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On topological analysis 
of two‑dimensional covalent 
organic frameworks 
via M‑polynomial
Hong Yang 1, Muhammad Farhan Hanif 2, Muhammad Kamran Siddiqui 3, Mazhar Hussain 3, 
Nazir Hussain 3 & Samuel Asefa Fufa 4*

Covalent organic frameworks (ZnP‑COFs) made of zinc‑porphyrin have become effective materials 
with a variety of uses, including gas storage and catalysis. To simulate the structural and electrical 
features of ZnP‑COFs, this study goes into the computation of polynomials utilizing degree‑based 
indices. We gave a methodical study of these polynomial computations using Excel, illustrating the 
complex interrelationships between the various indices. Degree‑based indices provide valuable 
insights into the connectivity of vertices within a network. M‑polynomials, on the other hand, offer 
a mathematical framework for representing and studying the properties of 2D COFs. By encoding 
structural information into a polynomial form, M‑polynomials facilitate the calculation of various 
topological indices, including the Wiener index, Zagreb indices, and more. The different behavior of 
ZnP‑COFs based on degree‑based indices was illustrated graphically, and this comparison provided 
insightful information for prospective applications and the construction of innovative ZnP‑COF 
structures. Moreover, we discuss the relevance of these techniques in the broader context of materials 
science and the design of functional covalent organic frameworks.
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The study of relationships between items represented as vertices and edges and the connections between these 
objects is the subject of graph G. The degree of vertices u, which describes the number of edges incident to a 
vertex and is denoted by du , is one of the fundamental ideas in graph  theory1. Understanding a graph’s connectiv-
ity and structural characteristics depends on the degree of its vertices. It offers perceptions of how a network’s 
resilience and behavior are affected by the complexity of its relationships. A graph size, or the total number of 
vertices and edges it contains, is another crucial feature. The number of vertices in the graph is also indicated by 
the sequence in which it is constructed. The understanding of graph topologies is improved by all of these ideas, 
which also aid with a number of applications, including social network modeling, chemical structure analysis, 
and transportation system  optimization2.

Using ideas from graph theory, the interdisciplinary area of chemical graph theory analyses and explains the 
structures and behaviors of molecules. “A molecular graph consists of atoms considered as vertices and bonds 
of atoms considered as  edges3. This approach permits the systematic investigation of molecular properties using 
topological indices, which provide quantifiable measurements of size, symmetry, and complexity. For detecting 
isomers, simulating chemical reactions, and projecting properties, chemical graph theory is crucial. It encom-
passes numerous chemicals, materials, and molecular networks, advancing our comprehension of molecular 
behavior and assisting in applications like medicine development and the creation of new materials. Modern 
computational chemistry relies heavily on graph-based models because they make it easier to explore, create, 
and optimize molecules for a variety of  uses4.

The methodology’s flowchart is displayed in Fig.  1. Topological indices are numbers obtained from 
graph topologies and provide information on the connectivity and characteristics of systems, networks, and 
 compounds5. They have numerous uses in a variety of disciplines, such as chemistry, biology, and computer 

OPEN

1School of Computer Science, Chengdu University, Chengdu, China. 2Department of Mathematics and Statistics, 
The University of Lahore, Lahore Campus, Lahore, Pakistan. 3Department of Mathematics, COMSATS University 
Islamabad, Lahore Campus, Lahore, Pakistan. 4Department of Mathematics, Addis Ababa University, Addis Ababa, 
Ethiopia. *email: samuel.asefa@aau.edu.et

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-57291-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6931  | https://doi.org/10.1038/s41598-024-57291-9

www.nature.com/scientificreports/

science. The sum of the shortest paths in a graph is measured by the Wiener index, which reflects the complex-
ity and size of molecules. Based on nearby vertex degrees and bond multiplicities, the Randi ć index makes 
predictions about characteristics. By capturing vertex degrees and degree products, Zagreb indices can reveal 
symmetry and complexity. These indices offer quantitative details about buildings, assisting with compound 
design and property  prediction6. Technological advancements make the ability to apply computing to complex 
systems possible, underscoring its expanding significance in cross-disciplinary  studies7.

