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Improved tactile speech 
robustness to background noise 
with a dual‑path recurrent neural 
network noise‑reduction method
Mark D. Fletcher 1,2*, Samuel W. Perry 1,2, Iordanis Thoidis 3, Carl A. Verschuur 1 & 
Tobias Goehring 4

Many people with hearing loss struggle to understand speech in noisy environments, making noise 
robustness critical for hearing‑assistive devices. Recently developed haptic hearing aids, which 
convert audio to vibration, can improve speech‑in‑noise performance for cochlear implant (CI) users 
and assist those unable to access hearing‑assistive devices. They are typically body‑worn rather than 
head‑mounted, allowing additional space for batteries and microprocessors, and so can deploy more 
sophisticated noise‑reduction techniques. The current study assessed whether a real‑time‑feasible 
dual‑path recurrent neural network (DPRNN) can improve tactile speech‑in‑noise performance. 
Audio was converted to vibration on the wrist using a vocoder method, either with or without noise 
reduction. Performance was tested for speech in a multi‑talker noise (recorded at a party) with a 2.5‑
dB signal‑to‑noise ratio. An objective assessment showed the DPRNN improved the scale‑invariant 
signal‑to‑distortion ratio by 8.6 dB and substantially outperformed traditional noise‑reduction 
(log‑MMSE). A behavioural assessment in 16 participants showed the DPRNN improved tactile‑only 
sentence identification in noise by 8.2%. This suggests that advanced techniques like the DPRNN 
could substantially improve outcomes with haptic hearing aids. Low‑cost haptic devices could soon be 
an important supplement to hearing‑assistive devices such as CIs or offer an alternative for people who 
cannot access CI technology.

Hearing-assistive devices often fail to effectively extract speech from background  noise1. Users therefore often 
struggle to follow conversations in challenging listening environments, such as busy classrooms, cafes, and offices. 
Cochlear implant (CI) users tend to have particular difficulty in these  scenarios2. Several recent studies have 
shown that supplementing the electrical CI signal by providing speech information through haptic stimulation 
(“electro-haptic stimulation”3) can improve speech-in-noise  performance3–9. There is also evidence that these 
haptic hearing aids can be effective as standalone sensory substitution devices. These could be used to support the 
many millions of people who could benefit from a CI but cannot access the technology due to medical constraints 
or limitations in healthcare  provision5,10–14. For haptic hearing aids to be effective, either for sensory substitution 
or augmentation, audio-to-haptic conversion strategies that are robust to background noise must be developed.

Some previous studies have avoided the issue of noise robustness by converting the clean speech signal to 
haptic stimulation, rather than the speech-in-noise signal that would be received by the microphone of a haptic 
hearing  aid6–8. While these studies, which have shown substantial benefits to speech-in-noise performance, pro-
vide a proof-of-concept, they leave unaddressed a major obstacle in the translation of laboratory benefits to the 
real world. Other studies have converted the speech-in-noise signal to haptic stimulation and have also shown 
considerable benefits to speech  recognition3,4,9. The method used to reduce the impact of noise in these studies 
was envelope expansion, which enhances high intensity parts of the haptic signal. While envelope expansion is 
effective when speech is considerably more intense than background  noise3,4,9, it breaks down at more challenging 
(low or negative) signal-to-noise ratios (SNRs)3,4. If haptic signal extraction strategies that are robust in these 
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more challenging listening scenarios can be developed, this would substantially widen the group of people who 
could benefit from haptic hearing aids.

One advantage of haptic hearing aids compared to other hearing-assistive devices, such as CIs or acoustic 
hearing aids, is that they are typically worn on the body (e.g., the wrist) rather than the head. They therefore have 
significantly more form-factor flexibility and design space available. This allows the use of larger, more powerful 
batteries and microprocessors that can deploy more sophisticated noise-reduction  techniques15. The current study 
explored whether an advanced real-time-feasible noise-reduction method, using a recurrent neural network, 
can effectively extract the haptic speech signal from background noise at challenging SNRs and improve tactile 
speech perception.

Noise-reduction or “speech enhancement” techniques, aim to enhance the intelligibility and quality of speech 
in background noise. Traditional approaches using statistical models, such as log-spectra amplitude estimators, 
have failed to improve the intelligibility of speech in noisy environments commonly encountered in the real 
world, which contain competing speech and other fluctuating  sounds16. Recently, data-driven machine-learning 
methods have revolutionised noise reduction, particularly for extracting speech in these more challenging sce-
narios. Such methods, which are usually based on deep learning (including variants of artificial neural networks), 
can substantially improve speech intelligibility for normal-hearing  listeners17, listeners with hearing  loss18,19, 
and CI  users20,21. One of the most effective deep-learning noise-reduction methods developed in this rapidly 
advancing field is the dual-path recurrent neural network (DPRNN)22. The DPRNN operates on the long-term 
speech signal while retaining high temporal and spectral resolution. Critically, it also has excellent generalisation 
to unseen talkers and background noises.

Conventional recurrent neural networks are ineffective at modelling long sequences due to optimization 
issues, such as vanishing and exploding  gradients23. The long short-term memory (LSTM) method was developed 
to overcome these  deficiencies24,25. The DPRNN architecture utilizes residual LSTM blocks with layer-normalized 
alternating global and local processing paths to improve performance over a single LSTM layer or multiple 
LSTM layers stacked together. The DPRNN uses an encoder-masker-decoder architecture and recent work has 
shown that, across several metrics, it can outperform other state-of-the-art networks, such as  ConvTasNet22. 
Furthermore, the DPRNN is more efficient than alternative cutting-edge architectures, such as the Dual-Path 
Transformer Neural  Network26 and the Dual-Path Convolution Recurrent  Network27, regarding the number of 
trainable parameters and the computational load.

The current study assessed whether a quasi-causal real-time feasible DPRNN approach could improve tactile 
speech-in-noise performance. This DPRNN was parameterised to fulfil processing latency requirements for real-
time applications by using causal normalization methods and only 5.75-ms of future information. The DPRNN 
architecture integrates bi-directional LSTM units for local processing within each 5.75-ms window and uni-
directional LSTM units for sequential processing across these windows to avoid further delay. The algorithmic 
delay is well below the processing latency of around 20–30 ms that would usually be considered tolerable for 
hearing-assistive devices, such as hearing aids and  CIs28.

For audio-to-tactile conversion, the audio was processed with the quasi-causal DPRNN before being con-
verted to vibro-tactile stimulation on the wrist using a previously developed tactile vocoder  approach3,4,9,10,14. 
The tactile vocoder filters the audio into several frequency bands, and the amplitude envelope from each band 
is used to modulate the amplitude of one of several vibro-tactile tones. The tactile vocoder approach has been 
shown to be effective for transferring phoneme  information10,14 and improving speech-in-noise performance 
for CI  users3,4,9.

The quasi-causal DPRNN was assessed both objectively and behaviourally. The objective assessment aimed 
to establish whether the quasi-causal DRPNN could effectively extract speech from multi-talker noise and out-
perform traditional noise-reduction methods. The multi-talker noise used was representative of environments 
that listeners with hearing loss typically find most challenging, with competing speech and other fluctuating 
and transient sounds. The behavioural assessment tested whether objectively measured denoising of the tactile 
speech in multi-talker noise signal by the DPRNN translated into improvements in tactile speech identification. 
In objective testing, the quasi-causal DPRNN was compared to log  MMSE29, which is a leading traditional noise-
reduction  method30. Note that the expander approach used in previous studies with tactile speech in noise is not 
suitable for an objective comparison such as this, because it intentionally alters the speech signal. It therefore 
cannot be directly compared to these other noise-reduction methods for which clean speech serves as a reference. 
Furthermore, as discussed, the expander approach has been shown to be ineffective at the challenging SNRs 
that this study focuses on. In addition to log MMSE, the quasi-causal DPRNN was compared to causal and non-
causal implementations (all trained using the same data) to establish the effect of including future information.

