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An event‑oriented 
diffusion‑refinement method 
for sparse events completion
Bo Zhang 1, Yuqi Han 1, Jinli Suo 1,2,3* & Qionghai Dai 1,2

Event cameras or dynamic vision sensors (DVS) record asynchronous response to brightness changes 
instead of conventional intensity frames, and feature ultra‑high sensitivity at low bandwidth. The 
new mechanism demonstrates great advantages in challenging scenarios with fast motion and large 
dynamic range. However, the recorded events might be highly sparse due to either limited hardware 
bandwidth or extreme photon starvation in harsh environments. To unlock the full potential of event 
cameras, we propose an inventive event sequence completion approach conforming to the unique 
characteristics of event data in both the processing stage and the output form. Specifically, we treat 
event streams as 3D event clouds in the spatiotemporal domain, develop a diffusion‑based generative 
model to generate dense clouds in a coarse‑to‑fine manner, and recover exact timestamps to 
maintain the temporal resolution of raw data successfully. To validate the effectiveness of our method 
comprehensively, we perform extensive experiments on three widely used public datasets with 
different spatial resolutions, and additionally collect a novel event dataset covering diverse scenarios 
with highly dynamic motions and under harsh illumination. Besides generating high‑quality dense 
events, our method can benefit downstream applications such as object classification and intensity 
frame reconstruction.

As a novel bio-inspired sensor, event cameras work in a different way from conventional intensity cameras via 
sensing asynchronous pixel-wise brightness changes. The working principle renders the sensor unique character-
istics such as high sensitivity, low latency and high temporal resolution, which provide reliable visual information 
and wide applications in extreme environments, e.g. fast  avoidance1, low-light/high dynamic range  perception2 
and high-speed  imaging3,4 etc. However, such features are traded with spatial and temporal sparsity in the data 
stream. Firstly, only brightness changes exceeding a threshold can be recorded, and the outputs mostly locate 
salient moving edges and patterns. Although this issue can be alleviated by raising the sensitivity level but would 
bring more noise, imposing great challenges to the successive processing and analysis. Secondly, the readout 
speed may be limited by the hardware’s bandwidth (e.g. drone, PC etc.) even if the camera itself works in the 
full-capacity mode and causes missing entries in the data stream, which is especially severe in high-resolution 
and busy scenes. The above issues would degenerate or even fail many off-the-shelf event analysis algorithms 
working well on event streams in ordinary scenarios. To fully utilize the advantages of event cameras in challeng-
ing cases (e.g. low-light, high-speed), recovering the missing signals from the sparsely recorded event streams 
is of crucial importance, but remains an under-explored area.

In analog to other event quality enhancement tasks, such as super-resolution5–8, joint denoising and super-
resolution85, one can convert raw events into 2D grid-based representation for algorithm development. This 
intuitive solution facilitates adapting the algorithms working on conventional image/video frames, but faces 
limitations in multiple aspects: assigning no or random timestamps to the output events would lose the temporal 
ordering information; the output event frames are non-binary, which deviates from the format of event data; the 
grid-based representation includes large proportion of event-free elements and thus the successive algorithms 
are storage demanding; such mismatch between the representation and the intrinsic structure might further lead 
to artificial results in recovered event streams and even harm the downstream analysis. In comparison, Li et al.7 
proposed an inspiring strategy to super-resolve the events while maintaining the temporal information. However, 
the temporal precision is limited to milliseconds when using spiking neural network (SNN) for simulation, and 
far insufficient for microsecond responses of event cameras. An efficient algorithm making extensive use of the 
unique structure of event sequence and conforming to its format is highly demanded.
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Event sequence can be formulated as a binary 3D data given a time duration (shown in the left of Fig. 1), with 
a four-element tuple (x, y, t, p) denoting the location, time instant and polarity of each event. In other words, 
the event occurrences compose a cloud, similar to the point cloud in 3D vision. Built on this representation, we 
propose an event data completion method based on the powerful generative discrete diffusion probabilistic model 
(DDPM), and develop an event-oriented deep network as the cornerstone. Our method works in a coarse-to-fine 
manner that firstly predicts a coarse distribution on the condition of sparse event sequences and then refines 
the generated events with the conditional input with a second sub-network. The final output of the network is a 
completed set of 3D events that can be transformed back to sequential format without losing temporal ordering 
information (middle column, Fig. 1). To validate our effectiveness in diverse scenarios, we collect a new dataset 
consisting of diverse challenging scenes and conduct experiments on it together with three public datasets with 
different spatial resolutions. Furthermore, we also show that our method can benefit downstream applications, 
including object classification and frame reconstruction.