A map with several authors each working on m polynomials (based on the Scopus database https://www.sco-
pus.com/) connected is depicted in Fig. 2. The collaborative network between authors working on m polynomials 
is depicted in this picture. The thickness of the edge denotes the number of co-publications between the two 
authors, while the size of the node denotes the author’s total number of publications. The image demonstrates 
the many author groupings working on m polynomials. Farhani M.R., who has co-authored works with many 
of the other authors in the figure, is the focal point of one cluster. Mirza A., who has written papers with many 
of the other authors, is the center of another cluster. A group of writers is also concentrated around Thapa, D.K.

The partnerships between scholars from those nations on m-polynomials are represented by the lines sepa-
rating the countries. The number of partnerships between the two countries is shown by the line’s thickness. 
Figure 3 demonstrates that Pakistan is the nation that is most engaged in m-polynomial research. Many of the 
other nations shown in the picture, such as China, South Korea, India, and the United Kingdom, are partners 
with it. India is a significant contributor to the study of m-polynomials. It collaborates with a large number of 
the other nations shown in the graph, including the US, South Korea, Japan, and China.

Afzal et al.8 computed the M-polynomial using the degree-based indices. Raza et al.9 discussed the degree-
based polynomial of some nanostructures. Jahangeer Baig et al.10 analyzed the important class of graphs using 
degree-based indices and polynomials. Koam and Ahmad discussed the polynomials for three-dimensional 
mesh networks. Hasan A et al.11 for the X-level wheel graph, the polynomial based on proximity and angle was 
determined. Julietraja et al.12 used m-polynomial analysis to carry out the computation of topological descrip-
tors for coronoid systems. Ghani et al.13 used valency-based m-polynomial analysis to investigate the concise 
representation of pharmaceuticals. Sarkar et al.14,15 discussed the m-polynomial.

Rasool et al.16 related ve− indices and Mve−Polynomial of r- Regular Simple Graph. Xavier et al.17 used 
the neighborhood M-Polynomial technique to have a conversation about the chemical descriptors of penta 
heptagonal nanostructures. Balasubramanian has established the relationship between entropies, topological 
indices, graph spectra, Laplacians, and matching polynomials in the context of n-dimensional hypercubes. 
Chu et al.18 calculated the benzenoid triangular and hourglass system’s Zagreb type polynomial. Hakami et al.19 
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Figure 1.  Flowchart to measure a m-polynomial.
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M-polynomials were used as a crucial analytical tool to conduct an extensive investigation of two-dimensional 
coronene fractal structures. Different M-polynomial and topological descriptors are defined in Table 1.

Two‑dimensional (2D) ZnP‑COF structures
A novel family of materials known as porphyrin-based two-dimensional (2D) Znp-COF structures has evolved. 
These materials combine the special characteristics of porphyrin molecules with the custom architecture of COFs. 
These structures’ adaptable and diverse qualities make them extremely promising for a wide range of applica-
tions. The properties and functionalities of the material can be precisely tuned by adding zinc (Zn) atoms to the 
COF  framework20. These porphyrins-based 2D Znp-COFs have outstanding porosity and surface area, which is 
one of their major characteristics. A porous structure with controlled pore diameters is created by the carefully 
planned arrangement of organic linkers and porphyrin units, allowing for effective gas adsorption, separation, 

Figure 2.  Bibilography analysis for an author working on M-polynomial.

Figure 3.  Bibilography analysis for an author working on m polynomial.
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and storage. Additionally, the porphyrins’ intrinsic-conjugated nature endows the substance with intriguing 
electrical properties that make it appealing for use in electronics and  optoelectronics21.

The inclusion of zinc in the COF framework creates more potential paths. Zn can be combined with functional 
molecules to provide specific amounts of reactivity and selectivity. Due to their adaptable design, Znp-COFs 
make ideal choices for catalysis, sensing, and drug delivery systems. Furthermore, these hybrid materials are 
highly suited for addressing present problems in energy conversion and storage due to the functional diversity 
of porphyrins, stability and structural resilience of COFs, and coordination ability of Zn. The main objective 
of the research has been to identify the distinguishing structural traits and applications of porphyrin-based 2D 
Znp-COFs. As we gain a better knowledge of their characteristics, the potential for advancements in fields like 
sustainable chemistry, photonics, and beyond becomes increasingly  evident22.

These materials serve as an excellent illustration of the extraordinary progress being made at the nexus of 
organic synthesis, materials science, and nanotechnology, offering up new opportunities for innovation that may 
completely alter several industrial and technological environments see Fig. 4.