In the objective assessment, the scale-invariant signal-to-distortion ratio (SI-SDR) of the tactile vocoder 
amplitude envelopes was compared for speech in either a multi-talker or a stationary (speech-shaped) noise. The 
speech and noise stimuli used in the objective assessment had not been used to train the DPRNNs. The assess-
ment was done for a range of SNRs (− 2.5 dB, 2.5 dB, and 7.5 dB). Additional SI-SDR and  eSTOI31 scores were also 
extracted for the audio (without tactile vocoding) to allow a comparison between the noise reduction methods 
used in the current study and those used in other hearing studies. These two measures are widely employed to 
assess speech processing algorithms, with eSTOI used to predict speech intelligibility for human listeners.

In the behavioural assessment, tactile sentence identification with and without the quasi-causal DPRNN 
was measured both in quiet and in multi-talker noise (the same that was used in objective testing). In noise, the 
SNR was set to 2.5 dB (though note that this is equivalent to around 0 dB SNR in many previous studies; see 
“Methods”). This represents one of the more challenging SNRs that listeners with hearing loss encounter in daily 
 life32,33 and is an SNR at which most CI users have no appreciable speech  intelligibility3,9.
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Results
Objective assessment
There were two stages to the objective assessment of the quasi-causal DPRNN method. In the first stage, the 
SI-SDR of the tactile vocoded speech in noise (referenced to time-aligned clean speech) was calculated for the 
causal, quasi-causal, and non-causal DPRNNs, as well as for the traditional log-MMSE noise reduction method. 
Performance was assessed for male and female speech either with a stationary noise, which was filtered to match 
the international long-term average speech spectrum (ILTASS)34, or with a multi-talker noise recording from a 
party. The results for the three SNRs tested are shown in Fig. 1.

A repeated-measures analysis of variance (RM-ANOVA) was performed on the SI-SDRs for the tactile 
vocoded speech in noise, with the factors: SNR (− 2.5, 2.5, or 7.5 dB), talker (male or female), noise reduction 
method (log MMSE, causal DPRNN, quasi-causal DPRNN, or non-causal DPRNN), and noise type (stationary 
or multi-talker). No overall effect of talker was found (F(1,59) = 0.7, p = 0.400), but there were highly significant 
effects of SNR (F(2,118) = 992.9, p < 0.001), noise reduction method (F(3,177) = 2077.3, p < 0.001), and noise 
type (F(1,59) = 692.4, p < 0.001). Significant interactions were found between talker and method (F(3,177) = 10.7, 
p < 0.001), talker and noise type (F(1,59) = 38.38, p < 0.001), method and noise type (F(3,177) = 819.0, p < 0.001), 
method and SNR (F(6,354) = 48.8, p =  < 0.001), and noise type and SNR (F(2,118) = 20.4, p < 0.001). No interac-
tion was found between talker and SNR (F(2,118) = 2.1, p = 0.133). Three-way interactions were found between 
talker, noise reduction method, and noise type (F(3,117) = 13.1, p < 0.001), between noise reduction method, noise 
type, and SNR (F(6,354) = 216.7, p < 0.001), and between talker, noise type, and SNR (F(2,118) = 8.7, p < 0.001). 
No significant interaction was found between talker, noise reduction method, and SNR (F(6,354) = 1.4, p = 0.218). 
A four-way interaction between all factors was found (F(6,354) = 10.9, p < 0.001).

Planned post-hoc t-tests (corrected for multiple comparisons; see “Methods”) were conducted to assess the 
effectiveness of each noise reduction method. Statistical tests were only performed for SNRs of 2.5 dB, which were 
also used in behavioural testing. Compared to no noise reduction, the quasi-causal DPRNN method improved 
the SI-SDR by 4.6 dB on average for the stationary noise (ranging from 0.8 to 7.1 dB across sentences; standard 
deviation (SD): 1.4 dB; t(59) = 24.7, p < 0.001) and by 8.6 dB for the multi-talker noise (ranging from 6.0 to 
12.0 dB; SD: 1.3 dB; t(59) = 49.9, p < 0.001). The causal DPRNN method improved the SI-SDR by 2.6 dB for the 
stationary noise (ranging from 1.1 to 4.0 dB; SD: 0.7 dB; t(59) = 30.1, p < 0.001) and by 5.1 dB for the multi-talker 
noise (ranging from 2.7 to 8.1 dB; SD: 1.0 dB; t(59) = 38.2, p < 0.001). With the non-causal DPRNN, the SI-SDR 
was improved by 5.6 dB for the stationary noise (ranging from 2.6 to 10.0 dB; SD: 1.6 dB; t(59) = 32.5, p < 0.001) 
and by 11.1 dB for the multi-talker noise (ranging from 8.4 to 14.5 dB; SD: 1.3 dB; t(59) = 66.3, p < 0.001). Finally, 
the log-MMSE method improved the SI-SDR by 1.7 dB for the stationary noise (ranging from -0.3 to 3.5 dB; SD: 
0.8 dB; t(59) = 16.7, p < 0.001) and by 1.1 dB for the multi-talker noise (ranging from 0.0 to 2.6 dB; SD: 0.6 dB; 
t(59) = 14.8, p < 0.001).

Next, the effectiveness of the quasi-casual DPRNN method was compared between the male and female 
talkers. A significant difference in SI-SDR was found both with the stationary noise (t(59) = 0.8, p = 0.417) and 
multi-talker noise (t(59) =  − 4.2, p < 0.001). With the stationary noise, the quasi-casual DPRNN improved the 
SI-SDR by 4.7 dB for the male talker (ranging from 0.0 to 10.4 dB; SD: 2.0 dB) and by 4.4 dB for the female talker 
(ranging from − 0.4 to 8.8 dB; SD: 2.0 dB). The SI-SDR for the male talker was 0.29 dB better with the stationary 
noise on average (ranging from − 6.1 to 7.4 dB; SD: 2.8 dB). For the multi-talker noise, the quasi-casual DPRNN 
improved the SI-SDR by 8.0 dB for the male talker (ranging from 5.0 to 13.1 dB; SD: 1.9 dB) and by 9.2 dB for 

Figure 1.  SI-SDRs for the tactile vocoded signal for speech in either the stationary speech-shaped (ILTASS) 
noise (left panel) or multi-talker party noise (right panel). SI-SDR scores are shown with no noise reduction 
(blue), with the log-MMSE method (orange), as well as with the causal (green), quasi-causal (red), and non-
causal (purple) DPRNN methods. Performance is shown for three SNRs. The mean and median values are 
illustrated by a cross and a solid line, respectively, while the top and bottom edges of the box show the upper 
(0.75) and lower (0.25) quartile. Outliers (values of more than 1.5 times the interquartile range) are shown as 
filled diamonds.
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the female talker (ranging from − 5.7 to 12.2 dB; SD: 1.6 dB). In contrast to the stationary noise, the performance 
for the female talker with the multi-talker noise was 1.3 dB better on average than the male (ranging from − 5.3 
to 6.2 dB; SD: 2.3 dB).

Next, the effectiveness of the quasi-causal DPRNN was compared to the other DPRNN methods and to 
the traditional log-MMSE method. For the stationary noise, the quasi-causal DPRNN performed better than 
log-MMSE by 2.9 dB SI-SDR (ranging from 0.4 to 4.8 dB; SD: 1.0 dB; t(59) = 22.9, p < 0.001) and better than 
the causal DPRNN by 1.9 dB (ranging from − 0.5 to 4.3 dB; SD: 1.0 dB; t(59) = 14.7, p < 0.001). The SI-SDR for 
the non-causal DPRNN was 2.0 dB better than for the quasi-causal DPRNN (ranging from 0.1 to 4.3 dB; SD: 
0.8 dB; t(59) = 20.0, p < 0.001). For the multi-talker noise, the quasi-causal DPRNN performed better than log 
MMSE by 7.6 dB SI-SDR (ranging from 5.1 to 10.8 dB; SD: 1.3 dB; t(59) = 46.4, p < 0.001) and better than the 
causal DPRNN by 3.5 dB SI-SDR (ranging from 1.7 to 5.0 dB; SD: 0.7 dB; t(59) = 39.9, p < 0.001). The SI-SDR 
for the non-causal DPRNN was 2.5 dB better than for the quasi-causal DPRNN (ranging from 1.3 to 3.9 dB; SD: 
0.6 dB; t(59) = 32.9, p < 0.001).