In sum, this paper contributes in the following aspects:

• We propose to process a raw event sequence as an event cloud and recover the dense event signals underlying 
the recorded sparse event streams via a diffusion-based generative model.

• We develop an event-oriented network as the cornerstone of the diffusion model, which outputs complete 
dense events with better visual quality while maintaining temporal ordering information.

• We validate the advantageous performance of our approach and its wide applicability to diverse scenes on 
three public datasets with different resolutions, and show our superior performance on real challenging cases 
with a self-captured dataset.

• We conduct two downstream tasks using the completed events, i.e. object classification and intensity frame 
reconstruction, and obtain satisfying results, demonstrating the wide applications of our method.

Problem statement
Event formation
Let I(qk , tk) denote the brightness at pixel qk = (xk , yk)

T and time tk . As an asynchronous sensor, an event camera 
senses pixel-wise illuminance changes, with each pixel independently responding to the change in the logarithmic 
brightness L(qk , tk) = log(I(qk , tk)) . Specifically, an event occurs when the brightness change since the last event 
at this location reaches a threshold ±C(C > 0)

where �tk is the time since the last event at q . An event sequence can be represented as a set of four-element 
tuples ε(tN ) = {ek}Nk=1 = {(tk , xk , yk , pk)}Nk=1 with microsecond resolution where pk is a binary value (1 or − 1) 
indicating the sign of the change in brightness.

Event completion formulation
Sparsity is the intrinsic characteristic of event data, while too sparse events contain limited information for any 
application. The event completion task arises when event cameras capture insufficient events in challenging envi-
ronments such as high-speed and dark scenarios, especially for a large-pixel-number sensor which would also 
encounter extreme spatial sparsity. In Eq. (1), the threshold C is corresponding to the reciprocal of the sensitivity 
S of the sensor. Physically raising S (smaller C) can raise the density of the sensed events but also induces more 
noise, which is a fundamental trade-off for event camera.

(1)|L(qk , tk)− L(qk , tk −�tk)| ≥ C,

Figure 1.  An exemplar demonstration of our event completion performance, in terms of 3D spatiotemporal 
cloud (upper) and accumulated 2D image (lower). left: the sub-sampled sparse sequence consisting of 128 
events; middle: the completed counterpart; right: the ground truth. Green and red indicate positive and negative 
events respectively.
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For this task, suppose eL and eH denote the events captured with SL and SH for the same scene, where SL < SH 
from the latent clean dense events eCD

 where C is the capture process of the sensor and δ denotes the camera settings except sensitivity. As analyzed 
above, eL contains clean but sparse events while eH contains dense but noisy events. Both of them are imperfect 
for direct observation or downstream applications. The objective of enhancing event quality is to recover clean 
dense events eCD from either of these captured degraded inputs, i.e. eL or eH . Event denoising task is defined as 
recovering eCD from eH . Similarly, event completion task can be defined as the recovery of eCD from the clean 
sparse observation eL

where F denotes the reconstruction algorithm and θ represents its parameters. For most of the time, the paired 
eCD and eL cannot be acquired simultaneously, so we use a random sampling strategy to simulate sparse events 
from real dense events. Given a complete event set eCD , the task is to reconstruct eCD from the down-sampled 
event set S (eCD) . Therefore, Eq. (4) turns into

Related work
Event representation and quality enhancement
Event representation
Event signals have been proven to provide auxiliary help in video deblurring and frame  interpolation9–14, image 
reconstruction and super-resolution8,15,16, and downstream applications such as object  recognition17–19 and 
 detection20,21. With the rapid development of deep learning, various event representations such as  HFirst22, event 
 frame23, event  histograms24, event-based time  surfaces25, event spike  tensor26 and event  volume27 etc have been 
extensively used in deep networks. Many network  architectures28–32 that embed event streams for either image 
restoration or pattern recognition have also been proposed. Among these methods, temporal ordering plays an 
important role in the effective representation and can influence the performance of downstream  applications33–35.