Main results
To begin this section, we compute a number of degree-based topological indices for the two- dimensional ZnP-
COF. Figure 4 illustrates the structure of the two- dimensional ZnP-COF. The method of edge partitioning and 
vertices degree counting is the main strategy employed here.

Theorem 1 Crystallographic structure of the graph of G ≈ ZnP − COF[m; n] , where m; n ≥ 1

We have:

Proof Let G be the crystallographic structure of ZnP−COF[m; n] . The edge set of ZnP−COF is given as:

Thus, using Table 1, the M-polynomial of ZnP−COF is

  �

Theorem 2 Crystallographic structure of the graph of G ≈ ZnP−COF , where m; n ≥ 1

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

E1 =E(1,3) = 4m+ 4n

E2 =E(2,2) = 12mn

E3 =E(2,3) = 64mn− 4m− 4n

E4 =E(3,3) = 28mn+ 2m+ 2n

E5 =E(3,4) = 4mn

M(G, ã, b̃) =
∑

1≤3

m13(G)ã
1b̃3 +

∑

2≤2

m22(G)ã
2b̃2 +

∑

2≤3

m23(G)ã
2b̃3 +

∑

3≤3

m33(G)ã
3b̃3 +

∑

3≤4

m34(G)ã
3b̃4

M(G, ã, b̃) =
∑

pq∈E1

m13(G)ã
1b̃3 +

∑

pq∈E2

m22(G)ã
2b̃2 +

∑

pq∈E3

m23(G)ã
2b̃3 +

∑

pq∈E4

m33(G)ã
3b̃3 +

∑

pq∈E5

m34(G)ã
3b̃4

M(G, ã, b̃) =|E1(G)|ã
1b̃3 + |E2(G)|ã

2b̃2 + |E3(G)|ã
2b̃3 + |E4(G)|ã

3b̃3 + |E5(G)|ã
3b̃4

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

Table 1.  Degree-based indices and their polynomials. Dã = ã(δ/δã)M(G, ã, b̃)|
ã=b̃=1

, 

D
b̃
= b̃(δ/δ

b̃
)M(G, ã, b̃)|

ã=b̃=1
,δã =

∫ ã
0
M(G, x, b̃)/xdx, δ

b̃
=

∫ b̃
0
M(G, ã, y)/ydy,J = (M; ã, ã), 

Qã = xãM(G; ã, b̃)ã �= 0.  

Topological indices f (ã, b̃) M(G, ã, b̃)

First Zagreb index ã+ b̃ M1(G, ã, b̃)=(Dã + D
b̃
)M(G, ã, b̃)|

ã=b̃=1

Second Zagreb index ãb̃ M2(G, ã, b̃) = (DãDb̃
)M(G, ã, b̃)|

ã=b̃=1

Second modified Zagreb index 1

ãb̃

mM2(G, ã, b̃) = (δãδb̃)M(G, ã, b̃)|
ã=b̃=1

General Randić index, ã �= 0 (ãb̃)α Rα(G) = (Dα
ã
Dα

b̃
)M(G, ã, b̃)|

ã=b̃=1

Inverse general Randić index, ã �= 0 1

(ãb̃)α
RRα(G, ã, b̃) = (δãα

ã
δãα

b̃
)M(G, ã, b̃)|

ã=b̃=1

Symmetric division index ã2+b̃2

ãb̃
SSD(G) = |Dãδb̃ + D

b̃
δã|ã=b̃=1

Harmonic index 2

ã+b̃
H(G) = 2δ

b̃
JM(G, ã, b̃)|ã=1

Inverse sum index ãb̃

ã+b̃
I(G) = δã JDãDb̃

M(G, ã, b̃)|ã=1
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We have:

Proof Suppose that,

is M-Polynomial of ZnP−COF

Now

Find Dã

Similarly, find D
b̃

Using Table 1 we have,

  �

Theorem 3 Crystallographic structure of the graph of G ≈ ZnP−COF , where m; n ≥ 1

M1(G) =564mn+ 8(n+m).

