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Validity of annealed approximation 
in a high‑dimensional system
Jaegon Um 1, Hyunsuk Hong 2* & Hyunggyu Park 3

This study investigates the suitability of the annealed approximation in high‑dimensional systems 
characterized by dense networks with quenched link disorder, employing models of coupled 
oscillators. We demonstrate that dynamic equations governing dense‑network systems converge to 
those of the complete‑graph version in the thermodynamic limit, where link disorder fluctuations 
vanish entirely. Consequently, the annealed‑network systems, where fluctuations are attenuated, 
also exhibit the same dynamic behavior in the thermodynamic limit. However, a significant 
discrepancy arises in the incoherent (disordered) phase wherein the finite‑size behavior becomes 
critical in determining the steady‑state pattern. To explicitly elucidate this discrepancy, we focus 
on identical oscillators subject to competitive attractive and repulsive couplings. In the incoherent 
phase of dense networks, we observe the manifestation of random irregular states. In contrast, the 
annealed approximation yields a symmetric (regular) incoherent state where two oppositely coherent 
clusters of oscillators coexist, accompanied by the vanishing order parameter. Our findings imply 
that the annealed approximation should be employed with caution even in dense‑network systems, 
particularly in the disordered phase.

Recently, there has been notable attention given to dynamics of complex systems. One popular strategy for 
understanding their connection geometry is through the use of networks composed of nodes and  links1,2. 
Network structure often exhibits quenched link disorder, thereby rendering the system analytically intractable. In 
addition to numerical analyses, mean-field approximations have been employed to study the collective properties 
of complex-network systems. The “annealed” approximation (AA), a frequently employed mean-field  method1–14, 
characterizes a quenched link as an annealed one with an appropriate linking probability. This approximation is 
commonly referred to the heterogeneous mean-field  approximation1–3 in complex-network studies, where the 
linking probability depends solely on the numbers of links (degrees) of the two connecting nodes.

In sparse networks characterized by a finite mean degree, it is well-established that the AA manifests various 
 limitations11–15, as it only captures a portion of network disorder. For instance, in investigations of Kuramoto-type 
models of coupled  oscillators16–19, previous studies have observed that systems subject to the AA not only shift the 
transition point but also occasionally alter the nature of the  transition14. On the contrary, in the context of dense 
networks with a diverging mean  degree20, there exists a widely held belief that such networks closely approximate 
a complete graph (all-to-all connections) in the thermodynamic limit. Consequently, it is reasonable to anticipate 
that the AA may correctly characterize the collective properties of dense-network systems in general, as the AA 
mitigates disorder fluctuations in such  systems21. It is reminiscent of the adiabatic elimination method commonly 
employed in quantum  optics22: According to the adiabatic elimination, the dense-network fluctuations can be 
regarded as fast modes, resulting in corrections to the slow-mode dynamics corresponding to the fully connected 
case. Nevertheless, in the incoherent (disordered) phase where the order parameter vanishes, finite-size effects 
may exert significant influence on stabilizing steady states, suggesting a breakdown of the adiabatic elimination 
because of a lack of slow-modes. Thus, one might imagine a potential disparity in the incoherent steady-state 
patterns for systems on the complete graph (CG), dense network (DN), and annealed network (AN), attributed 
to the finite-size effects contingent upon the network structure.

In this study, we explore the extent of similarity between a DN system and its CG counterpart, and assess the 
validity of the AA. To achieve this, we employ systems of the Kuramoto-type oscillators known for exhibiting 
collective properties sensitive to connectivity (link) disorder, which has led to a critical failure of the AA in sparse-
network  systems14. Firstly, we demonstrate that connectivity fluctuations in DNs vanish in the thermodynamic 
limit, resulting in the order parameter behavior identical to that of the CG version. In the case of identical 
oscillators without frequency disorder, often referred as the Watanabe-Strogatz (WS)  model23,24, we observe 
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that finite-size effects stemming from connectivity disorder are strong enough to destroy all infinitely many, 
initial-condition dependent, “regular” (symmetric) steady-state patterns found in the incoherent phase of its 
CG  version23,24. In DNs, random steady-state patterns emerge in the end, suggesting that quenched disorder can 
readily eliminate regularity in incoherent patterns. Under the influence of the AA, similar incoherent regular 
patterns appear with more complex symmetries, distinct from both the random patterns observed in DNs and the 
regular patterns in the CG version. We note that all these regular patterns are vulnerable to frequency disorder, 
resulting in random incoherent patterns. Consequently, the incoherent patterns are all identical in the CG, DN, 
and AN with heterogeneous oscillators featuring random natural frequencies.

