of measuring points in the specified depth range. F is the factor score matrix 
of dimensions N by M, where M is the number of extracted factors, W is the factor loading matrix of dimensions 
L by M. E is the matrix of residuals with dimensions N by L, and T represents the matrix transpose operator.

The primary factor explains the majority of the variation in the dataset, while the subsequent factors con-
tribute to a relatively smaller portion of the variance. The factor loading matrix, which measures the degree of 
association between the factors and the actual data, offers precise weights for each data category. Because the 
factors are statistically uncorrelated, the correlation matrix of the observed data can be indicated using Eq. (10) as

In this context, Ψ represents a diagonal matrix containing specific variances. When Ψ takes on a value of 0, 
the issue can be resolved through the solution of an eigenvalue problem. If Ψ differs from 0, the factor scores are 
determined using the maximum likelihood method, and the subsequent objective function is then optimized to 
simultaneously estimate both L and Ψ60 (Eq. 11).

Factor loadings are usually subjected to an orthogonal transformation to enhance the interpretability of fac-
tors, as proposed by Ref.37. In this study, factor rotation was carried out using the varimax technique, following 
 Kaiser61 approach. Factor scores can be derived by applying a linear approach with the assumption of  linearity62 
(Eq. 12).

The  Pearson63 (R) and  Spearman64 (ρ) correlation coefficients are utilized to assess the relationships between 
the extracted factor logs, well logs, and petrophysical and hydrogeological parameters. Pearson correlation coef-
ficient evaluates the strength and direction of the linear relationship between the continuous variables while 
Spearman rank correlation coefficient measures the strength and direction of the monotonic relationship. Both 
coefficients range from − 1 to 1, with 1 indicating a perfect positive relationship, 0 indicating no relationship, and 
− 1 indicating a perfect negative relationship. These coefficients provided simple sensitivity analysis to evaluate 
the associations between well logs and the extracted factor logs.

Results
This research introduces factor analysis for the interpretation of well logs for estimation of shale volume  (Vsh), 
effective porosity ( ϕe ), and hydraulic conductivity (K) of the Quaternary aquifers in the Debrecen area. The data is 
analyzed in 1D along the boreholes, and the obtained results are interpolated in 2D along a profile. The distribu-
tion of the borehole along the profile is illustrated in Fig. 4, with the stratigraphic bounding surfaces described by 
Flores et al.44. These surfaces are created with the geometrical convergence  interpolation65 of the identified well 
tops following the sequence stratigraphical  principles66. The hydrostratigraphic units in the area from the bot-
tom to top are the Late Miocene, incised valley, alluvial, and coarsening upward units (Fig. 4). The Late Miocene 
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unit is characterized by low occurrence of silty sand lithologies embedded in thick silty clay sequences while the 
incised valley unit is dominated by a thick sequence of gravel and sand deposits. Over them, the alluvial unit is 
characterized by the occurrence of two sandy channel deposits, embedded into a thick clayed floodplain deposit. 
The coarsening upward unit is characterized by coarsening upward facies that are made up of a successive inter-
calation between clay, silt, and sand. Several aquifer units are developed within these hydrostratigraphical units 
with the incised valley deposits hosting the main aquifer in the study  area51.

FA-based shale volume
The well logging data comprises a total of 34,328 data points along 24 boreholes and is divided into two parts in 
which 60% of the data is used for correlation and 40% of the data for testing the resulting relationship. The first 
factor explained 81.7% of the total variance, indicating its robust representation of underlying features in the 
dataset. A higher positive loading is given to NGR (0.70) and medium negative loading to RS (− 0.57).

The scores of the first factor of the 60% of the data are correlated to shale volume estimated from the Larionov 
equation and yielded a strong exponential relationship with a Spearman correlation coefficient of 0.91 (Fig. 5a). 
This relationship underscores the importance of the first factor as a powerful proxy for shale  volume59. Accord-
ingly, a site-specific equation is obtained that linked shale volume  (Vsh) to the scaled first factor  (F1) and written as

Figure 4.  2D geophysical profile showing the pattern of the SP, GR, and SP logs and the distribution of the 
main hydrostratigraphical units in the study area.

Figure 5.  (a) The relationship between the scaled first factor and shale volume and (b) the correlation between 
the factor analysis-based and Larionov shale volume.
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where a and b are site-specific constants from the local regression that is given with 95% confidence. The average 
values of a = 0.0153 [0.0067, 0.281] and b = 4.2276 [3.736, 5.2244]. To evaluate the practical utility of the relation-
ship between the first factor and shale volume, 40% of the data is used. Accordingly, the correlation between 
shale volume obtained from factor analysis and  Larionov58 method is illustrated in Fig. 5b. The promising results 
obtained from this validation process, where the correlation coefficient reached 0.90, underscores the applicability 
of the factor analysis-based shale volume estimation.