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

Dã =
∂f

∂a
.a

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

Dã =4(n+m)ãb̃
3
+ 2(12mn)ã2b̃2 + 2(64mn− 4m− 4n)ã2b̃3 + 3(28mn+ 2m+ 2n)ã3b̃3 + 3(4mn)ã3b̃4

D
b̃
=34(n+m)ãb̃

3
+ 2(12mn)ã2b̃2 + 3(64mn− 4m− 4n)ã2b̃3 + 3(28mn+ 2m+ 2n)ã3b̃3 + 4(4mn)ã3b̃4

M1(G) =[4(n+m)+ 2(12mn)+ 2(64mn− 4m− 4n)+ 3(28mn+ 2m+ 2n)+ 3(4mn)]

+ [34(n+m)+ 2(12mn)+ 3(64mn− 4m− 4n)+ 3(28mn+ 2m+ 2n)+ 4(4mn)]

M1(G) = 564mn+ 8m+ 8n.

Figure 4.  Molecular structure of Porphyrin based two-dimensional covalent organic framework (ZnP-COF)21.
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We have:

Proof Suppose that,

is M-Polynomial of ZnP−COF
Find Dã

Take D
b̃

Using Table 1 we have,

  �

Theorem 4 Crystallographic structure of the graph of G ≈ ZnP−COF.

We have:

Proof Suppose that,

is M-Polynomial of ZnP−COF UsinG Table 1, we have

Apply integration on both sides.

Take δ
b̃

Now, take δã

Using Table 1, we have:

  �

M2(G) =732mn+ 6m+ 6n.

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

Dã =4(n+m)ãb̃
3
+ 2(12mn)ã2b̃2 + 2(64mn− 4m− 4n)ã2b̃3 + 3(28mn+ 2m+ 2n)ã3b̃3 + 3(4mn)ã3b̃4

D
b̃
Dã =34(n+m)ãb̃

3
+ 4(12mn)ã2b̃2 + 6(64mn− 4m− 4n)ã2b̃3 + 9(28mn+ 2m+ 2n)ã3b̃3 + 12(4mn)ã3b̃4

M2(G) =12(n+m)+ 4(12mn)+ 6(64mn− 4m− 4n)+ 9(28mn+ 2m+ 2n)+ 12(4mn).

M2(G) =732mn+ 6m+ 6n.

mM2(G) =
461

54
mn+

10

9
m+

10

9
n.

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

f (x, b̃) =4(n+m)xb̃3 + (12mn)x2b̃2 + (64mn− 4m− 4n)x2b̃3 + (28mn+ 2m+ 2n)x3b̃3 + (4mn)x3b̃4

f (x, b̃)

x
=4(n+m)b̃3 + (12mn)xb̃2 + (64mn− 4m− 4n)xb̃3 + (28mn+ 2m+ 2n)x2b̃3 + (4mn)x2b̃4

∫ ã

0

f (x, b̃)

x
dx =4(n+m)b̃3

∫ ã

0

dx + (12mn)b̃2
∫ ã

0

xdx + (64mn− 4m− 4n)b̃3
∫ ã

0

xdx

+ (28mn+ 2m+ 2n)b̃3
∫ ã

0

x2dx + (4mn)b̃4
∫ ã

0

x2dx

= 4(n+m)ãb̃
3
+

1

2
(12mn)ã2b̃2 +

1

2
(64mn− 4m− 4n)ã2b̃3

+
1

2
(28mn+ 2m+ 2n)ã3b̃3 +

1

3
(4mn)ã3b̃4

δ
b̃
=
1

3
4(n+m)ãb̃

3
+

1

4
(12mn)ã2b̃2 +

1

6
(64mn− 4m− 4n)ã2b̃3 +

1

6
(28mn+ 2m+ 2n)ã3b̃3 +

1

9
(4mn)ã3b̃4

δãδb̃ =
1

3
4(n+m)ãb̃

3
+

1

8
(12mn)ã2b̃2 +

1

12
(64mn− 4m− 4n)ã2b̃3 +

1

18
(28mn+ 2m+ 2n)ã3b̃3 +

1

27
(4mn)ã3b̃4

mM2(G) =
1

3
4(n+m)+

1

8
(12mn)+

1

12
(64mn− 4m− 4n)+

1

18
(28mn+ 2m+ 2n)+

1

27
(4mn)

mM2(G) =
461

54
mn+

10

9
m+

10

9
n.
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When the second Zagreb index is compared to the other Zagreb index, an obvious trend can be seen, accord-
ing to the study of Table 2 and Fig. 5. It is clear that the second Zagreb index shows a quicker increase. Its sensi-
tivity to particular molecular graph structure elements can be attributed to this phenomenon. In computing the 
second Zagreb index, the squared degrees of vertices are added, highlighting higher-degree vertices and complex 
connection patterns. Figure 5 graphically illustrates the increased responsiveness impact on the steeper growth 
rate. The efficacy of the second Zagreb index in capturing complicated branching and symmetry properties inside 
molecular structures is demonstrated by this peculiar behavior.