Secondly, we introduce coupling disorder (competition of attractive and repulsive couplings) to the WS model 
on the CG and examine its collective behavior both numerically and by applying the AA. This model can be also 
viewed as the WS model on a combined version of two DNs based on two competing couplings. Intriguingly, we 
discover a single initial-condition independent symmetric steady-state pattern in the incoherent phase for the 
system subject to the AA. In this symmetric pattern, oscillators are sharply divided into two coherent clusters with 
a phase difference of π . The sizes of these two clusters become identical in the thermodynamic limit, resulting in 
the vanishing order parameter. Our numerical analysis without the AA reveals that this incoherent symmetric 
pattern is replaced by the incoherent random pattern. This sharp and simple disparity in incoherent states leads 
us to conclude that the AA may not accurately represent the incoherent steady-state pattern even in (generalized) 
DNs for a wide range of various many-body dynamics.

Finally, we note that temporal networks where connection links undergo temporal changes bear resemblance 
to the annealed network systems when the time scale for link connection is sufficiently short. Thus, in these 
networks which are prevalent in various biological and social systems, the regular/symmetric incoherent patterns 
can be empirically observed.

Kuramoto model on dense networks
We start with a system of N Kuramoto-type  oscillators16 on a complex network. The dynamics of each oscillator 
is governed by the equation of motion as

where φi and ωi represent the phase angle and natural random frequency of oscillator i, respectively. The 
element aij of the adjacency matrix denotes the connectivity between oscillators i and j, with aij = 1 indicating 
a connection and aij = 0 otherwise. The parameter J represents the strength of coupling. For simplicity, the 
summation is normalized by the mean degree �k� = (1/N)

∑

i ki , where ki(=
∑

j aij ) denotes the degree (the 
number of neighbors) of oscillator i.

Defining the “local” field hi by

with phase factor zj = eiφj , Eq. (1) is now rewritten as

where Im(X) denotes the imaginary part of X and z∗i  the complex conjugate of zi . We also define the order 
parameters from averaged zi and hi , respectively:

Note that 〈z〉 is the so-called Kuramoto phase order parameter defined in Ref.16.
It is convenient to recast the local field in the form as

where δk̃i and ξi represent the degree fluctuation and the average phase factor ( zi ) fluctuation over neighbors, 
respectively, with

and a “noise” term ξi reads
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In the case of the CG where aij = 1 for all pairs, the local field and two order parameters become identi-
cal, i.e., hi = �h� = �z� with the complete absence of fluctuations ( δk̃i = 0 and ξi = 0 ). In contrast, for a sparse 
network characterized by a finite 〈k〉 such as the Erdös-Rényi (ER) network with an extremely low connection 
 probability25,26 or scale-free  networks27 , the fluctuations can be of the order O (1) . Consequently, these fluctua-
tions may influence the dynamics significantly, leading to steady states distinct from those of the CG version.

Here, we focus our attention on a dense network (DN) characterized by the following conditions:

with 0 < α ≤ 1 and β < α . The above power-law scaling of 〈k〉 can be found in the ER network with a finite 
connection  probability26 and scale-free-like  DNs27. It is then straightforward to estimate the order of local fluc-
tuations as

where we estimate ξi ∼ O (
√
ki/�k�) under the reasonable assumption that the phase factor fluctuation ( zj − �z� ) 

is almost Gaussian random with zero mean. In DNs, both local fluctuations vanish as N → ∞ , and then the 
local field hi in Eq. (5) converges to the global order parameter 〈z〉 in the ordered phase with �z� ∼ O (1) . Con-
sequently, the dynamic equation of motion, Eq. (3), becomes identical to that for the CG as N → ∞ and thus 
the order parameter values for DNs become identical to those for the CG. It is noteworthy that in the incoherent 
(disordered) phase, where 〈z〉 also approaches to zero as N → ∞ , 〈z〉 competes with the local fluctuation ξi in 
Eq. (5). This suggests that different types of finite-size effects in the CG, DN, and AN may yield distinct incoher-
ent patterns, while still adhering to the condition of the vanishing order parameter.