Finally, the SI-SDR for the quasi-causal DPRNN was assessed for speech in quiet to establish whether it caused 
appreciable distortion of speech in quiet. For the male talker, the mean SI-SDR in quiet with the DPRNN was 
73.8 dB (SD: 3.2 dB; ranging from 57.5 to 78.2 dB). For the female talker, the mean SI-SDR in quiet was 73.7 dB 
(SD: 1.9 dB; ranging from 70.2 to 77.8 dB).

In the second stage of the objective assessment, the effectiveness of each noise reduction method was assessed 
using the audio signals, without processing through the tactile vocoder. This allows the current quasi-causal 
DRPNN to be compared more easily with previous studies. Figure 2 shows eSTOI scores and SI-SDRs for speech 
in noise compared to time-aligned clean speech. At all SNRs, higher average scores were found for the quasi-
causal DPRNN compared to no processing. With the stationary noise, SI-SDRs were 10.6, 10.7, and 9.8 dB higher 
for SNRs of − 2.5, 2.5, and 7.5 dB, respectively, and eSTOI scores were 0.18, 0.23, and 0.19 higher. With the multi-
talker noise, SI-SDR scores were 9.4, 10.2, and 9.5 dB higher and eSTOI scores were 0.18, 0.23, and 0.19 higher.

Figure 2.  eSTOI scores (left panels) and SI-SDRs (right panels) for the audio signals (without tactile vocoding), 
with speech in either the stationary ILTASS (upper panels) or multi-talker party (lower panels) noise. SI-SDRs 
and eSTOI scores are shown with no noise reduction, with the log-MMSE method, and with the three DPRNN 
methods. As in Fig. 1, the box plots show the median, quartiles, and outliers.
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The quasi-causal DPRNN produced higher scores than the traditional log-MMSE method for both the sta-
tionary and multi-talker noises. For the stationary noise, SI-SDRs across SNRs were 4.4, 3.8, and 3.3 dB better, 
respectively, and eSTOI scores were 0.13, 0.16, and 0.12 better. For the multi-talker noise, SI-SDRs across SNRs 
were 6.8, 6.0, and 5.0 dB better and eSTOI scores were 0.16, 0.20, and 0.16 better. The quasi-causal DPRNN also 
produced higher scores than the causal DRPNN for both noise types. For the stationary noise, SI-SDRs were 4.0, 
3.5, and 3.5 dB higher and eSTOI scores were 0.08, 0.08, and 0.06 higher. For the multi-talker noise, SI-SDRs were 
3.3, 3.5, and 3.6 dB higher and eSTOI scores were 0.07, 0.08, and 0.06 higher. Finally, the quasi-casual DPRNN 
produced lower scores than the non-causal DPRNN for both noise types. For the stationary noise, SI-SDRs were 
2.7, 2.2, and 1.9 dB lower and eSTOI scores 0.09, 0.07, and 0.05 lower. For the multi-talker noise, SI-SDRs were 
2.9, 2.2, and 2.0 dB lower and eSTOI scores 0.10, 0.06, and 0.04 lower.

Behavioural assessment
The percentage of sentences correctly identified in each condition for the 16 participants who took part in the 
study is shown in Fig. 3. In behavioural testing, the noise reduction was always the quasi-causal DPRNN, and 
noise was always the multi-talker noise at an SNR of 2.5 dB. The primary analysis of the behavioural data was an 
RM-ANOVA, with the factors: talker gender (male or female), noise (with or without), and noise reduction (with 
or without). A significant overall effect of noise (F(1,15) = 77.0, p < 0.001) and of noise reduction (F(1,15) = 7.1, 
p = 0.018) was found, as well as a significant interaction between noise and noise reduction (F(1,15) = 15.8, 
p = 0.001). No main effect of talker gender (F(1,15) = 1.5, p = 0.238) and no interaction between talker gender 
and any other factor was observed (noise: F(1,15) = 1.1, p = 0.311; noise reduction: F(1,15) = 0.8, p = 0.780; noise 
and noise reduction: F(1,15) = 0.1, p = 0.711).

Six planned t-tests were then run, with multiple comparisons correction applied (see “Methods”). These 
first established that the noise significantly reduced sentence recognition without noise reduction (t(15) = 7.4, 
p < 0.001). Performance reduced by 15.6% (ranging from 25.8 to 0%; standard deviation (SD): 8.5%), from 66.2% 
in quiet (ranging from 53.3 to 79.2%; SD: 7.9%) to 50.6% in noise (ranging from 45 to 57.5%; SD: 4.2%). Noise 
reduction improved performance in noise by 8.2% on average (ranging from − 10 to 25%; SD: 7.7%; t(15) = 4.3, 
p = 0.003), with performance increasing to 58.8% (ranging from 47.5 to 79.2%; SD: 7.7%). Performance in noise 
with noise reduction was worse than performance in quiet without noise reduction by 7.5% (ranging from − 3.3 
to 16.7%; SD: 5.2%; t(15) = 5.7, p =  < 0.001). In quiet, no significant change in performance with noise reduction 
was found (mean reduction in performance of 1.9%; t(15) = 1.3, p = 0.668).

No difference in the benefit of noise reduction was found across the male and female talkers (t(15) = 0.4, p > 1). 
Noise reduction improved performance in noise by 7.5% for the male talker (ranging from − 18.3 to 21.7%; SD: 
10.8%) and by 8.9% for the female talker (ranging from − 6.7 to 33.3%; SD: 9.9%). There was also no difference 
found between the talkers in the effect of noise reduction in quiet (t(15) = 0.1, p > 1), with average performance 
worse with noise reduction by 1.8% for the male talker (ranging from a 16.7% reduction to a 10.0% benefit; SD: 
8.4%) and by 2.1% for the female talker (ranging from a 15.0% reduction to a 5.0% benefit; SD: 6.3%).

The results can also be broken down into sentence subgroups, consisting of pairs of sentences that are matched 
for the number of syllables, pairs with the number of syllables differing by one, and pairs with the number of 
syllables differing by two. For the matched sentences, the mean scores in quiet with and without noise reduc-
tion were 59.2% (ranging from 40.0 to 77.5%; SD: 8.7%) and 61.9% (ranging from 37.5 to 75.0%; SD: 10.7%), 
respectively. In noise, the mean scores with and without noise reduction were 57.3% (ranging from 45.0 to 77.5%; 
SD: 9.1%) and 50.9% (ranging from 42.5 to 62.5%; SD: 7.4%), respectively. For sentences with the number of 

Figure 3.  Percentage of sentences correctly identified with and without the quasi-causal DPRNN noise 
reduction (NR) and with (light red) and without (dark blue) multi-talker (party) background noise at 2.5 dB 
SNR. Results are shown in box plots, with the horizontal line inside the box showing the median and the top 
and bottom edges of the box showing the upper (0.75) and lower (0.25) quartile, like in Fig. 1. Outliers (values 
of more than 1.5 times the interquartile range) are shown as unfilled circles. The whiskers connect the upper 
and lower quartiles to the maximum and minimum non-outlier value. The dashed grey line shows chance 
performance.
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syllables differing by one, the mean scores in quiet with and without noise reduction were 67.7% (ranging from 
57.5 to 82.5%; SD: 7.5%) and 70.0% (ranging from 55.0 to 80.0%; SD: 7.4%), respectively, and, in noise, were 
59.7% (ranging from 37.5 to 75.0%; SD: 10.4%) and 46.7% (ranging from 40.0 to 57.5%; SD: 4.7%). For sentences 
with the number of syllables differing by two, the mean scores in quiet with and without noise reduction were 
65.9% (ranging from 45.0 to 82.5%; SD: 11.7%) and 66.7% (ranging from 50.0 to 92.5%; SD: 11.8%), and, in 
noise, were 59.2% (ranging from 40.0 to 85.0%; SD: 11.9%) and 54.1% (ranging from 45.0 to 67.5%; SD: 7.0%).

