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A novel MPPT technology based 
on dung beetle optimization 
algorithm for PV systems 
under complex partial shade 
conditions
Chunliang Mai 1,2, Lixin Zhang 1,2*, Xuewei Chao 1,2, Xue Hu 1,2, Xiaozhao Wei 3 & Jing Li 1,2

Solar power is a renewable energy source, and its efficient development and utilization are important 
for achieving global carbon neutrality. However, partial shading conditions cause the output of PV 
systems to exhibit nonlinear and multipeak characteristics, resulting in a loss of output power. In this 
paper, we propose a novel Maximum Power Point Tracking (MPPT) technique for PV systems based 
on the Dung Beetle Optimization Algorithm (DBO) to maximize the output power of PV systems 
under various weather conditions. We performed a performance comparison analysis of the DBO 
technique with existing renowned MPPT techniques such as Squirrel Search Algorithm, Cuckoo search 
Optimization, Horse Herd Optimization Algorithm, Particle Swarm Optimization, Adaptive Factorized 
Particle Swarm Algorithm and Gray Wolf Optimization Hybrid Nelder-mead. The experimental 
validation is carried out on the HIL + RCP physical platform, which fully demonstrates the advantages 
of the DBO technique in terms of tracking speed and accuracy. The results show that the proposed 
DBO achieves 99.99% global maximum power point (GMPP) tracking efficiency, as well as a maximum 
improvement of 80% in convergence rate stabilization rate, and a maximum improvement of 8% 
in average power. A faster, more efficient and robust GMPP tracking performance is a significant 
contribution of the DBO controller.

Keywords Global maximum power point, Multiple peaks, Partial shading, Photovoltaic arrays, Dung beetle 
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Abbreviations
PV  Photovoltaic
DBO  Dung beetle optimization
PSC  Partial shadow condition
CPS  Complex partial shadow
SSA  Squirrel search algorithm
CS  Cuckoo search optimization
HOA  Horse herd optimization
PSO  Particle swarm optimization
MPPT  Maximum power point tracking
FMSPSO  Adaptive factor selection multi-swarm PSO
GWO-NM  Hybrid Grey wolf optimizer-Nelder mead
GMPP  Global maximum power point
HIL  Hardware-in-loop
RCP  Rapid control prototype
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LM  Local maxima
GM  Global maxima

List of symbols
I  Output current
V  Output voltage
Iph  Photogenerated current
q  Electronic charge
Rph  Equivalent parallel resistance
Rsh  Equivalent series resistance
k  Boltzmann’s constant
T  Operating temperature
Nm  Number of cells connected in series
Np  Number of cells connected in parallel
A  Characteristic constant
Io  Equivalent diode current
α  Natural coefficient
Lb*  Lower bound of the spawning area
Ub*  Upper bound of the spawning area
g  Random vectors

The world is facing emerging problems such as climate change, the depletion of traditional fossil fuels, and 
sustainable development. Solar power generation has become one of the most rapidly developed and largest 
industries in the renewable energy sector due to its green, clean, safe, and stable  characteristics1. However, 
solar photovoltaic (PV) panels are very sensitive and susceptible to factors such as light intensity, temperature, 
and load. These dynamic behaviours make maximum power point tracking (MPPT) of PV arrays a challenge. 
In natural environments, PV arrays are shaded by trees, clouds, etc., resulting in uneven light and thus partial 
shading. Under resulting partial shading conditions (PSCs), the P-U characteristic curve of a PV array exhibits 
multiple peaks, including multiple local minima (LM) and a unique global minima (GM), which results in PV 
modules not being able to reach the optimal operating point at all  times2,3. Therefore, effective MPPT for PV 
systems in complex environments is essential for improving solar energy utilization.