Annealed approximation on networks
The analytical treatment of models on a network with quenched link disorder is typically challenging. Instead, 
the AA is frequently employed due to its analytical tractability, while still yielding results analogous to the 
original system.

In the AA, networks are substituted with annealed ones using the heterogeneous mean field  approximation1–3, 
where the linking probability depends solely on the degrees of the two connecting nodes. Within this framework, 
the adjacency matrix aij is replaced by aAij  as

which represents the mean linking probability between nodes i and j3,6. Then, the annealed version of the local 
field hAi  is given by

with phase factor zAj = e
iφA

j  satisfying the AA-applied dynamic equation. The average phase factor fluctuation 
ξAi  in the AA is rather simplified as

Note that the local property of ξAi  is limited to ki (no explicit connection information), leading to the simple 
expression for hAi  as

whose local property is also solely given by ki , allowing the analysis of the dynamic Eq. (3) simpler. The order 
of ξAi  is estimated similarly as

which also vanishes as N → ∞ for DNs, as expected. Nonetheless, the finite-size effects are different for the 
annealed and quenched networks, which may exert a crucial influence on the determination of incoherent 
steady states.
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Validity of the annealed approximation for the WS model
For the WS model with identical oscillators ( ωi = �)23,24, the dynamic equation is given by φ̇i = �+ J Im

(

hiz
∗
i

)

 . 
We can set � = 0 without loss of generality via simple mapping of φi → φi +�t . On the CG, the local field loses 
its locality completely as hi = �z� , thus we get

In the long time limit, there exist two types of stable fixed points {φi} , satisfying (a) �z� = 0 for J < 0 (see 
"Methods") or (b) φi = � for J > 0 with the global angle � defined by �z� = |�z�|ei� . Consequently, we obtain 
|�z�| = 1 for J > 0 and �z� = 0 for J < 0 with {φi} satisfying discrete rotational symmetries ( 

∑N
j=1 zj = 0)23,24. 

An initial condition selects one of these many incoherent “regular” symmetric steady states for J < 0 , exact for 
any finite N.

In DNs, these incoherent regular fixed points are not stable any longer, due to strong fluctuations in the local 
field hi . Instead, φj becomes random with the uniform distribution over [0, 2π] to make 〈z〉 vanish in the N → ∞ 
limit for J < 0 . This is confirmed by numerical simulations [not shown here]. In the AA of DNs, the local field 
fluctuations become weaker with a degree dependence only as in Eq. (13), leading to

Similar to the CG case, there are two types of stable fixed points, satisfying (a) �hA� = 0 for J < 0 (see "Meth-
ods") and (b) φA

i = �A for J > 0 with another global angle �A defined by �hA� = |�hA�|ei�A . Consequently, we 
obtain |�zA�| = 1 for J > 0 and �zA� → 0 as N → ∞ for J < 0 with {φA

i } satisfying more complex discrete sym-
metries ( 

∑N
j=1 kjz

A
j = 0 ). Again, the incoherent steady state depends on the initial condition.

The incoherent steady state patterns are all different for the WS model on the CG, DN, and AN. It implies 
that the AA fails to predict the stable steady-state solutions of Eq. (1) for DN systems, in particular when the 
oscillators are identical. Certainly, this failure is not common in general DN systems. An illustrative example 
is evident in the Kuramoto model with frequency disorder in ωi . In its incoherent phase in DNs, oscillators 
undergo rotational motion with their respective natural frequencies, i.e. φ̇i = ωi in the long time limit. The order 
parameter 〈z〉 as well as the local field hi vanish as N → ∞ , identical to the behavior observed in the CG. The 
AA-applied systems are expected to yield the same rotating behavior, thereby resulting in identical incoherent 
states on the CG, DN, and AN. This is not much surprising, as the additional frequency disorder is of the order 
O (1) , dominant over local fluctuations that diminish in the N → ∞ limit for DN systems. Temporal fluctua-
tions such as a thermal noise also destroy the intricate structure of incoherent regular steady states in the AA 
(and also in the CG), and then the incoherent steady state pattern becomes fully random, akin to the incoherent 
phase in DN systems.