Based on the obtained relationships, the FA-based shale volume is estimated in 1D (Fig. 6) and 2D along the 
profile (Fig. 7). The 2D spatial variation of the  Larionov58 equation-based shale volume (Fig. 7a) is compared 
to FA-shale volume (Fig. 7b). The comparison between the two approaches showed a close agreement. The 
descriptive statistics of the FA-based shale volume are illustrated in Fig. 8. The shale volume values are then 
compared to lithofacies proportion calculations based on the analysis of the well-logs data assuming 2 m layer 
thickness (Fig. 9). The FA-based shale volume of the coarsening upward unit exhibited significant variability, 
ranging from 0.05 to 50%, with a mean value of 20%. The lithofacies proportion (Fig. 9a) indicated that this unit 
consists of 37.7% clay, 42.5% silt, and 19.8% sand. The alluvial unit displayed almost similar variability in shale 
volume, ranging from 0.07 to 72%, with a mean of 34%. This unit consists of 41.9% clay, 26.9% silt, and 3.2% 
sand (Fig. 9b). The valley incision unit exhibited a relatively uniform distribution of shale volume, varying from 
almost zero (0.5%) to 9%. Consequently, the facies analysis indicated that this unit is composed of 78.7% sand 
(Fig. 9c). The Late Miocene unit displayed shale volume variations from 0.05 to 77%, with a mean value of 26%. 
This unit is dominated by clay and silt layers that make up more than 80% of the unit (Fig. 9d).

Effective porosity
The effective porosity is essential for assessing the rate of groundwater flow within the  aquifer67. In this study, 
the FA-based shale volume is substituted into  Schlumberger57 formula for a more practical estimation of effec-
tive porosity. The obtained parameters from the FA approach are compared to those of conventional approaches 
and showed a close agreement with a 0.93 correlation coefficient (Fig. 10). Figure 11 shows the 2D interpolation 
of the effective porosity obtained from the empirical method (Fig. 11a) and factor analysis (Fig. 11b), in which 
a close agreement between the two approaches is indicated. As a result, the obtained effective porosity for the 
hydrostratigraphical units is illustrated using a Box plot (Fig. 12). The effective porosity of the coarsening upward 
unit exhibited notable variability, ranging from nearly impermeable conditions at 0.005% to highly permeable 
conditions at 47%, with an average of 18%. The effective porosity of the alluvial unit displayed a similar pat-
tern ranging from 0.004 to 44%. The valley incision unit demonstrated a more uniform distribution of effective 
porosity, varying from 16 to 33%, with a mean of 25% while the Late Miocene unit exhibited effective porosity 
values ranging from almost zero to 50%, with a mean of 16%.

Hydraulic conductivity
In the sedimentary clastic formations, the hydraulic conductivity and the amount of shale are generally inversely 
 correlated68. In this research, the hydraulic conductivity values obtained from the Csókás method are correlated 

Vsh = aebF1 ,

Figure 6.  1D analysis and interpretation of the well logs data in borehole B1 showing the estimated 
petrophysical and hydrogeological using conventional and factor analysis methods.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7314  | https://doi.org/10.1038/s41598-024-57435-x

www.nature.com/scientificreports/

to the first factor. Accordingly, a strong negative nonlinear relationship with a correlation coefficient of − 0.84 is 
 detected69 (Fig. 13a) that takes the following form,

where a, b, c, and d represent site-specific regression coefficients. These coefficients showed values of 19.2, 4.27, 
0.2, and – 19, respectively. The correlation between the hydraulic conductivity of the factor analysis and the 
Csókás method is shown in Fig. 13b, in which a close agreement (R = 0.88) is indicated. Accordingly, the hydraulic 
conductivity is mapped into 2D to reveal the vertical and horizontal variation (Fig. 14). The descriptive statistics 
of the FA-based hydraulic conductivity are illustrated in Fig. 15. The hydraulic conductivity of the coarsening 
upward unit ranged from nearly impermeable conditions at 0.005 m/d to more conductive zones with values 
of up to 2.3 m/d. The mean hydraulic conductivity for this unit was approximately 0.5 m/d. In the alluvial unit, 

log(K) = a
(

1− Fb1

)c
+ d,

Figure 7.  The estimated shale volume along the profile based on the (a) Larionov equation and (b) factor 
analysis.
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it varied from 0.004 to 0.7 m/d. Notably, the valley incision unit demonstrated a more uniform distribution of 
hydraulic conductivity, with values ranging from 0.05 to 3.6 m/d and a mean value of approximately 1.3 m/d. 
The Late Miocene unit exhibited hydraulic conductivity values ranging from almost zero to 0.8 m/d, averaging 
approximately 0.01 m/d.