Event quality enhancement
Raw event signals suffer from severe noise and spatio-temporal sparsity, which challenges the visualization, 
analysis and downstream applications. If the camera operates in extreme cases, the quality will dramatically 
decrease further. To address the heavy noise, a number of methods have been proposed to denoise raw event 
 sequences36–42. Other researchers attempt to super-resolve the raw events by enhancing the spatial  resolution5–8. 
Considering the noise would hamper super-resolution, Duan et al.5 proposed a deep-learning method to jointly 
denoise and super-resolve neuromorphic events using an encoder–decoder network, which takes the temporally 
binned events as input and allocate random timestamps to the output high-resolution events. Such irreversible 
practice will lose temporal ordering information in the output and may harm downstream applications. As the 
first attempt to super-resolve events while keeping timestamps, Li et al.6 proposed a two-stage scheme that first 
acquires spatial event-count map and temporal rate function, and then obtains the event of each new pixel with 
a thinning based event sampling algorithm. Further, Li et al.7 proposed a spatio-temporal constraint learning 
method that optimizes the spatial and temporal event distribution based on SNN model and a simple three-layer 
CNN. This method achieves pleasant visual quality but requires sufficient events in the sparse input to learn the 
spatio-temporal distribution and is limited in millisecond resolution due to the numerical simulation of  SNN43. 
Therefore, an event-to-event recovery method maintaining spatial distribution and sharp details, high temporal 
resolution and ordering information is highly desired.

Point cloud completion
With the maturity of 3D sensors, point clouds have become an important form of modeling 3D scenes. A high 
quality point cloud is essential for downstream tasks and significant progress has been made in generating a 
complete point cloud from a degraded input. In the past decades, many algorithms have been proposed by using 
3D  CNNs44,45, graph  CNNs46,47,  transformer48. These methods learn a complete point cloud representation under 
direct supervision of ground truth data. In a distinct way, generative  models49–51 etc. learn a probabilistic distri-
bution as representation. As a new generative model, the denoising diffusion probabilistic model (DDPM)52,53 
decomposes the generation process into multiple steps by learning to steadily denoise the random input noise. 
Due to its powerful generation capability, diffusion model has been applied for point cloud  completion51,54,55 and 
achieved the state-of-the-art performance. As found in Ref.55, a conditional DDPM often generates high-quality 
complete point clouds that uniformly covers the shape of the target object. Inspired by DDPM’s advantageous 
performance and the high similarity between point cloud and event cloud, we introduce a conditional DDPM 
model with an event-oriented encoder-decoder network to generate a dense event sequence with fine details in 
a coarse-to-fine manner.

(2)eL = C (eCD , SL, δ),

(3)eH = C (eCD , SH , δ),

(4)êCD = F (eL, θ),

(5)êCD = F (S (eCD), θ).
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Revisiting conditional DDPM
The denoising diffusion probabilistic model consists of two processes—diffusion and reverse. In the diffusion 
process (the blue left-arrow in Fig. 2), Gaussian noise is added to the clean complete events step by step. In the 
reverse process (the blue right-arrow in Fig. 2), the noise is predicted by the proposed event diffusion network 
and clean complete events are gradually recovered from the degraded version gradually.

The diffusion process
Denoting the index of time steps as j, the Markov diffusion process from clean complete events e0 to eJ is defined 
as

where q(ej|ej−1) = N(ej;
√

1− βjej−1,βjI) , with the Gaussian noise values βj being pre-defined 
small positive constants.  Following53, let αj = 1− βj and ᾱj =

∏j
i=1 αi , the diffusion process 

q(ej|e0) = N(ej;
√

ᾱje0, (1− ᾱj)I) . When J is large enough, ᾱj approaches zero, and q(eJ |e0) gets close to the 
latent distribution which is a Gaussian prior. Then, ej can be sampled with the simplified equation

where ǫ is standard Gaussian noise.