An intriguing question arises as to the nature of additional disorder that maintains a distinction in incoherent 
steady-state patterns between the AA-applied and original system. Subsequently, we investigate the inclusion of 
a quenched coupling disorder residing in the links of DNs, where the associated fluctuations are expected to be 
of a similar order to those of the quenched link disorder.

Oscillators with competing interactions
We consider a generalized Kuramoto model with coupling disorder, governed by the dynamic equation as

where Jij is a random coupling strength between oscillators i and j. For simplicity, we consider the CG case 
( aij = 1 , thus �k� = N  ). This model has been introduced and studied in the context of “oscillator glass” by 
 Daido28,29.

In the case of identical oscillators ( ωi = 0 ), this model describes the zero-temperature Sherrington-Kirkpat-
rick model for XY spin  glass30–32. Recently, Hong and  Martens33 also considered this model with a probability 
distribution P[J] for Jij that has two δ-peaks such as

with J+ > 0 (attractive) and J− < 0 (repulsive). These competitive interactions induce frustration between oscil-
lators and the first-order phase transition occurs between the fully ordered and disordered phases when the mean 
value of coupling strengths ( pJ+ + (1− p)J− ) changes its sign, i.e.  at p = pc = (−J−)/(J+ − J−)33.

It is now worth noting that the random interaction Jij in the so-called “two-peak” model with identical oscil-
lators can be expressed using the adjacency matrix bij of a random network, as follows:

where bij = 1 represents a positive (attractive) link with J+ , while bij = 0 represents a negative (repulsive) 
link with J− . As the positive and negative links are randomly distributed, the positive degree ki (the number 
of positive links stemming from node i) satisfies the binomial distribution with mean �k� = Np and variance 
�k2� − �k�2 = Np(1− p) for large systems. Thus, the {bij} network is dense with the exponents α = 1 and β = 1/2 
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defined in Eq. (8). This model can be also regarded as a competition between the CG model with the negative 
coupling constant J− (< 0) and the DN model ( bij ) with the positive one p(J+ − J−) (> 0) . For more general case 
with the underlying DN ( aij ) and multi-peak distributions of P[J] in Eq. (17), we expect the coupled systems on 
multiple DNs like a hypernetwork 34, which are left for future study.

Eq. (19) is rewritten in a more illustrative form as

where the corresponding local field qi reads

with � ≡ (−J−)/(J+ − J−) = pc (0 < � < 1) . Using Eq. (5), we get

with ξi =
∑

j bij
(

zj − �z�
)

/�k�.
As discussed previously, both local fluctuations, δk̃i and ξi , in the DN diminish as N → ∞ , thus the local field 

qi approaches �z�(p−�) . Consequently, the dynamic equation becomes identical to Eq. (15) with substitution of 
J by (J+ − J−)(p−�) = pJ+ + (1− p)J− (mean coupling strength). Therefore, we expect the first-order phase 
transition at p = � from the disordered to the fully ordered phase. As the {bij} network is dense (not CG for 
p < 1 ), there are finite-size fluctuations which make the incoherent steady state uniformly random for p ≤ � 
(numerically confirmed later, shown in Fig. 1).

The application of the AA as in Eq. (10) yields

with the annealed local field qAi  given by

where Eq. (13) is used. Similar to the previous cases without coupling disorder shown in Eqs. (15) and (16), there 
exist incoherent regular fixed points satisfying both �hA� = �zA� = 0 simultaneously. However, these regular fixed 
points are proven to be always unstable with a distribution of ki (see Methods).