Finally, exploratory post-hoc correlation analyses were run (see “Methods”). These assessed the relationship 
between either participant age or vibro-tactile detection thresholds and either sentence identification scores in 
quiet without noise reduction or the improvement in sentence identification scores in noise with noise reduction. 
No evidence of a correlation between vibro-tactile detection thresholds and sentence identification was found 
(in quiet: r = 0.13, p = 0.632; benefit of noise reduction: r = 0.10, p = 0.713). There was also no clear evidence of 
a correlation between age and sentence identification in quiet (r = 0.37, p = 0.161). There was a trend for older 
participants to get more benefit of noise reduction, but this correlation between age and benefit did not reach 
significance (r = 0.47, p = 0.067).

Discussion
The objective assessment for tactile speech-in-noise showed that the quasi-causal DPRNN noise reduction 
method substantially outperforms traditional noise reduction methods, both for stationary and multi-talker 
background noises. As expected, the largest gains were found for multi-talker background noise (7.6 dB SI-SDR 
compared to 2.9 dB SI-SDR at an SNR of 2.5 dB), where traditional methods are known to particularly struggle. 
Behavioural testing confirmed that the effectiveness of the quasi-causal DPRNN shown in the objective assess-
ment translates to a substantial improvement in tactile sentence identification, without impairing performance 
for speech in quiet. The quasi-causal DPRNN improved behavioural speech-in-noise scores by 8.2%, which 
amounted to a recovery of around half of the performance that was lost when noise was added. The acoustic 
characteristics of the multi-talker noise and the SNR of 2.5 dB are representative of scenarios in which people 
with hearing loss commonly struggle in their everyday lives. The improved noise-robustness with the real-
time-feasible quasi-causal DPRNN could dramatically increase the utility of haptic hearing aids, both when 
used as stand-alone sensory substitution devices and when used for sensory augmentation with CIs and other 
hearing-assistive devices.

A small difference in the performance of the quasi-causal DPRNN between the male and female talkers 
was observed in objective testing. However, this did not translate to a measurable difference in behavioural 
performance. The talkers used for testing were not included in the training set and varied substantially in their 
acoustic properties (see “Methods”). The small objective difference in performance between talkers can likely 
be reduced by using a training corpus with a more diverse set of  talkers35. However, the finding of only small 
objective differences, and no behavioural difference, suggests the current quasi-causal DPRNN would generalise 
well to other talkers.

The causal, quasi-causal, and non-causal DPRNN methods all markedly improved both SI-SDR and eSTOI 
scores in the audio domain, for both noises tested. As expected, better performance was observed when more 
future information was included, with performance increasing between causal and quasi-causal processing and 
between quasi-causal and non-causal processing. The traditional log-MMSE method produced the smallest 
improvement in objective scores, with negligible improvements for the multi-talker (party) noise. It is therefore 
thought unlikely that log-MMSE would have yielded any improvement in behavioural tactile speech-in-noise 
performance. The current results are in line with previous studies showing that the DPRNN and other deep-
learning-based noise reduction methods can improve objective speech intelligibility outcomes in both non-
stationary and stationary  noise17,18,21. In contrast, traditional noise reduction methods fail to achieve significant 
improvements in non-stationary conditions and only provide small benefits in stationary  noise16. The average 
improvements in eSTOI scores of around 0.2 with the DPRNN methods was comparable or better than found 
 previously36, although direct comparisons of the objective scores to previous work are difficult because different 
stimuli were used for evaluation.

The objective results differed somewhat for the tactile domain compared to the audio domain. While consist-
ent benefits in SI-SDR scores for the multi-talker noise were observed in the audio domain for log MMSE, these 
were largely absent in the tactile domain. For the DPRNN methods, the pattern of SI-SDR improvements was 
consistent between audio and tactile domains. However, in the tactile domain, SI-SDR results were compressed 
into a smaller overall range, reducing any differences between methods. This may be explained by tactile vocoding 
lessening the differences between signals, by reducing them to only eight frequency bands and applying low-pass 
filtering. Further work is required to determine whether SI-SDR is an effective predictor of tactile speech recog-
nition in noise. Further work might also assess whether objective and behavioural equivalents of speech quality 
(e.g., the perceptual of evaluation of speech quality (PESQ)  metric37), can also be established for tactile speech.

While behavioural performance in background noise was substantially improved by the quasi-causal DPRNN, 
it was unable to fully recover performance to match that in quiet. There are several possible reasons for this. 
Figure 4 shows the amplitude envelopes from the tactile vocoder used in the current experiment for one of the 
sentences tested. Envelopes are shown with and without the multi-talker background noise and both with and 
without the quasi-causal DPRNN. By comparing the clean speech without the DPRNN (top left panel) to the 
speech in noise with the DPRNN (bottom right panel), it can be observed that, while strong noise rejection was 
achieved, some artefacts remained (for example, before the start of the sentence in channel 8, which is high-
lighted with blue circles). These artefacts may have acted as distractors that increased temporal  uncertainty38–40 
and disrupted estimation of key speech landmarks, such as sentence, syllable, and phoneme start and end points. 
Another subtler difference between the clean envelopes and the envelopes with the DPRNN is the smoothing of 
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some envelope modulations. An example can be seen in channel 2 for the words “…in a…” (highlighted with red 
circles). This smoothing might reduce the salience of speech segments, particularly for speech tokens in which 
rapid envelope changes signal phoneme identity (plosive consonants) or aid speech segmentation.

Noise reduction methods balance removal of background noise and distortion of the speech  signal41. For 
practical applications, speech distortions can be mitigated by limiting the aggressiveness of the noise-reduction 
processing, for example by mixing the DPRNN output signal with the original speech-in-noise signal. The 
optimal balance usually depends on several factors that differ between users, including the acoustic challenges 
typically faced (e.g., the SNR and the character of the background noise) and the amount of speech distortion 
that the user can tolerate. Data on user characteristics is currently lacking for haptic hearing aids, and further 
work is required to establish the optimal balance of noise rejection and speech distortion.

Some of the factors that impaired performance in noise may have had reduced impact or been overcome 
entirely if participants had received training with tactile speech. Previous studies both with tactile sensory 
substitution for speech in  quiet11 and sensory augmentation for speech in  noise3,4,7 have shown that training 
significantly improves performance. This improved ability to extract speech information from tactile stimulation 
might improve robustness to noise artefacts. This suggestion is supported by hearing studies, which have shown 
that training can reduce the impact of masking  sounds42,43. Future work should establish the importance of train-
ing when assessing noise reduction methods for tactile speech, particularly in allowing users to reject artefacts.

Experiential factors other than direct tactile speech training might also be important predictors of tactile 
speech performance. For example, indirect training to extract auditory information from vibration, when using 
a tool or a musical instrument, might generalise to tactile speech. A previous study highlighted the case of a par-
ticipant who, before they received their CI, had learned to play the flute by feeling its  vibrations3. It was speculated 
that this may have contributed to the participant’s unusually large improvement in speech-in-noise performance 
with haptic stimulation even before receiving tactile speech training. Further investigation is required to establish 
whether such factors are predictive of tactile speech performance.