Discussion
Factor analysis allowed the extraction of factor log that captured a significant portion of the data variance. Simple 
sensitivity analysis is conducted using Pearson and Spearman correlation coefficients (Fig. 16). These coefficients 
assist in understanding the relationship between well logs and the resulting factor logs and identifying which 
logs have the most significant impact on the outcome. The Pearson correlation coefficients, assuming linearity, 
displayed values of 0.43, 0.90, − 0.92, 0.81, − 0.67, and 0.38 between the extracted first factor and SP, NGR, RS, 
shale volume, effective porosity, and hydraulic conductivity, respectively (Fig. 16a). On the other hand, the Spear-
man rank correlation coefficients revealed stronger associations (0.41, 0.91, − 0.89, 0.91, − 0.75, and − 0.84). GR 
and RS logs exhibited higher correlations with the first factor because these logs are primarily sensitive to clay 
content, serving as indicators of lithological  variation70. On the other hand, the SP log showed a lesser correlation 
with the extracted factor indicating its lower influence on the resulting factor log. This observation aligns with 
the initial hypothesis and underlines the dominant role of lithological characteristics in shaping the variability 
captured by the first-factor log.

Accordingly, the analysis of well-log data provided crucial implications for understanding the aquifer system 
in the study area. For instance, the variability in shale volume across the hydrostratigraphical units underscored 

Figure 8.  Box plot showing the statistical summary of the shale volume for the main hydrostratigraphical unit.

Figure 9.  The estimated facies proportion for (a) coarsening upward, (b) alluvial unit, (c) valley incision, and 
(d) Late Miocene unit.
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the horizontal and vertical heterogeneity of subsurface  geology49,71. The broad range of the estimated parameters 
depicted the heterogeneous nature of coarsening upward, alluvial, and Late Miocene units in which highly per-
meable materials coexisted within the less permeable  zones43. The presence of low permeability shaly layers can 
act as barriers to flow, influencing the direction and velocity of groundwater movement. In contrast, the highly 
permeable sandy and gravely layers can facilitate rapid groundwater flow, potentially serving as potential aqui-
fer  zones44. The incised valley deposits, on the other hand, showed a more uniform distribution for the aquifer 
parameters with lower shale volume and higher effective porosity and hydraulic conductivity. The uniformity of 
this unit suggests a relative homogeneity, making it a potentially promising groundwater  source44,72.

Factor analysis has proven to be a successful method for characterizing the main hydrostratigraphical units in 
the Debrecen area, considering the limited number of available well logs which is a notable limitation in recent 
investigations. Given this constraint, factor analysis emerged as a suitable method for the estimation of key petro-
physical and hydrogeological parameters and facilitating the characterization of groundwater  systems38. However, 
in the petroleum industry, where more comprehensive reservoir characterization is required, more sophisticated 
machine learning methods such as neural networks are commonly  employed73,74. These methods offer high 
accuracy and flexibility in handling complex relationships between well-log data and target  parameters75. How-
ever, they require larger datasets and computational resources for training and optimization. The factor analysis 
approach demonstrated a higher generalization ability in which the obtained practical equations can be safely 
used for estimating the characteristics of the clastic heterogeneous aquifers, especially within the Pannonian 
Basin. The shared geological history and lithological composition of these aquifers suggest favorable conditions 
for employing this factor analysis-based approach, However, slight fluctuations in the regression coefficient are 
expected due to the variation in saturation and degree of  cementation76.

Conclusion
The main aim of this research is to detect the vertical and horizontal distribution of the petrophysical and 
hydrogeological parameters within the main hydrostratigraphical units of the Quaternary system. This research 
demonstrated the potential of factor analysis in redefining the interpretation of well-log data. The conclusions 
of this research can be summarized as follows:

• The first factor extracted from the data matrix containing SP, NGR, and RS logs explained 81.7% of the data 
variance that showed a solid exponential relationship with the shale volume determined by the Larionov 
equation. This relation allowed the development of a universal equation that can be used independently for 
shale volume estimation. The shale volume estimated using this practical equation closely agrees with the 
deterministic approach.

• Based on the FA-based shale volume, the effective porosity is estimated and showed a close agreement with 
that of the deterministic approach. Moreover, a nonlinear relationship is obtained between the first scaled 
factor and the hydraulic conductivity. The FA-based hydraulic conductivity estimation revealed a significant 
correlation with the Csókás-based hydraulic conductivity, showing high variations within the hydrostrati-
graphical units. However, the distribution of hydraulic conductivity within the valley incision unit showed 
a more uniform pattern, making this unit a promising groundwater aquifer.

Figure 10.  The correlation between the effective porosity using conventional methods and factor analysis.
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• The proposed methodology demonstrated potential for characterizing heterogeneous aquifer systems, and 
the findings can be directly applied to aquifers within the transboundary Pannonian Basin and other regions 
sharing similar geological and hydrogeological characteristics.

Figure 11.  The estimated effective porosity along the profile based on the (a) empirical method and (b) factor 
analysis.
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Figure 12.  Box plot showing the statistical summary of the calculated effective porosity for the main 
hydrostratigraphical unit.

Figure 13.  (a) The relationship between the scaled first factor and hydraulic conductivity and (b) the 
correlation between the factor analysis-based and Csókás method shale hydraulic conductivity.
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Figure 14.  The calculated hydraulic conductivity along the profile based on the (a) Csókás method and (b) 
factor analysis.
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Data availability
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for the current study, and so are not publicly available. Data are however available from the corresponding 
author (Musaab A. A. Mohammed) upon reasonable request and with permission of Supervisory Authority for 
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