Theorem 5 Crystallographic structure of the graph of G ≈ ZnP−COF.

We have:

Proof Suppose that,

is M-Polynomial of ZnP−COF Find Dã

Take D
b̃

Take α on above equation

Using formula from Table 1, we have:

  �

Theorem 6 Crystallographic structure of the graph of G ≈ ZnP−COF

We have:

Rα(G) =3
α
4(n+m)ãb̃

3
+ 4

α(12mn)ã2b̃2 + 6
α(64mn− 4m− 4n)ã2b̃3 + 9

α(28mn+ 2m+ 2n)ã3b̃3 + 12
α(4mn)ã3b̃4.

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

Dã =4(n+m)ãb̃
3
+ 2(12mn)ã2b̃2 + 2(64mn− 4m− 4n)ã2b̃3 + 3(28mn+ 2m+ 2n)ã3b̃3 + 3(4mn)ã3b̃4

DãDb̃
=12(n+m)ãb̃

3
+ 4(12mn)ã2b̃2 + 6(64mn− 4m− 4n)ã2b̃3 + 9(28mn+ 2m+ 2n)ã3b̃3 + 12(4mn)ã3b̃4

Dα
ã D

α

b̃
=3

α
4(n+m)ãb̃

3
+ 4

α(12mn)ã2b̃2 + 6
α(64mn− 4m− 4n)ã2b̃3 + 9

α(28mn+ 2m+ 2n)ã3b̃3 + 12
α(4mn)ã3b̃4

Rα(G) =3
α
4(n+m)ãb̃

3
+ 4

α(12mn)ã2b̃2 + 6
α(64mn− 4m− 4n)ã2b̃3 + 9

α(28mn+ 2m+ 2n)ã3b̃3 + 12
α(4mn)ã3b̃4

Table 2.  Numerical comparison of Zagreb type index polynomials.

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

M1 580 2288 5124 9088 14180 20400 27748 36224 45828 56560

M2 744 2952 6624 11760 18360 26424 35952 46944 59400 73320
mM2 10.75 38.59 83.50 145.48 224.53 320.66 433.87 564.14 711.50 875.92

Figure 5.  Graphical comparison of Zagreb type index polynomials.
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Proof Suppose that,

is M-Polynomial of ZnP−COF
Take δã

Now, take δ
b̃

Take α on above equation

The Inverse Randić:

  �

When comparing the behavior of the Randić index for the parameter α = 1 to the other Randić index, 
Table 3 and Fig. 6 reveal a clear trend. It is clear that the Randić index shows a noticeably faster growth when 
α = 1 . These phenomena can be explained by the precise effect of the parameter alpha on the calculation of the 
index. When α = 1 , the index gives more weight to neighboring vertex degrees, making it more sensitive to the 
graph’s near-immediate connection. The greater growth rate, as seen in Fig. 6, emphasizes this index increased 
responsiveness to regional structural configurations. This unique pattern demonstrates how well the Randić 
index captures and quantifies the close spatial interactions in a molecular graph. The Randić index with α = 1 is 
a useful tool for forecasting features that are influenced by close connection patterns as a result of this accelerated 
growth, underscoring its usefulness in identifying different chemical compounds with unique local structures.

RRα(G) =
1

3α
4(n+m)+

1

4α
(12mn)+

1

6α
(64mn− 4m− 4n)+

1

9α
(28mn+ 2m+ 2n)+

1

12α
(4mn).