The reverse process
The reverse process is also a Markov process in which the added noise is predicted and removed afterwards. 
Conditioned on the input sparse events c , the reverse from noisy eJ to clean events e0 is defined as

where pθ (ej−1|ej , c) = N(ej−1;µθ (ej , c, j), σ
2
j I) , with µθ (ej , c, j) and σ 2

j  denoting the predicted shape from 
our generative model and the variance, respectively. To generate a sample conditioned on sparse events c , we 
start from sampling xJ from a Gaussian distribution and then progressively sample xj−1 from pθ (xj−1|xj , c) for 
j = J , . . . , 1 , and finally obtain x0.

The training process
To simplify the training objective, we follow Ho  et al.53’s parameterization σ 2

j = 1−ᾱj−1

1−ᾱj
 and 

µθ (x
j , c, j) = 1√

αj
(xj − βj

1−
√

1−ᾱj
ǫθ (xj , c, j) , in which ǫθ is a neural network estimating noise from noisy point 

cloud xj , diffusion step j and the conditioner c . The objective reduces to

where U ([J]) is the uniform distribution over 1, . . . , J , ǫ is the added standard Gaussian noise. The neural network 
ǫθ can be reparameterized to predict the noise added to the clean event set e0 , which can be used to denoise the 
noisy event set: ej

√
ᾱe0 +

√

1− ᾱjǫ . During training we use l2 loss to penalize the difference between model’s 
output ǫθ (ej , c, j) and the true noise ǫ.

(6)q(e1, . . . , eJ ) = q(e0)

J
∏

j=1

q(ej|ej−1),

(7)ej =
√

ᾱje0 +
√

1− ᾱjǫ,

(8)pθ (e0, · · · , eJ−1) = p(eJ , c)

J
∏

j=1

pθ (ej−1|ej , c),

(9)LDiff(θ) = Ej∼U ([J]),ǫ∼N(0,1)�ǫ − ǫθ (ej , c, j)�2,

…… e0ejej+1eJ

( j | j+1)

( j+1 | j )

( J) ( 0)

Gaussian Noise Coarse Events Event Refinement Network Refined Events

Conditional Sparse Events

Ground Truth

Event Diffusion Network

Figure 2.  The overview of diffusion-based coarse-to-fine event completion pipeline. First, we use an event-
oriented network to generate coarse distributions of events based on conditional sparse events. Then, we use 
a second network to yield final completed dense events. Green and red indicate positive and negative events 
respectively.
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Methods
In this section, we introduce the event-oriented diffusion refinement (EDR) method, a conditional denoising 
diffusion probabilistic model for event completion, with the overview illustrated in Fig. 2 and the key modules 
described in the following subsections.

Event cloud representation
Raw event data takes the form of a sequence of four-element tuples with each event er = (x, y, t, p) , which are 
converted into binary points in the 3D coordinate system before being fed into the network for training or infer-
ence. Firstly, we cut the event streams sequentially into slices containing N events er = {eir; i = 0, . . . ,N} , ranked 
by timestamp. Then, the event slice is normalized by the sensor’s pixel count along the spatial dimension and by 
the time duration along the temporal dimension, i.e.

 where W and H denote the width and height of the sensor’s pixel array. So far, we can denote a sample e with 
N events whose x, y and t values are between −1 and 1. These processed events can be regarded as a set of event 
entries in the 3D coordinate system (similar to point cloud), as shown in Fig. 1. Besides, the polarity of each 
point is also attached as its feature. The network completing this set of events is built on this representation and 
the output conforms exactly to the same form, which can be converted back to the set of four-element tuples 
ordered by the timestamp.

Despite the high similarity with point cloud, the event cloud differs in multiple aspects. First of all, the 
t-dimension has different metric with spatial dimensions x- and y-, thus the event entries are unevenly distributed 
in the 3D space. Secondly, the normalized event points cannot form a 3D shape with smooth surfaces and have 
discontinuous and even scattered details instead. Besides, the events has its polarity information which is of spe-
cific meanings in physics. Therefore, we need to develop networks matching well with the unique representation.