A major challenge for noise reduction methods is the selection of the appropriate talker in a multi-talker 
scene, particularly when the target and a competing talker have a similar intensity. In the current study, compet-
ing speech was well below the level of the target speech, meaning there was little ambiguity as to which talker 
should be targeted by the DPRNN. One method for improving the ability of hearing aids to target the talker 
of interest in challenging multi-talker scenarios is directional filtering through beamforming, which typically 
assumes that the user is facing the sound source of interest. Recently, more advanced methods have been used 
to determine the sound source of interest, such as eye gaze tracking, though so far with limited success (e.g.,44). 
Further work is required to characterise the performance of the quasi-causal DPRNN under conditions with 
high target-talker ambiguity, and the effects of methods, such as beamforming or target speech  extraction45, on 
DPRNN performance.

Figure 4.  Amplitude envelopes extracted from each of the eight frequency bands for the audio-to-tactile 
vocoder method used in objective and behavioural testing. Band 1 represents the lowest frequency band and 
band 8 represents the highest frequency band. Clean speech (top panels) and speech in noise (bottom panels) 
are shown both with (right panels) and without (left panels) the quasi-causal DPRNN. The speech is the 
sentence, “if you’re in a noisy hall”, spoken by the female talker used for testing in the current experiment. This 
was selected to be a representative example of both the successes and failures of the quasi-causal DPRNN. The 
noise was the multi-talker party noise used in the current experiment. The blue circles highlight an example of 
noise contamination after processing with the quasi-causal DPRNN, and the red circles highlight smearing of 
the amplitude envelope. Envelope amplitudes are in linear units and are normalised to the maximum amplitude 
in each panel.
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The quasi-causal DPRNN might be further optimized for tactile speech to improve noise robustness and 
reduce computational complexity. One optimisation might be to place the DPRNN later in the tactile signal-
processing chain. In the current study, the DPRNN was used as front-end noise reduction, being applied to the 
audio before the tactile vocoder. Future studies could explore whether, for example, the DPRNN is more effective 
and efficient if processing only the audio from the eight tactile vocoder audio filter bands, which are designed to 
focus on frequencies most important to speech perception. Alternatively, the DPRNN could be trained specifi-
cally to extract the clean tactile speech envelopes from noise, rather than the clean audio. This would allow the 
speech synthesis (decoder) stage of the DPRNN algorithm to be removed and therefore for the computational 
complexity and processing latency to be reduced. Furthermore, the much smaller spectral resolution of the 
tactile signals (eight channels in the current study) compared to the spectral resolution of acoustic audio may 
allow a substantial reduction in the complexity of the other DPRNN stages, without compromising performance. 
Finally, power efficiency might be optimised by selectively activating the DPRNN only when background noise 
is detected. There are several existing environmental classification algorithms that could be used to achieve this 
(e.g.,33).

Another approach to improving the effectiveness of the DPRNN might be to provide it with multiple micro-
phone signals, rather than single-channel audio. In previous work, the audio received at microphones behind 
each ear was converted to haptic stimulation on each wrist so that spatial hearing cues could be exploited through 
haptics. This has been shown to improve sound  localisation46–49 and speech recognition for spatially-separated 
speech and noise in CI  users9. The improvements in speech-in-noise performance were likely achieved, at least 
in part, through access to better speech information from the ear with the best SNR. In future iterations of the 
DPRNN, this “better-ear-listening”, or more advanced multi-microphone noise-reduction methods (e.g.,50,51) 
could be exploited.

There are important limitations to the current study that should be noted. Firstly, a new tactile sentence iden-
tification task was used, with a forced-choice method deployed to avoid floor effects and circumvent the need 
for prolonged tactile speech training. Unlike some previous methods for assessing tactile speech performance, 
which focus on  phonemes10,14 or  words11, this method was intended to allow the use of a range of key speech 
processing factors. These include segmentation and recognition of phonemes and words in running speech and 
integration of sensory and higher-level (e.g., top-down) processing. Improved ability to discern sentences in 
background noise is expected to strongly predict whether haptic stimulation can work effectively, either when 
delivered alone or when supplementing lip reading or a degraded acoustic signal (e.g., through a CI). However, 
further work is required to conclusively establish this.

Another limitation was that participants in the current study had no known hearing loss, unlike the target 
user group for haptic hearing aids, which consists primarily of CI users and those with a profound hearing loss 
who can’t access CI technology. Previous studies have found no difference in tactile speech performance in 
 quiet10,12,14,52 or in background  noise3,4,9 between those with and without hearing loss. However, there is evidence 
that tactile sensitivity might be higher in those with congenital  deafness53. This might mean that the current 
results underestimate performance for some groups of people with hearing loss.

The participant group also did not cover the full age range of the target user group. Previous studies have 
found no relationship between age and tactile speech  performance3,4,9,10,14 and, in the current study, there was 
also no evidence of a correlation between age (which spanned 19 years) and tactile speech performance in quiet. 
The current study found weak evidence that older users might perform better when extracting speech from 
background noise, but this result needs to be replicated in a larger study to become compelling. While previ-
ous work has found no worsening with age of either temporal gap  detection54 or intensity  discrimination48,55 
for vibro-tactile tones, detection thresholds are known to worsen with  age56. This may mean that adjusting the 
dynamic range of tactile stimulation to take account of differences in sensitivity will be important for maximiz-
ing the effectiveness of haptic hearing aids.

In addition to age, demographic factors such as the duration of deafness might be important predictors of 
tactile speech performance (see  Fletcher57 and Fletcher and  Verschuur5 for extended discussion). The success 
of haptic hearing aids is likely to be heavily determined by the ability of users to integrate tactile speech infor-
mation with speech information gathered through lip reading and through any acoustic or electrical hearing. 
There is evidence that this integration differs across groups. For example, CI users who are implanted after 
several years of deafness have been found to integrate audio and visual information less effectively than those 
who are implanted  early58–60. This may mean that those implanted early will benefit more from haptic hearing 
aids. Another important factor might be the visual acuity of the user. Vision is thought to calibrate auditory 
 responses61 and to guide auditory perceptual  learning62, and could play a similar role for tactile speech. Further 
work is required to establish the groups that can benefit most from haptic hearing aids.

The current study showed that a real-time-feasible quasi-causal DPRNN noise reduction method can sub-
stantially improve tactile sentence identification in noise, while not impairing performance in quiet. The greater 
design space available for haptic hearing aids (and therefore capacity to use larger, more powerful microproces-
sors) compared to other hearing-assistive devices makes deployment of advanced noise-reduction methods, such 
as the DPRNN, more viable. The quasi-causal DPRNN could dramatically increase the effectiveness of haptic 
hearing aids both when used for sensory augmentation alongside devices such as CIs and when used to aid the 
many millions of people around the world who cannot access CI technology.

Methods
Participants
Table 1 shows the characteristics of the 16 adults who completed the behavioural experiment. There were 6 
males and 10 females, with an average age of 24 years (ranging from 18 to 37 years). Participants all had normal 



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7357  | https://doi.org/10.1038/s41598-024-57312-7

www.nature.com/scientificreports/

touch perception, which was assessed through a screening questionnaire and by measuring vibro-tactile detec-
tion thresholds at the fingertip (see “Procedure”). All participants had British English as their first language and 
reported no hearing problems. Participants were each paid an inconvenience allowance of £20 for taking part.

Stimuli
Test material
The tactile stimulus in the experiment phase (after screening), was generated using the EHS Research Group 
Sentence Corpus. This contained 83 sentences, each spoken by both a British English male and British English 
female talker. The sentences were taken from readings (connected discourse) of a public engagement article writ-
ten in a semi-conservational  style63. They contained a range of natural variations in prosodic pattern, speaking 
rate, pitch, and phoneme pronunciation.

The long-term spectrum for each talker is shown in Fig. 5. The male talker had an average fundamental fre-
quency of 147.9 Hz (ranging from 80.5 to 220.7 Hz; SD: 19.0 Hz) and the female talker had an average fundamen-
tal frequency of 205.5 Hz (ranging from 108.2 to 285.7 Hz; SD: 31.4 Hz). The fundamental frequency (estimated 
using a Normalized Correlation Function) and the harmonic ratio (the ratio of the energy at the fundamental 
frequency to the total energy) were determined using the MATLAB “audioFeatureExtractor” object (MATLAB 
R2022b). A 300-ms Hamming window was used, with a 30-ms overlap length. Samples were included in the 
analysis if their harmonic ratio was greater than 0.8.