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

δã =4(n+m)ãb̃
3
+

1

2
(12mn)ã2b̃2 +

1

2
(64mn− 4m− 4n)ã2b̃3 +

1

3
(28mn+ 2m+ 2n)ã3b̃3 +

1

3
(4mn)ã3b̃4

δãδb̃ =
1

3
4(n+m)ãb̃

3
+

1

4
(12mn)ã2b̃2 +

1

6
(64mn− 4m− 4n)ã2b̃3 +

1

9
(28mn+ 2m+ 2n)ã3b̃3 +

1

12
(4mn)ã3b̃4

δãαã δã
α

b̃
=

1

3α
4(n+m)ãb̃

3
+

1

4α
(12mn)ã2b̃2 +

1

6α
(64mn− 4m− 4n)ã2b̃3 +

1

9α
(28mn+ 2m+ 2n)ã3b̃3 +

1

12α
(4mn)ã3b̃4

RRα(G) =f (ã, b̃)|
ã=b̃=1

RRα(G) =
1

3α
4(n+m)+

1

4α
(12mn)+

1

6α
(64mn− 4m− 4n)+

1

9α
(28mn+ 2m+ 2n)+

1

12α
(4mn)

Table 3.  Numerical comparison of Randić type index polynomials.

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

α = 1 744 2952 6624 11760 18360 26424 35952 46944 59400 73320

α = −1 16.14 60.25 132.58 233.14 361.92 518.92 704.14 917.58 1159.25 1429.14

α = 1
2

284.88 1127.02 2526.40 4483.02 6996.90 10068.02 13696.39 17882.00 22624.87 27924.98

α = − 1
2

38.94 148.01 328.00 578.91 900.75 1293.51 1757.19 2291.80 2897.32 3573.77

Figure 6.  Graphical comparison of Randić index polynomials.
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Theorem 7 Crystallographic structure of the graph of G ≈ ZnP−COF.

We have:

Proof Suppose that,

is M-Polynomial of ZnP−COF
Find δ

b̃

Now, take Dã

Find δã

Now, take D
b̃

Using Table 1 we have,

  �

Theorem 8 Crystallographic structure of the graph of G ≈ ZnP−COF[m; n] , where n;m ≥ 1

We have:

Proof Suppose that,

is M-Polynomial of ZnP−COF
Find Jf (ã, b̃)

Take δã

The Harmonic index:

SSD(G) =227mn+
26

3
m+

26

3
n.

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

δ
b̃
=
1

3
4(n+m)ãb̃

3
+

1

2
(12mn)ã2b̃2 +

1

3
(64mn− 4m− 4n)ã2b̃3 +

1

3
(28mn+ 2m+ 2n)ã3b̃3 +

1

4
(4mn)ã3b̃4

δ
b̃
Dã =

1

3
4(n+m)ãb̃

3
+

2

2
(12mn)ã2b̃2 +

2

3
(64mn− 4m− 4n)ã2b̃3 +

3

3
(28mn+ 2m+ 2n)ã3b̃3 +

3

4
(4mn)ã3b̃4

δã =4(n+m)ãb̃
3
+

1

2
(12mn)ã2b̃2 +

1

2
(64mn− 4m− 4n)ã2b̃3 +

1

3
(28mn+ 2m+ 2n)ã3b̃3 +

1

3
(4mn)ã3b̃4

δãDb̃
=34(n+m)ãb̃

3
+

2

2
(12mn)ã2b̃2 +

3

2
(64mn− 4m− 4n)ã2b̃3 +

3

3
(28mn+ 2m+ 2n)ã3b̃3 +

4

3
(4mn)ã3b̃4

SSD(G) =

[

1

3
4(n+m)+

2

2
(12mn)+

2

3
(64mn− 4m− 4n)+

3

3
(28mn+ 2m+ 2n)+

3

4
(4mn)

]

+

[

34(n+m)+
2

2
(12mn)+

3

2
(64mn− 4m− 4n)+

3

3
(28mn+ 2m+ 2n)+

4

3
(4mn)

]

SSD(G) =227mn+
26

3
m+

26

3
n.

H(G) =
2209

105
mn+

8

15
m+

8

15
n.

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

Jf (ã, b̃) = Jf (a, a) =4(n+m)aã3 + (12mn)ã2ã2 + (64mn− 4m− 4n)ã2ã3 + (28mn+ 2m+ 2n)ã3ã3 + (4mn)ã3ã4

=4(n+m)ã4 + (12mn)ã4 + (64mn− 4m− 4n)ã5 + (28mn+ 2m+ 2n)ã6 + (4mn)ã7

δãJf (ã, b̃) =
1

4
4(n+m)ã4 +

1

4
(12mn)ã4 +

1

5
(64mn− 4m− 4n)ã5 +

1

6
(28mn+ 2m+ 2n)ã6 +

1

7
(4mn)ã7

H(G) =2(δãJf (ã, b̃))|a=1

H(G) =
1

4
4(n+m)+

1

4
(12mn)+

1

5
(64mn− 4m− 4n)+

1

6
(28mn+ 2m+ 2n)+

1

7
(4mn)