Instead, one of two “ordered” fixed points becomes stable in the long-time limit, depending on the magnitude 
of degree ki;
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Figure 1.  The original quenched system of the two-peak model versus the annealed-network version. Data 
points were obtained from numerical integrations of Eq. (19) with the quenched network bij and its annealed 
version for p = 0.2 and J+ = 1 . (a) The order parameter as a function of � plotted on a semi-log scale for 
various values of N. Solid symbols denote |�z�| for the original system and the dashed lines are guides to the eyes. 
Solid lines represent the analytic solutions of |�zA�| obtained by the self-consistency equation (35) for annealed 
networks. Both the analytic and numerical results suggest a discontinuous transition at � = p as N → ∞ . The 
order parameter |�z�| at the transition seems to approach zero, while its annealed version |�zA�| converges to a 
nontrivial value. (b–e) Snapshots of phase angles φ and φA versus degree k in a single network realization of 
N = 3200 near the steady state for various values of � . Blue dots represent φA

i  and yellow ones represent φi . The 
phase angle segregation in terms of degrees emerges in the annealed system, while it does not in the quenched 
case. Note that the mean degree is given by �k� = Np = 640.
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with �zA� = |�zA�|ei�A . The stability condition for the fixed points requires the identical global phase angles, 
denoted as �A = �A where �hA� = |�hA�|ei�A . Thus, the threshold value k∗ is determined by the equation 
k∗|�hA�|/N −�|�zA�| = 0 (see Eq. (24)), which can be solved in a self-consistent manner. Detailed derivations 
are given later.

The coexistence of two coherent (ordered) clusters with a phase difference of π is observed across the entire 
parameter range of (p,�) . In the disordered phase ( p < � ), the threshold value k∗ ≃ �k� , leading to identical 
cluster sizes in the N → ∞ limit. Thus, the order parameters approach zero; �zA� ≃ 0 and �hA� ≃ 0 . Con-
versely, in the ordered phase ( p > � ), one cluster fully dominates over the other in the N → ∞ limit with 
k∗ ≃ (�/p)�k� . This results in �zA� ≃ 1 and �hA� ≃ 1.

It is evident that the incoherent steady state for the AA-applied system differs from the random incoherent one 
in the original system. This incoherent steady-state pattern exhibits the simple Z2 symmetry (the same number 
of oscillators with zAi e−i�A = 1 or −1 ), resembling a regular symmetric pattern found in the WS model on the 
CG in Eq. (15). However, the origin of this symmetry is obviously different. Furthermore, this symmetry is exact 
only in the N → ∞ limit and is also independent of initial conditions, while the regular symmetric patterns in 
the previous models are exact for any finite N and are dependent on initial conditions.

Numerical results
We numerically solve the equation of motion, Eq. (19), employing the Heun’s method with various network sizes 
and fixed p = �k�/N=0.2. Initial phase angles are randomly chosen within [−0.005π , 0.005π] . Solid symbols in 
Fig. 1a denote the values of |�z�| , averaged over a period of t = 5× 104 ∼ 105 , after discarding an initial transient 
period of the same duration and also averaged over 10 ∼ 100 network realizations and initial conditions. We also 
display the analytic solutions |�zA�| in Fig. 1a, obtained from a self-consistency equation Eq. (35) for the annealed 
networks. We find that both |�z�| and |�zA�| seem to show a discontinuous transition from the fully ordered to 
the disordered phase at � = p , as |�z�| tends to approach 1 (0) asymptotically for � < p ( � > p ) for increasing 
N. At � = p , however, |�zA�| remains finite as N → ∞ , as demonstrated by the crossing of solid curves, while 
|�z�| approaches zero. This observation may suggest distinct underlying mechanisms of the transitions between 
the annealed and quenched systems.

In b–e in Fig. 1, phase angle snapshots are plotted as a function of degree for the quenched and annealed 
cases, denoted by φ and φA , respectively. Data are obtained numerically from Eq. (19) in a single network realiza-
tion for p = 0.2 and N = 3200 . Starting from an initial condition described above, the data points are obtained 
at t = 105 near the steady state. For � < p , we observe in Fig. 1b and c that in the original quenched system a 
single coherent cluster with φ ≃ 0 is formed by oscillators with higher degrees (stronger interactions effectively) 
and scattered phase angles for those with lower degrees seem to be due to finite-size effects. The annealed case 
shows two coherent clusters with phase difference of π , but one cluster dominates over the other. The finite-size 
effects are much weaker in the annealed systems, as their fluctuations should be much weaker than those for 
the quenched systems.