Event diffusion‑refinement network
The network design
Considering the high similarity between event cloud and point cloud for shape representation, we make event-
oriented adaption to the point-version encoder–decoder network—PointNet++56 and use it as the backbone of 
two sub-networks, i.e. event diffusion network (EDN) and event refinement network (ERN) in Fig. 2, which com-
plete event clouds at coarse and fine scales respectively. The detailed architecture is shown in Fig. 3. The backbone 
is composed of three main modules: set abstraction (SA), feature propagation (FP) and feature transfer (FT). 
Specifically, SA module subsamples the input event points and propagates the input features. SA block consists 
of a grouping layer to query neighbors for each point, a set of shared multi-layer perceptrons (MLPs) to extract 
features, and a reduction layer to aggregate features within the neighbors. FP module consists of a PA-Deconv 

(10)xi =
(

xir
W − 1

− 0.5

)

× 2,

(11)yi =
(

yir
H − 1

− 0.5

)

× 2,

(12)ti =
(

tir − t0r
tNr − t0r

− 0.5

)

× 2,

(13)pi = (pir − 0.5)× 2,
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Figure 3.  The architecture of EDR network. The upper branch extracts features from the conditional input, 
which is absorbed into the lower branch to denoise the noisy input. The proposed event-inspired cuboid query 
is extensively used in the three main modules—event-oriented set abstraction, feature propagation and feature 
transfer.
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module to upsample the intermediate event cloud representation, a set of shared MLPs to process features, and 
an attention mechanism to aggregate features. FT module transmits the information from conditional cloud 
to denoise the noisy input, and also consists of a grouping layer, a shared MLP and an attention mechanism to 
extract and aggregate features from the condition. Besides, we embed the diffusion step in the SA and FP module.

As introduced in previous sections, we pre-process a set of events (x, y, t, p) by normalizing the first three 
elements which fall into the range of − 1 to 1 and treating the polarity (− 1 or 1) as a feature for each event point. 
DDPM firstly generates 3D Gaussian noise with a random polarity feature and during model training, the noise 
is gradually removed and the polarity is predicted as a feature for each generated point. The main structure is 
the same between EDN and ERN, but the diffusion step is not used in the ERN.

To match the metric difference between spatial and temporal dimension of the event cloud, we first propose 
to use a cube query instead of the ball query or KNN query, encouraging the network to aggregate the events in 
a cube rather than a ball. In this way, the aggregated events resemble the overall distribution of all events and 
the network is expected to learn a better representation. Further, we lengthen the cube query along t-dimension, 
as shown in Fig. 4, to let the network pay more attention to the temporally neighboring events than those along 
x- and y-dimensions, because temporally adjacent events are more informative for event completion.

The network learning
We use the proposed EDN to generate coarse complete events and ERN for refinement. The latter predicts the 
relative displacement and add it to the coarse events to obtain the refined version. We use the Chamfer Distance 
(CD) loss between the refined event set x and ground truth e to supervise the learning of ERN ǫf

where |x| denotes the number of events in x . As the generation process is slow, we adopt a fast sampling 
 algorithm57 to generate and save the coarse events in advance. This practice endures small performance drop 
compared with 1000-step generation but offers a 99.7% speedup.

Experiments
Datasets
To quantitatively evaluate our method and baseline methods, we perform extensive experiments on three public 
event datasets, i.e. N-MNIST58, Event Camera  Dataset59, 1Mpx Detection  Dataset34 at different spatial resolutions. 
We also collect a dataset to test the performance in diverse real challenging scenarios.

N‑MNIST
N-MNIST is an event version of MNIST dataset, which contains around 50,000 training samples and 10,000 test 
samples with 10 classes of digits, and the spatial resolution is 34× 34 . We use 1024 events as the ground-truth 
and 256/128 events as incomplete input.

Event camera dataset
Event Camera Dataset is composed of events captured in daily scenarios with 180× 240 resolution. To avoid 
repetitive scenes, we select 11 snippets (50,552 samples) for training and 7 (45,388 samples) for test  following7. 
Since the scenes are of complex structures and with rich semantic information, we use a 50% sampling rate to 
down-sample 8192-point ground-truth events to 4096 point sparse input.

(14)LCD(x, e)=
1

|x|
∑

x∈x
min
e∈e

�x − e�2+ 1

|e|
∑

e∈e
min
x∈x

�x − e�2,

Ball Query Cuboid Query

Figure 4.  The illustration of the original ball query (left) and the proposed cuboid query (right). Cuboid query 
consumes more events in the temporal dimension which is important for 3D event cloud representation. Green 
and red indicate positive and negative events respectively.
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1 Mpx detection dataset
1 Mpx Detection Dataset is captured in a driving environment with a 720× 1280 spatial resolution sensor and 
contains complex scenes. Since the original dataset is very large, we use 80,000 and 20,000 samples for training 
and test respectively. The sparse input contains 4096 points and the dense output 16,384 points.