The EHS Research Group Sentence Corpus was recorded in an anechoic chamber at the Institute of Sound and 
Vibration Research (UK). The audio was recorded using a Rode M5 microphone and RME Fireface UC sound-
card (with a 96 kHz sample rate and a bit depth of 24 bits). The microphone was 0.2 m from the talker’s mouth.

A subset of 60 sentences from the EHS Research Group Sentence Corpus were used in the behavioural and 
objective assessments (see “Table 2”). Each of the 60 sentences were spoken by both the male and female talker 
so that there were 120 speech samples in total. The cross section of sentences had a range of total durations and 
contained a variety of prosodic patterns with different pitch contours, phoneme inventories, syllable numbers, 
and rates. The sentences were grouped in pairs, with 10 of the pairs having the same number of syllables, 10 of 
the pairs differing by 1 syllable, and 10 of the pairs differing by 2 syllables. The pairs were intended to span a 
wide range of difficulties determined by a range of factors. For example, the sentences “They keep on getting 
better and better” and “Together with a team of researchers” do not differ in syllable count, have a similarly high 
proportion of obstruent phonemes, and have a very similar total duration (durations differ by 100 ms or less). 
In contrast, the sentences “That people can wear outside the lab” and “This is one of the main ways your brain 
works out”, have a different number of syllables, a different number of nasal sounds, and a relatively large dif-
ference in total duration (a 600-ms difference for the female talker and a 400-ms difference for the male talker).

In behavioural testing, the conditions with background noise used a non-stationary multi-talker recording 
from a party that was made by the Australian National Acoustic  Laboratory64. The noise sample has a long-term 
spectrum that matches the international long-term average speech spectrum (ILTASS)34. This noise was selected 
to reproduce real-world challenges that haptic hearing aid users would face, including the typical fluctuations 
and modulations due to background speech and other non-stationary sounds. In objective testing, an additional 
stationary noise was used, which was filtered so that its long-term spectrum matched the ILTASS. The stationary 
ILTASS noise served as a comparison condition, with maximal energetic masking, that is widely used in speech 

Table 1.  Participant characteristics. Each participant’s vibro-tactile detection thresholds (measured during 
screening), wrist temperature at the start of testing, wrist dimensions, dominant hand, age, and sex are shown.

ID
31.5 Hz thresh
(m/s−2)

125 Hz thresh
(m/s−2)

Wrist temp. 
(°C)

Wrist height/
width (mm)

Wrist circum 
(mm)

Dom. hand
(L/R) Age (yrs.) Sex (M/F)

1 0.02 0.08 30.3 39/58 166 R 36 M

2 0.02 0.09 28.8 36/48 150 R 22 F

3 0.04 0.08 31.6 36/48 149 L 18 F

4 0.05 0.07 31.6 41/52 160 R 29 M

5 0.06 0.41 32.2 43/55 172 R 37 M

6 0.03 0.03 28.4 32/49 149 R 21 F

7 0.05 0.03 25.6 44/59 171 R 19 M

8 0.05 0.10 31.8 41/50 160 R 23 M

9 0.05 0.06 28.4 43/51 168 R 18 F

10 0.08 0.15 30.1 41/48 148 L 20 F

11 0.08 0.20 28.6 40/49 154 R 20 F

12 0.02 0.03 31 35/51 148 R 28 F

13 0.01 0.05 31 41/51 166 R 26 F

14 0.09 0.29 27.9 39/51 162 R 20 M

15 0.05 0.05 31.2 38/55 153 R 18 F

16 0.02 0.06 34 33/46 138 R 21 F

Mean 0.05 0.11 30.2 39/51 157 – 24 –
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perception studies. It should be noted that the DPRNN was exclusively trained with recordings of realistic back-
ground noises and not with similar artificially generated noises.

For the behavioural speech-in-noise conditions, the speech and noise signals were mixed with a 2.5 dB SNR. 
In the objective assessment, SNRs of − 2.5 and 7.5 dB were additionally tested. Importantly, the RMS level of the 
speech was calculated with silences removed (though note that silences were not removed from the stimulus 
for presentation). Silent sections were identified by extracting the speech amplitude envelope using a Hilbert 
transform and a zero-phase 6th-order Butterworth low-pass filter, with a cut-off frequency of 23 Hz. Sections of 
the speech where the amplitude envelope dropped below 10% of the maximum were removed for the RMS level 
calculation. This meant that SNR setting in the current study was lower than for comparable studies where the 
silences were not removed for the SNR calculation. For the EHS Research Group Sentence Corpus, the 2.5 dB 
SNR was 2.6 dB lower on average when silences were removed than when they were not (ranging across sentences 
from 0.9 to 4.7 dB lower; SD: 0.7 dB). For the more naturalistic speech material used in the current study—which 
contains a variety of prosodic characteristics, with differing syllabic stress patterns, speaking rate and overall 
modulation characteristics – silence-stripping was deemed important to achieving a stable SNR across sentences.

On each trial, the masker duration was set to have a randomly selected gap of between 500 and 1500 ms 
before and after the longest speech stimulus of the sentence pair. This was done to exclude the possibility that 
participants could learn when the sentence onset or offset would be and use total duration cues without detect-
ing the speech signal. If the speech was the shorter sentence of the pair, it was located within the masker at a 
random point within the time window for the longer sentence. The speech and noise samples were ramped on 
and off with a 50-ms raised-cosine ramp. A new randomly selected section of the full noise sample was used in 
each trial. The audio generated for behavioural testing was also used in the objective assessment.

Noise-reduction methods
In both behavioural and objective testing, the audio was first downsampled to 16 kHz for conversion from audio 
to haptic stimulation. This matches the typical sample rate available in compact wearable audio devices, such 
as CIs and hearing aids. In the behavioural assessment, only the quasi-causal DPRNN noise-reduction method 
was tested. For conditions with the quasi-causal DPRNN applied, the audio was first processed with the DPRNN 
algorithm, before being converted to tactile stimulation using the tactile vocoder (see following section).

The DPRNN consisted of an end-to-end time-domain Audio Separation Network (TasNet) with three stages 
(see Fig. 6). In the first stage, a learned encoder block transformed the time-domain audio frames into a 2D 
feature space (similar to a time–frequency representation). The next stage consisted of a masking network, which 
processed consecutive chunks within the latent feature space to estimate a noise-reduction mask. This mask 
was then applied to the noisy input speech representation to remove the background noise and to produce the 
enhanced speech signal. The final stage consisted of a learned decoder block, which transformed the enhanced 
speech signal back into a time-domain audio output signal.

For the encoder and decoder blocks, the DPRNN algorithm used 1D-convolutional layers. The 1-D convolu-
tion layer (CONV1D) transformed a single-channel audio waveform (1-D) into 128 channels. This was achieved 
by individually convolving 128 filter kernels with the input waveform, using a kernel size of 16 (1 ms) and a 
stride of 4 (0.25 ms)  samples22. The masking network consisted of 6 blocks of the DPRNN. The DPRNN has 
two paths, one for processing information in the current chunk only, and one for processing information across 

Figure 5.  The long-term average spectrum of the male and female talker from the EHS Research Group 
Sentence Corpus, with no normalisation applied. The spectrum was calculated from the average power spectral 
density (Hann windowed, with a 96 kHz sample rate, an FFT length of 4096, and a hop size of 2048). The 
average power spectral density was Gaussian-smoothed with a 1/3 octave resolution.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7357  | https://doi.org/10.1038/s41598-024-57312-7

www.nature.com/scientificreports/

chunks. The intra-chunk processing path used bi-directional LSTM layers, whereas the inter-chunk path used 
uni-directional LSTM layers.