For � > p in Fig. 1e, the phase angles seem randomly distributed as expected in the quenched system. 
Remarkable distinction is found in the annealed system, where a binary mixture of two coherent clusters with 
comparable sizes emerges. The contributions of the two clusters to the order parameter 〈zA〉 seem to cancel out 
exactly in the N → ∞ limit. At the transition ( � = p ), the balance of two cluster sizes are slightly broken, yield-
ing a nontrivial value of |�zA�| ≃ 0.61946 , which is consistent with the analytic result derived in the following.

Back to the scattered plots in Fig. 1, we note that the outcomes from the original quenched model (orange 
dots) present notable disparities in comparison to those of the annealed model (blue dots), particularly in the 
vicinity of the threshold value k∗ . This phenomenon can be understood by considering the following. In the 
quenched system, the magnitude of noise fluctuations ξi is of the order O (N−1/2) . This suggests that the local 
field qi is predominantly influenced by these fluctuations, especially near k ≃ k∗ , where the value of the annealed 
local field almost vanishes as qAi ≃ 0 . In contrast, in the region where |ki − k∗|/N � O (N−1/2) , the annealed 
local field qAi  becomes comparable to ξi , resulting in a reduced disparity between the quenched and annealed 
results. This trend is also observable in the scattered plots.

Analytic solutions of the annealed two‑peak model
We rewrite the dynamic equation (23) in a convenient form as

where

yielding the stable steady-state fixed points as

(25)φA
i =

{
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�A + π for ki < k∗
,
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[
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i = φA

i −�A , Ai =
ki

N
|�hA�| sin(�A −�A) , Bi =

ki

N
|�hA�| cos(�A −�A)−�|�zA�| ,

(28)sin φ̃A
i =

Ai
√

A2
i + B2i

, cos φ̃A
i =

Bi
√

A2
i + B2i

,
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Utilizing the definition of the global phase angle �A , we obtain the expression as |�zA�| = z
A
e
−i�A = �eiφ̃A� , 

implying �sin φ̃A� = 0 and �cos φ̃A� ≥ 0 . In addition, from Eqs. (27) and (28), we observe that the signs of the 
steady-state solution for sin φ̃A

i  should coincide with the sign of sin(�A −�A) , independent of i. Then, the con-
straint of �sin φ̃A� = 0 demands sin φ̃A

i = 0 for all i’s, thereby Ai = 0 and sin(�A −�A) = 0 . Subsequently, it 
follows that cos φ̃A

i = ±1 and cos(�A −�A) = ±1 in the steady state. With the selection of cos(�A −�A) = −1 , 
Bi is always negative, thus Eq. (28) yields cos φ̃A

i = −1 for any i. However, this contradicts the condition 
�cos φ̃A� ≥ 0 , thereby cos(�A −�A) = +1 (implying �A = �A ) must be selected for stable fixed points. In 
this case, the sign of Bi changes as ki varies. Consequently, cos φ̃A

i = +1 with Bi > 0 for large ki and cos φ̃A
i = −1 

with Bi < 0 for small ki , leading to

where k∗ is defined as

To determine the threshold value k∗ , we need to solve Eq.  (30) in a self-consistent manner. Using 
|�zA�| = �cos φ̃A� and |�hA�| = �k cos φ̃A�/�k� , the order parameters in the steady state are given as

where the degree distribution B(k, p) is the binomial distribution of degree k for a given p. For large N, it is well 
known that B(k, p) can be approximated by the Gaussian distribution of a continuous variable k ∈ [−∞,∞] with 
mean �k� = Np and variance Np(1− p) . In this continuum limit, Eq. (31) can be expressed in a simple form as

where the error function is defined as erf[x] =
(

2/
√
π
) ∫ x

0 dt exp
[

−t2
]

 . From the constraint |�zA�| ≥ 0 , we note 
that k∗ cannot exceed �k� = Np.