The MPPT of a PV system is mainly used to ensure that the output power is always stabilized at the maximum 
power point (MPP) by continuously adjusting the operating point of the PV modules, to increase the power 
generation  output4. According to the output characteristics of the PV system, the current MPPT algorithms can 
be divided into three main  categories5: (1) optimization model-based control algorithms; (2) control algorithms 
based on perturbation self-seeking optimization; and (3) control algorithms based on intelligent principles. 
Optimization model-based control algorithms mainly include open-circuit voltage  detection6 and short-circuit 
current  detection7. These types of methods are characterized by controlling the output voltage of the photovoltaic 
cell to ensure that it stabilizes near the set point value, which is set close to the maximum power point voltage 
under normal conditions. The control algorithm based on the optimization model has a simple structure, is easy 
to implement, has favourable stability, and reaches the set value faster. However, such methods cannot guaran-
tee that the system truly operates at the maximum power point, and the system cannot be tracked in real time, 
which causes power loss when the external environment  changes8. Control algorithms based on disturbance 
self-optimization mainly include Perturbation and Observation (P&O)9,10, and the Incremental Conductance 
Algorithm (ICA)11,12. These control algorithms directly measure the voltage and current output values of a PV 
power generation system and realize MPPT according to its output information without detecting changes in 
the external environment, and the structure is relatively simple. These control algorithms directly measure the 
voltage and current output of the PV power generation system and realize MPPT according to this output infor-
mation, (without detecting changes in the external environment), and the corresponding structure is relatively 
simple. However, this type of algorithm exhibits poor convergence, steady state oscillations, and slow tracking 
speeds, leading to high energy loss. Simultaneously, this type of method fails when there are localized shadow 
conditions and changing  irradiance13. To improve the MPPT tracking performance of this class of methods, 
researchers have improved them.  Reference14 proposed an optimized hill-climbing method with dynamic step 
size, which eliminates the output steady-state oscillations.  Reference15 improved the perturbation observation of 
hair by initiating a reverse strategy, which greatly improved the MPPT tracking performance of the traditional 
perturbation observation method.  Reference16 proposes a ’reduced and fixed’ improved perturbation observa-
tion method that reduces the output oscillations to zero and improves the response rate. However, the response 
speed of the system may decrease when the weather conditions are constantly changing. Control algorithms 
based on intelligent principles include fuzzy logic control (FLC)17,18, artificial neural network (ANN) control 
 methods19,20, evolutionary computation (EC)21–23, and metaheuristic  methods24.  Reference25 used FLC control to 
realize multipeak MPPT. FLC has excellent convergence speed, but its practical use is affected by the experience 
of engineers.  Reference26 used an ANN to realize multipeak MPPT, but the ANN needs a very specific and large 
amount of data to be trained to produce accurate results, and the application of the ANN has high hardware 
costs.  Reference27,28 used a genetic algorithm and differential evolutionary algorithm to achieve steady-state 
tracking of MPPT, but this type of evolutionary algorithm exhibits poor tracking speeds. Metaheuristic algo-
rithms, which are inspired by nature and human intelligence, offer great advantages in dealing with problems 
such as nonlinear optimization problems and thus have gradually become a hot research topic for researchers. 
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 Reference29–31 proposed three improved flower pollination algorithms and conducted performance tests under 
changing weather conditions, which showed that the improved algorithms substantially improved the tracking 
speed and tracking efficiency.  Reference32 proposed a grid-connected PV MPPT technique using an arithmetic 
optimization algorithm to optimize the parameters of the proportional-integral (PI) controller, but the introduc-
tion of the PI controller increased the complexity of the system.  Reference33 proposed an improved multistep 
constant current MPPT technique based on the grey wolf optimization algorithm and accurately obtained the 
maximum power point under different PSC conditions.  Reference34 proposed an MPPT technique based on the 
Squirrel Search Algorithm (SSA) and simulated and experimentally analyzed the proposed algorithm under local 
shadowing conditions.  Reference35 proposed a direct search cuckoo search (CS) MPPT technique with hardware-
in-the-loop experimental validation.  Reference36 proposed an MPPT technique based on the Horse Herd Opti-
mization Algorithm (HOA) and experimentally validated it on a real PV system. Similar approaches include the 
Marine Predator Optimization Algorithm (MPA)37, Salp Swarm Algorithm (SSA)38, Search and Rescue Algorithm 
(SRA)39, and Tuna Swarm Optimization (TSO)40. The MPPT technique based on the Particle Swarm Optimi-
zation (PSO)  algorithm41 is considered one of the more classical techniques, but the original Particle Swarm 
Optimization technique is slow in tracking and easily falls into local optimal solutions. Therefore, researchers 
have developed a series of enhanced particle swarm techniques. These include the adaptive factor selection 
particle swarm algorithm (FMSPSO)42, enhanced autonomous group particle swarm algorithm (EAGPSO)43, 
hybrid tandem particle swarm optimization algorithm (SSPSO)44, and hybrid particle swarm optimization with 
Salp Swarm Algorithm (PSOSSO)45. These improvement strategies improve the convergence performance of 
PSO to a certain extent. Moreover, to fully utilize the advantages of different algorithms, researchers have also 
proposed MPPT techniques based on hybrid algorithms, which are used to improve the tracking accuracy and 
speed. For example,  reference46 hybridized the direct search technique Nelder-Mead with GWO and proposed 
a hybrid grey wolf algorithm (GWO-NM), which reduces unnecessary searches of particles and steady-state 
oscillations.  Reference47 introduced the opposing reinforcement learning method into the butterfly optimization 
algorithm and proposed the hybrid butterfly optimization algorithm (OBRL-BOA), which reduces the oscillations 
caused by load changes.  Reference48 designed a control model (SSA-PSO-DSMC) that mixes the Salp Swarm 
Algorithm with the particle swarm algorithm and combines the mixed algorithm with an intelligent direct-slip 
membrane controller; the of this model was verified on hardware-in-the-loop (HIL) systems. Similar hybrid 
MPPT techniques include Bird Swarm Fusion Skyhawk Optimization (BSFAO)49, Grey Wolf Optimization fused 
with Variable Step Incremental Conductance (GWO-VINC)50, Genetic Algorithm Hybrid AntColony Optimiza-
tion Algorithm (GA-ACO)51, Improved Sparrow search algorithm with a hybrid adaptive neuro-fuzzy inference 
system (MSSA-ANFIS)52, and the hybrid crow search and pattern search (HCS-PS)53. Hybrid techniques are able 
to utilize the advantages of different algorithms and obtain satisfactory results, but this class of MPPT technique 
increases the complexity of the controller and increases the time cost. In addition, many of the above studies are 
limited to simulation studies, ignoring the experimental validation aspect.