The DPRNN algorithm was implemented using the publicly available Asteroid PyTorch  toolkit65. The model 
was retrained for use in the current study with a large dataset of speech-in-noise stimuli comprising of speech 
utterances from the LibriSpeech  corpus66 and noise samples from the WHAM! stimulus  set67 at various SNRs 
(total of 360 h). The SNRs were sampled from a uniform distribution between − 6 and 10 dB, with 5% of the 
speech samples retained to ensure that performance for clean speech had not degraded. These speech and noise 
stimuli differed from those used during behavioural and objective testing of the DPRNN. The training made 
use of the Adam  optimizer68 and the scale-invariant signal-to-distortion  ratio69 as loss functions for a total of 
200 epochs. The training of the DPRNN algorithm was performed on three NVIDIA A100 40GB Tensor Core 
graphics processing units.

In the objective assessment, alternative causal and non-causal DPRNN noise-reduction methods were tested 
in addition to the quasi-causal DPRNN, with different parameters and different use of future information. For 
the non-causal DPRNN, all LSTM units were bi-directional. The bottleneck and hidden dimensions were set to 
128 units and global normalization layers were used. For the quasi-causal DPRNN, the chunks processed by the 
masking network consisted of 20 frames, which limited the use of future information to 5.75 ms to allow real-
time processing to be feasible. The causal DPRNN used no future information. For both the quasi-causal and 
causal DPRNN, bottleneck and hidden dimensions were set to 256 units and channel-wise normalisation was 
used to ensure causal processing of information from the current chunk only. This configuration ensured that 

Table 2.  The subset of 30 sentence pairs used in the behavioural experiment. The 60 sentences listed were also 
used in the objective assessment (but pairings were disregarded). For each pair, the table shows the difference 
in syllable count between the sentences (matched, one different, or two different), the total syllable count for 
each sentence, and the sentence text. The sentence text is the same for the male and female talkers.

Syllable difference Number of syllables Sentence 1 text Sentence 2 text

Matched 3 However Did it work?

Matched 4 Blocked by your head For example

Matched 5 Over and over And the one they chose

Matched 5 For many people Interestingly

Matched 6 It tells you where things are But to reach your left ear

Matched 8 In India, for example When you block it by closing a door

Matched 8 If you’re in a noisy hall This can cause a lot of problems

Matched 9 We were very pleased with what we found They could help people across the world

Matched 10 They keep on getting better and better Together with a team of researchers

Matched 13 We calculated how well they located the sound And the music blaring from the speaker to 
your left

1 Diff 2/3 So far Who is shy

1 Diff 2/3 Quieter We hoped that

1 Diff 4/5 To get a job Through another sense

1 Diff 4/5 Ears, nose, and mouth To make this happen

1 Diff 6/7 And who likes to show off Between the correct speaker

1 Diff 6/7 Touch and temperature When using only their ears

1 Diff 11/12 You listen all the more closely for footsteps This difficulty isn’t a temporary one

1 Diff 11/12 And is always hungrily searching for more Perhaps we can send the missing information

1 Diff 14/15 They might be especially useful in poorer countries They tended to be much closer to the correct 
location

1 Diff 14/15 Which are a type of surgically fitted hearing aid Less than a third of children with hearing 
problems go to school

2 Diff 7/9 Our volunteers performed best If you don’t know where it’s coming from

2 Diff 7/9 Could overcome these problems You can see this from the big blue bar

2 Diff 7/9 As they go about their day As illustrated in figure one

2 Diff 7/9 That we took advantage of The wristbands we are developing

2 Diff 9/11 We measured this distance in degrees Like the voice of the person in front of you

2 Diff 9/11 That people can wear outside the lab This is one of the main ways your brain 
works out

2 Diff 10/12 Or expensive medical equipment Adults with hearing problems in poorer 
countries

2 Diff 10/12 Have been invented to solve this problem And so are often forced to live in poverty

2 Diff 11/13 But because a sense isn’t working properly If you’re trying to follow a conversation

2 Diff 11/13 Now we’re looking to create a device Were converted into vibration on the right 
wrist
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the DPRNN models had approximately the same number of parameters, allowing a fair comparison between 
methods. All models were trained on the same data and used the same training regime.

In addition to the DPRNN, the log-MMSE noise-reduction method was  assessed29. The log-MMSE method 
is based on statistical modelling and is one of the most popular noise reduction methods for hearing-assistive 
devices. It was selected to represent traditional noise-reduction methods in the current study as it has been found 
to be among the best performing traditional  approaches30. The audio was processed with the log-MMSE method 
using the MATLAB (2022b) implementation from  Loizou16.

Tactile vocoder and vibro-tactile stimulation
Following downsampling to 16 kHz and, for some conditions, the application of noise reduction, the signal was 
converted to vibro-tactile stimulation using a tactile vocoder (following the method used previously by Fletcher, 
et al.10). The audio was first passed through a 512th-order FIR filter bank with eight frequency bands, which 
were equally spaced on the auditory equivalent rectangular bandwidth  scale70 between 50 and 7000 Hz. Next, 
the amplitude envelope was extracted for each frequency band using a Hilbert transform and a zero-phase 6th 
order Butterworth low-pass filter, with a cut-off frequency of 23 Hz (targeting the envelope modulation frequen-
cies most important for speech  recognition71,72). These amplitude envelopes were then used to modulate the 
amplitudes of eight fixed-phase vibro-tactile tonal carriers.

The eight tactile tones had frequencies of 94.5, 116.5, 141.5, 170, 202.5, 239, 280.5 and 327.5 Hz. These 
remained within the frequency range that can be reproduced by the latest compact haptic actuators and were 
spaced so as to be discriminable based on vibro-tactile frequency discrimination thresholds from the dorsal 
 forearm73. A different gain was applied to each tone to make them equally detectable across frequency, based 
on previously measured tactile detection  thresholds10,74. The gains were 13.8, 12.1, 9.9, 6.4, 1.6, 0, 1.7, and 4 dB, 
respectively. Tactile stimuli were scaled to have an equal RMS amplitude, with a nominal level of 1.2 G (141.5 
dB ref.  10−6 m/s2). This intensity can be produced by a range of compact, low-powered haptic actuators that are 
suitable for a wearable device.

Throughout behavioural speech identification testing, pink noise was presented through headphones at a 
level of 60 dBA to ensure any auditory cues were masked. During familiarisation, there was no masking noise, 
and the speech audio was played through the headphones at 65 dBA.

Figure 6.  Schematic representation of the quasi-causal dual-path recurrent neural network (DPRNN), with 
layer descriptors: LSTM for long-short term memory, Bi-LSTM for bidirectional LSTM and cLN for channel-
wise layer normalization.
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Apparatus
During behavioural testing, participants sat in a vibration isolated, temperature-controlled room (mean tem-
perature: 23 °C; SD: 0.45 °C). The room temperature and participant’s skin temperature were measured using a 
Digitron 2022T type K thermocouple thermometer, which was calibrated following ISO 806012-56:201775 using 
the method described in Fletcher, et al.10.

In screening, vibrotactile detection thresholds were measured with a HVLab Vibro-tactile Perception  Meter76. 
The circular probe was 6 mm in diameter and contacted the skin through a circular hole in a rigid surround 
that had a 10 mm diameter. The probe gave a constant upward force of 1N. The downward force applied by the 
participant was measured using a force sensor built into the surround. This sensor was calibrated using Adam 
Equipment OIML calibration weights and the amount of force being applied was displayed to the participant. 
The Vibro-tactile Perception Meter output was calibrated using its built-in accelerometers (Quartz Shear ICP, 
model number: 353B43) and a Brüel & Kjær (B&K) Type 4294 calibration exciter. The system conformed to 
ISO-13091-1:200177 and the stimuli had a total harmonic distortion of less than 0.1%.