For convenience, we rewrite Eq. (32) as

with

By substituting Eq. (33) into Eq. (30), we obtain

The solution for X in Eq. (35) provides the threshold value k∗ and also determine the order parameter values 
in Eq. (33) in the steady state. These results are in very good agreement with the numerical outcomes obtained 
directly from the annealed Eq. (23) (not shown here). For small ε (large N), the explicit expression for X can be 
derived from Eq. (35) as

with Xc ≈ −0.62006 , determined by solving the equation of erf[Xc]eX
2
c Xc = 1/

√
π  which is given by Eq. (35) 

with � = p for small ε.

(29)φ̃A
i =

{

0 for ki > k∗

π for ki < k∗ ,

(30)
k∗

N
|�hA�| −�|�zA�| = 0 .

(31)

|�zA�| = −
1

N

∑

ki<k∗
+

1

N

∑

ki>k∗
= 1− 2

∑

k<k∗
B(k, p) ,

|�hA�| = −
1

N�k�
∑

ki<k∗
ki +

1

N�k�
∑

ki>k∗
ki = 1−

2

�k�
∑

k<k∗
kB(k, p) ,

(32)

|�zA�| = −erf

[

k∗ − Np
√

2Np(1− p)

]

,

|�hA�| = |�zA�| +

√

2(1− p)

πNp
exp

[

−
(

k∗ − Np
)2

2Np(1− p)

]

,

(33)
|�zA�| = −erf[X] ,

|�hA�| = |�zA�| +
ε

p
√
π
e−X2

,

(34)X ≡
k∗ − Np

Nε
≤ 0 and ε ≡

√

2p(1− p)

N

(35)erf[X]eX2 =
ε

p
√
π

(

k∗

k∗ − N�

)

=
ε

p
√
π

εX + p

εX + (p−�)
.

(36)X ≈











−(p−�)ε−1 for � < p ,

Xc + 1−2p
p

X2
c

2X2
c+1

ε for � = p ,

− 1
2(�−p) ε for � > p ,
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In the N → ∞ ( ε → 0 ) limit, the order parameters are calculated from Eq. (33): |�zA�| = 1 ( X → −∞ ), 
|�zA�| = −erf[Xc] ≈ 0.61946 , and |�zA�| = 0 ( X → 0 ) for � < p , � = p , and � > p , respectively, as seen in 
Fig. 1a. We also find |�zA�| ≈ |�hA�| . Eq. (36) is expressed in terms of k∗ as

yielding numerical values of k∗ as 576, 608, 620, and 624 for parameter values given in Fig. 1b–e, respectively, 
that are in excellent accordance with simulation data.

The phase distribution ρ(φA) in the steady state is given by the combination of two δ peaks from Eq. (29) as

where a =
∑

k>k∗ B(k, p) ≈ 1
2 (1− erf[X]) and b = 1− a . From Eqs. (36) and (37), we find a = 1 ( b = 0 ) for 

� < p (single peak and fully synchronized) and a = b = 1/2 for � > p (two symmetric peaks). At � = p , 
a = 1

2 (1− erf[Xc]) ≈ 0.80973 ( b ≈ 0.19027 ) (two asymmetric peaks). This is illustrated in Fig. 2.
In large quenched systems, the numerical results suggest ρ(φ) = δ(φ −�) for � < p . In contrast, for � ≥ p , 

it is observed that the phase angles are uniformly distributed, implying that ρ(φ) = 1/(2π) . We can also consider 
the generalized order parameters defined as zm ≡ |�zm�| and zAm ≡ |�

(

zA
)m�| with an arbitrary integer m. We note 

that zAm for even m does not distinguish the ordered and disordered phase ( zAm = 1 ) in the annealed systems, as 
two coherent clusters are synchronized with phase difference of π.