Self‑captured dataset
To evaluate the methods in real challenging scenarios, we capture a new dataset using an iniVation DVXplorer 
with resolution 480× 640 , consisting of rich scenes including moving camera, highly dynamic objects, dim 
illumination etc. We include data with various challenges for training, and target to recover 16,384 events from 
down-sampled 4096 events during training. The training set contains 21,355 sample. We test on a continuous 
sequence of 4096 events to qualitatively validate the effectiveness of our approach in real scenarios.

Baselines and metrics
Since there is no published work for event completion to the best of our knowledge, we compare our approach 
with a couple of closely related methods, including event super-resolution algorithm—STCL7 and point cloud 
completion algorithms—PoinTr48 and  VRCNet50. STCL is originally proposed for event super-resolution and 
we modify its last layer to obtain output events with the same resolution as input. Besides, since STCL only has 
millisecond resolution, we set the simulation duration as 25 ms for 1 Mpx Detection Dataset and 50ms for other 
datasets. PoinTr and VRCNet are easier to be adapted for event completion. Considering that they cannot learn 
the polarity of event points, we assign the polarity for each entry in the completed event set according to its 
nearest neighbor in the input sparse events.

Since CD loss is sensitive to outliers and cannot reflect the overall distribution, we also use Earth Mover 
Distance (EMD) to evaluate the quality of the completed events. EMD loss penalizes the distribution discrep-
ancy between the predicted events x and the ground-truth version e , by optimizing a transportation problem. 
Specifically, it estimates a bijection φ : x ↔ e between x and e

Comparatively, EMD is more appropriate for measuring the distance between two distributions.
Despite the fact that CD and EMD are originally for measuring point cloud distances and currently, there is 

no perfect metric for event sequence as far as we know, both of them are able to measure the distance between 
3D event data (x, y, t) since raw 4-element tuple are already converted to 3D event points with 1/− 1 polarity 
feature after normalization. By definition, CD loss does not require two event sets to contain the same number 
of events and can measure data with any dimension number. Therefore, the use of CD for training is feasible in 
our method. As a supplement, we use EMD to penalize the overall distribution for 3D event points.

Implementation details
We learn our model in a coarse-to-fine manner. Firstly, we train the coarse network for 120 epochs for other three 
public datasets and 300 epochs for the self-captured one, with learning rate of 2e−4 using Adam optimizer. Since 
generating a sample with 1000 steps is too time-consuming, we adopt a fast sampling method—DPMSolver57 for 
acceleration and generate a sample after only 27 steps with slight performance degradation. Afterwards, we feed 
the generated coarse event clouds into the refinement network, which takes 30 epochs to converge. We empiri-
cally found the optimal t of the proposed cuboid query varies for different datasets. Let the bottom edge length 
be r, the optimal length of t dimension is 1r, 1r, 1.2r and 1.5r for the four datasets respectively.

Event completion results
Quantitative results
In Table 1, we report the CD and EMD loss of our method and baseline algorithms. Specifically for datasets, on 
the N-MNIST dataset, STCL leads to obviously higher scores of both CD and EMD metrics. PoinTr and VRCNet 
obtain lower CD losses while higher EMD losses than the proposed method. The reason may be that the event 
sequences in N-MNIST are in low spatial resolution (only 34× 34 pixels), and distributed more evenly in the 
temporal dimension than the other two complex high-resolution datasets. The resemblance between such data 
and conventional point cloud data leads to good performance for CD loss. Still, our proposed method can learn 
a better distribution according to EMD loss. On the Event Camera Dataset, STCL leads to an order higher CD 
loss than the other methods, indicating the completed events are coarse. Compared to the point-based PoinTr 
and VRCNet, the proposed method achieves lower CD loss and EMD loss. On the 1 Mpx Detection Dataset, our 
proposed method still produces the highest CD and EMD scores among all the algorithms.