For the sentence identification task, the EHS Research Group haptic stimulation  rig10 was used (shown in 
Fig. 7). This consisted of a Ling Dynamic Systems V101 shaker suspended from an aluminium strut frame by 
an adjustable elastic cradle. The shaker had a downward facing circular probe with a 10-mm diameter, which 
contacted the participant’s dorsal wrist. A foam block with a thickness of 95 mm was placed below the shaker 
probe for participants to rest their forearm on. The probe applied a downward force of 1N, which was calibrated 
using a B&K UA-0247 spring balance. The shaker was driven using a MOTU UltralLite-mk5 sound card, RME 
QuadMic II preamplifier, and HVLab Tactile Vibrometer power amplifier. The vibration output was measured 
using a B&K 4533-B-001 accelerometer and calibrated using a B&K type 4294 calibration exciter. All stimuli had 
a total harmonic distortion of less than 0.1%.

Masking noise in the experiment phase and speech audio in the familiarisation phase were played to the par-
ticipant through Sennheiser HDA 300 headphones, driven by the MOTU UltralLite-mk5 sound card. The head-
phones were calibrated using a B&K G4 sound level meter with a B&K 4157 occluded ear coupler (Royston, Hert-
fordshire, UK). Sound level meter calibration checks were carried out using a B&K Type 4231 sound calibrator.

Procedure
For each participant, the behavioural experiment was completed in a single session lasting approximately two 
hours. Participants first gave informed consent to take part in the study. They then completed a screening 
questionnaire, which ensured that they (1) had not had any injury or surgery on their hands or arms, (2) did 
not suffer from conditions that might affect their sense of touch, and (3) had not been exposed to intense or 
prolonged hand or arm vibration over the previous 24 h. Their self-reported hearing health was also recorded.

Following this, the participant’s skin temperature on the index fingertip of the dominant hand was measured. 
When the participant’s skin temperature was between 27 and 35 °C, their vibro-tactile detection thresholds were 
measured at the index fingertip following ISO 13091-1:200177. During these measurements, participants applied a 
downward force of 2N, which was monitored by the participant and experimenter using the HVLab Vibro-tactile 
Perception Meter display. Participants were required to have touch perception thresholds in the normal range 
(< 0.4 m/s−2 RMS at 31.5 Hz and < 0.7 m/s−2 RMS at 125 Hz), conforming to ISO 13091-2:202178. The fingertip 
was used for screening as normative data was not available for the wrist. If all screening stages were passed, the 
participant’s wrist dimensions were measured at the position they would usually wear a wristwatch, and they 
proceeded to the experiment phase.

In the experiment phase, participants sat in front of the EHS Research Group haptic stimulation  rig10. They 
placed their arm on the foam surface with the shaker probe contacting the centre of the dorsal wrist, at the 
position where they would normally wear a wristwatch. During the experiment phase, participants performed 
a two-alternative focused-choice sentence identification task, in which they were asked to select which of two 
alternative sentences had been presented through tactile stimulation. This was done using a custom-built MAT-
LAB (2022b) app with three buttons, one that allowed the user to play the stimulus for the current trial, and two 

Figure 7.  3D render of the EHS Research Group haptic stimulation rig, shown from the participant’s point of 
view, with the arm resting on a blue foam surface and the probe (attached to the shaker unit) contacting the 
centre of the dorsal wrist.
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that displayed the sentence text alternatives for the current trial. The app also displayed the instruction: “Select 
the text that matches the sentence played through vibration”. When the play button was pressed, both the buttons 
displaying the sentence text for the alternative response options turned green for the duration of the stimulus. 
The sentence text buttons were only selectable after the stimulus had been played at least once.

Before testing began, participants completed familiarisation to ensure they understood the task. In this stage, 
English male and female speech was used that was different from that used in testing. The male talker was from 
the ARU speech corpus (ID: 02)79 and the female was from the University of Salford speech  corpus80. They each 
spoke four different sentences from the Harvard sentences  set81. Sentences were only played without background 
noise and with no noise reduction applied. The participant was permitted to feel the sentence through tactile 
stimulation or to hear the sentence through the headphones (without tactile signal processing). There was no 
limit placed on the number of times these sentences could be repeated and the participant was encouraged to 
ask the experimenter questions if they were unsure of the task. Once the participants selected one of the sen-
tences, all buttons became inactive for 500 ms. During this period, green text reading “Correct” was displayed if 
the response was correct, or red text reading “Incorrect” was displayed if the response was incorrect. Once the 
experimenter confirmed that the participant understood the task, they continued to the testing stage.

During testing, the participant performed the same task as in familiarisation, except that they could not opt 
to hear the audio stimulus, and the headphones played masking noise. Participants were also limited to a maxi-
mum of four repeats of the tactile stimulus per trial, after which the play button became inactive, and they were 
forced to select one of the two sentence text alternatives. During testing, participants were presented with each 
of the sentence pairs shown in Table 2. The testing regime was designed to determine whether relevant acoustic 
contrasts in running speech could be accurately perceived via tactile stimulation, but to avoid floor effects due to 
the poor open-set intelligibility for tactile-only stimuli (without introducing extensive training or a larger num-
ber of sentence choices with high short-term memory load). All sentences were tested in all four experimental 
conditions once (in quiet and in background noise, both with and without the quasi-causal DPRNN). This meant 
that there was a total of 480 trials for each participant during the testing stage. The trial order was randomised 
for each participant, with a rule that the same sentence could not appear in consecutive trials.

The experimental protocol was approved by the University of Southampton Faculty of Engineering and Physi-
cal Sciences Ethics Committee (ERGO ID: 68477). All research was performed in accordance with the relevant 
guidelines and regulations.

Statistics
Objective assessment
In the objective assessment, the effectiveness of the quasi-causal DPRNN was compared to a causal and non-
causal DPRNN, as well as to the traditional log-MMSE method. In the first part of the assessment, after the 
envelopes were extracted using the tactile vocoder, the SI-SDR for speech in noise was calculated relative to 
the time-aligned envelopes for the clean speech signal (without noise reduction). The median score across the 
eight envelopes was taken for each of the 120 male and female sentences from the EHS Research Group Sen-
tence Corpus. Analysis consisted of a four-way RM-ANOVA (see “Results”) followed by sixteen planned t-test, 
with Bonferroni-Holm multiple comparisons  correction82 applied. These compared (1) the SI-SDRs for each 
noise reduction method to a baseline condition with no noise reduction applied, (2) the improvement in the 
SI-SDR from baseline for the male and female talkers with the quasi-causal DPRNN, and (3) the improvement 
in the SI-SDR with the quasi-causal DRPNN (for both talkers together) and the improvement for the causal 
DPRRN, the non-causal DPRNN, and the log-MMSE method. Data were determined to be normally distributed 
based on visual inspection as well as Kolmogorov–Smirnov and Shapiro–Wilk tests.

In the second part of the assessment, SI-SDR and eSTOI scores were computed for each audio sample (without 
tactile vocoding). For this assessment, the unprocessed clean speech audio was used as the reference.

Behavioural assessment
The percentage of correctly identified sentences was calculated for the male and female talkers in each condi-
tion. Primary analysis consisted of a three-way RM-ANOVA (see “Results”) and six two-tailed t-tests, with a 
Bonferroni-Holm multiple comparisons correction applied. The t-tests compared: (1) identification in quiet with 
and without noise reduction; (2) identification in noise with and without noise reduction; (3) identification in 
quiet without noise reduction and identification in noise with noise reduction; (4) identification in quiet and in 
noise, both without noise reduction; (5) the difference in identification in quiet with and without noise reduction 
for the male and female talkers; and (6) the difference in identification in noise with and without noise reduction 
for the male and female talkers. Data were determined to be normally distributed based on visual inspection and 
Kolmogorov–Smirnov and Shapiro–Wilk tests.

Following the primary analysis, exploratory secondary analysis was performed. These analyses were not cor-
rected for multiple comparisons, as no effects were anticipated, following results from previous studies (e.g.,10).

Data availability
The datasets generated and analysed during the current study are available in the University of Southampton’s 
Research Data Management Repository at: https:// doi. org/ 10. 5258/ SOTON/ D3018.
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