Summary
In summary, we showed that the dynamic equations governing DN systems with quenched link disorder converge 
to those of the CG version in the thermodynamic limit, where the local fluctuations vanish entirely. Consequently, 
the AA-applied systems where fluctuations are attenuated, exhibit the same dynamic behavior in the thermody-
namic limit. However, a notable discrepancy may arise in the incoherent (disordered) phase, where finite-size 
effects can become critical in determining the steady-state pattern.

We illustrate our findings through two prototypical models of coupled oscillators; the WS model for synchro-
nization and the zero-temperature XY-like model with competing couplings. In both cases, we analytically derive 
the incoherent patterns in the annealed systems, revealing stark differences from those in the original quenched 
systems. These patterns in the annealed systems are regular and symmetric, in contrast to the random patterns 
in the quenched case. This suggests that caution should be given when applying the AA even to the DN systems, 
particularly when examining incoherent steady-state patterns. We emphasize that our analysis based on the 
network topology and findings are not restricted to the oscillator or XY-spin systems. One may expect a similar 
discrepancy for the two-peak model with Ising spins because phase angles of oscillators with the AA-applied two 
competing interactions align along two branches, reminiscent of the Ising spins. Furthermore, we point out the 
possibility of observing these intriguing regular and symmetric incoherent patterns in temporal networks with 
sufficiently fast time scales, which may underlie various biological and social systems.

(37)k∗ − �k� ≈







−(p−�)N for � < p ,

Xc

�

2p(1− p)N1/2 for � = p ,
−p(1− p)/(�− p) for � > p ,

(38)ρ(φA) = a δ
(

φA −�A
)

+ b δ
(

φA − (�A + π)
)

,

Figure 2.  Schematic diagram summarizing phase-angle distributions in annealed and quenched systems. Black 
solid lines represent the generalized order parameters zm = |�zm�| for the quenched system with integer m. Blue 
solid lines represent the generalized order parameter zAm for the annealed systems with odd m, while red solid 
lines with even m.
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Methods
Stability analysis of incoherent regular solutions
First, we perform a linear stability analysis of the incoherent regular fixed points for the WS model. For the CG 
version with the dynamics governed by Eq. (15), a small perturbation δφi around the fixed points φs

i  satisfying 
�z� = 0 evolves as

with the stability matrix element Sij given by

This stability matrix can be expressed as the sum of two rank-1 matrices as Sij = S
(1)
ij + S

(2)
ij  with 

S
(1)
ij = (J/N) cos(φs

j ) cos(φ
s
i ) and S(2)ij = (J/N) sin(φs

j ) sin(φ
s
i ) . It is trivial to show that any rank-1 matrix has 

zero eigenvalues except for one eigenvalue given by its trace. For J > 0 , both rank-1 matrices are positive semi-
definite with the non-zero eigenvalues of (J/N)

∑

j cos
2(φs

j ) and (J/N)
∑

j sin
2(φs

j ) , respectively. As the sum of 
two positive semi-definite matrices should be also positive semi-definite, it follows that the eigenvalues of the 
stability matrix are non-negative, leading to the conclusion that all regular fixed points should be unstable for 
J > 0 . Consequently, the stabilization of the regular fixed points is only feasible for J < 0.

This stability analysis can be also applied to the AN version with the dynamics governed by Eq. (16), leading 
to the stability matrix SAij  as

It is clear that this stability matrix can be also decomposed into two rank-1 matrices, thus the same conclusion 
as above can be drawn, as the link degree ki is always non-negative.

For the AA-applied model with coupling disorder, the dynamic equation is given by Eq. (23), yielding the 
stability matrix as

It should be noted that this matrix can be decomposed into two positive semi-definite rank-1 matrices and 
two negative semi-definite rank-1 matrices. It is straightforward but rather lengthy to prove that the signs of the 
non-zero eigenvalues of the stability matrix align with those of the decomposed rank-1 matrices, if none of these 
rank-1 matrices is not a multiple of another (a proof not included here). Given a distribution of ki , it is evident 
that none of our four rank-1 matrices is proportional to any other. Consequently, the stability matrix invariably 
possesses two positive eigenvalues, thereby rendering all incoherent regular solutions unstable. This conclusion 
is further substantiated by numerical results.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.
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