STCL leads to higher CD and EMD compared to the point-based method. It is attributed to the fact that 
STCL is limited to millisecond resolution in SNN simulation, so cannot learn the latent structure of the events 
sparsely distributed in both spatial and temporal dimensions. Instead, it is more appropriate for recovering 
high-resolution event points from dense data. As modern point completion networks, PoinTr and VRCNet yield 
low CD losses on the three datasets, since they use CD loss for optimization. However, the EMD losses are very 
high, which indicates that it encounters difficulty in completing complex event data with high spatial resolution 
and sharp details. Still, we notice that our event-oriented method achieves the best EMD across all groups of 
experiments for all datasets and comparative CD loss to the second competitor, which validates the feasibility 
of the generative model in predicting missing events and demonstrates that event-specific modules can better 

(15)LEMD(x, e) = min
φ:x↔e

∑

x∈x
�x − φ(x)�2.
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represent the distribution of event data. In sum, the superiority of our method is attributed to both the genera-
tive nature and event-oriented modules.

Qualitative results
We visualize the completed event data by accumulating the completed events into 2D frames, as shown in 
Figs. 5, 6, 7 and 8. STCL leads to pleasant results for most cases, but it tends to generate occluded structures. 
In many situations, the predicted events densely gather at certain locations, losing the sharp thin structures. 
Although PoinTr and VRCNet obtain low CD loss, the visual results are unpleasant. The visualization indicates 
that PoinTr fails to learn the data shape or distribution for the whole event set, and instead, the adopted point-
wise loss misleads the completed points to adhere to the input sparse events. VRCNet learns coarse distribution 
but fails to recover sharp details. In comparison, our proposed model can recover details and sharp edges for all 
datasets. Especially on the self-captured dataset, as shown in Fig. 8, baseline methods fail to complete informa-
tive and sharp shapes, but our method achieves promising visual results in challenging high-speed and low-
illumination environments. For example, the legs of the tea table (captured by a DVS on a high-speed rotating 
stage), the contents and the frame of the painting (captured in a dim room) are all clearly reconstructed. Based 
on the platform for data collection, our method supports the completion of event data captured at a rotation 
speed of 360◦ /s and with an illuminance of 3 lux.

Ablation study
Firstly, we conduct an ablation study by replacing the event-oriented cuboid query with a ball query. The EMD 
loss rises by 0.71, 1.42, 11.55, 11.16 on N-MNIST (256), N-MNIST (128), Event Camera Dataset, and 1Mpx 
Detection Dataset, respectively although CD loss is similar, as shown in Table 1 indicated as Ablation 1. On 
the N-MNIST dataset, ball query leads to slightly lower CD loss but also higher EMD loss compared to the 
proposed cuboid query. The event sequences in N-MNIST are in low spatial resolution and distributed more 
evenly in the temporal dimension. These data are very much like conventional point clouds, usually 3D shapes 
with smooth surfaces. In such case, ball query can better represent and encode such easy evenly distributed data. 
However, cuboid query is more suitable for real challenging event datasets with complex scenes. It is also flexible 

Table 1.  Performance comparison between our method and baseline methods. CD loss indicates event-to-
event difference and is multiplied by 103 . EMD loss penalizes distribution discrepancy and is multiplied by 102. 
Bold denotes the best score.

      Methods      

          N-MNIST                    N-MNIST          
      Event 
Camera Dataset      

      1Mpx 
Detection 
Dataset      

1024-256 1024-128 8192-4096 16384-4096

CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓ CD↓ EMD↓

STCL7 14.06 17.34 18.05 18.20 55.71 27.19 13.71 24.09

PoinTr48 7.60 14.08 8.44 21.57 5.76 46.86 5.37 150.04

VRCNet50 7.26 16.99 7.42 17.28 4.33 22.39 3.49 27.90

Ablation 1 7.84 7.65 9.32 10.29 3.16 30.19 3.39 32.32

Ablation 2 10.59 7.10 11.66 10.66 6.14 24.13 3.74 26.93

Ours 7.99 6.94 9.20 8.87 3.58 18.64 3.33 19.19

STCL PoinTr OursSparse (256) GTVRCNet

(a)

STCL PoinTr OursSparse (128) GTVRCNet

(b)