H(G) =
2209

105
mn+

8

15
m+

8

15
n.
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  �

Theorem 9 Crystallographic structure of the graph of G ≈ ZnP−COF . We have:

Proof Suppose that,

is M-Polynomial of ZnP−COF
Take D

b̃

Now, take Dã

Find JD
b̃
Dã

Take δã

The Inverse sum index:

  �

The comparison of the data in Table 4 and the graphical display in Fig. 7 reveals a clear pattern regarding the 
rate of increase for various indices. Particularly, as compared to both the harmonic index and the inverse sum 
index, the symmetric division index shows a substantially faster rise. The symmetric division index’s distinctive 
mathematical properties, which more clearly highlight changes in graph structure, are credited with this insight. 
The index’s enhanced sensitivity to minute structural details inside molecular graphs is highlighted by this rapid 
trend. The relevance of the symmetric division index in capturing subtle molecular subtleties is highlighted by 
the graphically appealing representation in Fig. 7. As a result, it appears that the symmetric division index has a 
clear advantage over the harmonic and inverse sum indices for identifying the intricate molecular architecture, 
allowing it to offer insightful information for some structural investigations and prognostication.

Conclusion
The degree-based topological indices of the two-dimensional ZnP-COF were explored in this study, including 
noteworthy indices. Furthermore, topological indices for the two-dimensional ZnP-COF were derived using 
a variety of common polynomials. The knowledge gained from this work has the potential to be applied in the 
fields of chemical and pharmaceutical research by being incorporated into several Quantitative Structure-Activity 
Relationship (QSAR) models. By calculating additional topological indices for the two-dimensional ZnP-COF 
based on degrees and counts, this study expands the field and advances our understanding of the structural 
characteristics of this material.

δãJDb̃
Dã =

4818

35
mn+

6

5
m+

6

5
n.

M(G, ã, b̃) =4(n+m)ãb̃
3
+ (12mn)ã2b̃2 + (64mn− 4m− 4n)ã2b̃3 + (28mn+ 2m+ 2n)ã3b̃3 + (4mn)ã3b̃4

D
b̃
=34(n+m)ãb̃

3
+ 2(12mn)ã2b̃2 + 3(64mn− 4m− 4n)ã2b̃3 + 3(28mn+ 2m+ 2n)ã3b̃3 + 4(4mn)ã3b̃4

D
b̃
Dã =34(n+m)ãb̃

3
+ 4(12mn)ã2b̃2 + 6(64mn− 4m− 4n)ã2b̃3 + 9(28mn+ 2m+ 2n)ã3b̃3 + 12(4mn)ã3b̃4

JD
b̃
Dã =34(n+m)aã3 + 4(12mn)ã2ã2 + 6(64mn− 4m− 4n)ã2ã3 + 9(28mn+ 2m+ 2n)ã3ã3 + 12(4mn)ã3ã4

=34(n+m)ã4 + 4(12mn)ã4 + 6(64mn− 4m− 4n)ã5 + 9(28mn+ 2m+ 2n)ã6 + 12(4mn)ã7

δãJDb̃
Dã =

3

4
4(n+m)ã4 + (12mn)ã4 +

6

5
(64mn− 4m− 4n)ã5 +

9

6
(28mn+ 2m+ 2n)ã6 +

12

7
(4mn)ã7

δãJDb̃
Dã|a=1 =

3

4
4(n+m)+ (12mn)+

6

5
(64mn− 4m− 4n)+

9

6
(28mn+ 2m+ 2n)+

12

7
(4mn)

δãJDb̃
Dã =

4818

35
mn+

6

5
m+

6

5
n.

Table 4.  Numerical comparison of different index polynomials.

[m, n] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7] [8, 8] [9, 9] [10, 10]

SSD(G) 244.33 942.67 2095.00 3701.33 5761.67 8276.00 11244.33 14666.67 18543.00 22873.33

H(G) 22.10 86.29 192.54 340.88 531.29 763.77 1038.33 1354.97 1713.69 2114.48

δãJDb̃
Dã 140.06 555.43 1246.11 2212.11 3453.43 4970.06 6762.00 8829.26 11171.83 13789.71
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