Figure 5.  The event completion results on N-MNIST dataset from input with 256 events (a) and 128 events (b). 
STCL leads to too dense events which may lose local shape, e.g. ‘7’ in (b), while results of PoinTr and VRCNet 
tend to suffer from missing entries. Our method maintains both overall event completeness and local shape. 
Green and red indicate positive and negative events respectively.
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STCL PoinTrSparse input GTOursVRCNet

Figure 6.  The event completion results on examples from 1 Mpx Detection Dataset. STCL leads to completed 
events that tend to gather around certain positions. The results of PoinTr are too sparse, while VRCNet can only 
learn coarse distribution. In comparison, our method can recover dense events while maintaining sharp details. 
Green and red indicate positive and negative events respectively.

STCL PoinTrSparse input GTOursVRCNet

Figure 7.  Visual illustration of event completion results and the reconstructed intensity frames on two 
examples from Event Camera Dataset. STCL still tends to generate unevenly distributed events gathering 
together, and STCL and PoinTr are inclined to generate coarse structures and lose details. Our method is free of 
such artifacts. Intensity frame reconstruction results also validate the superiority of our method. Green and red 
indicate positive and negative events respectively.
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for various datasets, since the t-dimension length of the cuboid query can be adjusted according to data. The 
results quantitatively validate the contribution of event-oriented cuboid query for effective event representation.

Secondly, to validate the importance of refinement network, we conduct an ablation study by removing the 
ERN and comparing the results. We summarize the results in Table 1, indicated as Ablation 2. The results tell 
removing the ERN leads to higher CD and EMD losses on all three datasets compared to the full EDR model, 
which demonstrates the necessity of the refining process.

Downstream applications
To further demonstrate the benefits brought by our event completion method with precise timestamps for the 
downstream tasks, we conduct two downstream experiments—object classification and intensity frame recon-
struction, on the completed event streams.

Object classification
We test the completed results of N-MNIST for digit classification. We train an object classification network for 
event  data26 using complete dense events, and test on the generated events by all methods. The results are shown 
in Table 2. The 1024-event dense cloud achieves 99.1% accuracy on the test set. For the 256-event setting, three 
methods achieve over 90% accuracy except for VRCNet. STCL obtains 96.7% accuracy, while our model leads 
to 96.0% accuracy. When the number of input points decreases to 128, the accuracy of PoinTr declines dramati-
cally, while the other two still result in over 90% accuracy. The coarse prediction of both shape and polarity 
induces low classification accuracy in the 128-point case. VRCNet leads to the lowest accuracy in both settings. 
In comparison, our method can regress the polarity of each generated event point and high-fidelity shape, which 
assures the accuracy of this task. Compared to STCL, our method is more robust to the sparsity of input events.

Intensity frame reconstruction
We reconstruct intensity frames from the completed results of Event Camera Dataset using  E2VID3 and report 
the PSNR and  SSIM60 of the results from completed events compared with the reference from ground-truth 
events in Table 3. Our method achieves the best PSNR for most of the settings and the best SSIM in all settings.

STCL PoinTr OursSparse VRCNet

Figure 8.  Visualization of completed events on two examples from the self-captured dataset. Top: a tea table 
captured by a DVS on a rotating stage at 360◦/s. Bottom: a painting placed in a dark room. Green and red 
indicate positive and negative events respectively.
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Conclusion
In this paper, we target for addressing the lacking density of event streams in challenging cases (e.g., high-speed 
and low-light conditions) by introducing an event-oriented diffusion-refinement method for event completion to 
rebuild the missing events. We formulate an event stream as a 3D cloud and design an event-oriented conditional 
diffusion probabilistic model to generate the completed event points in a coarse-to-fine manner. To the best of 
our knowledge, this is the first work defining and exploring this task. We compare our method with relevant 
algorithms to validate its superiority both quantitatively and visually. Furthermore, the performance on two 
downstream applications, i.e. object classification and intensity frame reconstruction, demonstrates the usabil-
ity of our method. Our approach would unlock the potential of event cameras and broaden their applications.

Due to the multi-step sampling process during inference, the generation of coarse events is rather slow, so the 
training/inference of the proposed method cannot be realized on the fly. In the future, faster and better sampling 
mechanism can be applied to enable end-to-end training/inference, which will further permit real-time event 
completion such as on-board deployment.
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