Although many MPPT techniques based on metaheuristic algorithms have emerged, according to the ‘no free 
lunch’ principle, no algorithm can solve all optimization problems. The Dung Beetle Optimization (DBO) algo-
rithm is a new population intelligence optimization algorithm proposed in  202254, that is inspired by the natural 
behaviours of dung beetles such as rolling, foraging, stealing, and reproducing. Each of its four subpopulations 
performs four different searches with fixed population ratios, allowing different update rules to be sufficiently 
balanced between local and global searches. DBO has been applied to solve complex optimization problems in 
various  fields55,56. According to the literature, there is a lack of simulation and experimental studies on the MPPT 
technique based on the DBO algorithm. Therefore, in this study, the maximum power tracking performance of 
the DBO technique under various weather conditions is investigated via simulation and experimental evalu-
ation, and the results are compared and analyzed with those of other renowned MPPT techniques. The main 
contributions of this study are as follows:

1. A new MPPT technology is introduced for dealing with PS problems in PV systems. The population catego-
rization and boundary selection strategy mechanisms in the DBO enable better GM global exploration and 
local convergence performance.

2. The proposed DBO approach solves the problems of long convergence time and settling time, abrupt power 
oscillations and poor adaptability of other metaheuristic technologies. In addition, it can reach the GM with 
fewer iterations while guaranteeing zero power oscillation at the GM.

3. Combined with actual field atmospheric data, the effectiveness of DBO in practical applications is further 
verified.

4. Based on the hardware experimental analysis of the HIL + RCP platform, the DBO is also able to effectively 
track the GM.

The remainder of this paper is organized as follows. Section "PV modelling and the effect of shading condi-
tions on PV arrays", describes the topology of the PV system and its output characteristics under PSCs. Section 
"DBO-based MPPT technique", describes the dung beetle optimization algorithm and its MPPT implementation 
for PV systems. Section "Results and discussion", describes the MATLAB/Simulink-based simulation results in 
detail, including a comparative study with other advanced metaheuristic algorithms for the MPPT technique. Sec-
tion "Experimental verification", reports the experimental results obtained using the physical platform HIL + RCP. 
Finally, Section "Conclusion", provides the conclusions and future directions of this study.
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PV modelling and the effect of shading conditions on PV arrays
Modelling of PV cells
PV cells utilize the photovoltaic effect to convert solar energy into electrical energy. A single-diode model is 
used to simulate the PV cell as shown in Fig. 1. The single-diode model neglects complex losses in the depletion 
 region57. The model simplifies the PV cell into a current source, a diode, a parallel resistor  Rsh and a series resis-
tor  Rs. where the current source is mainly affected by the irradiance. The ideal diode model is represented by 
the purple dashed line, while a fixed resistance is added to the diode model used in practice.  Iph represents the 
current generated by the irradiation, and  ID denotes the current through the diode. Applying Kirchhoff ’s current 
law, the output current of the photovoltaic cell is calculated by Eq. (1):

where V and I are the output voltage and output current of the PV cell, respectively;  Io is the equivalent diode 
reverse saturation current; q is the electronic charge constant, which is 1.6 ×  10−19 C; k is Boltzmann’s constant, 
which is 1.38 ×  10−23 J/K; A is the diode quality factor; and T is the cell operating temperature.

where  Isc_STC denotes the short-circuit current of the PV cell under standard test conditions;  GSTC = 1000 W/m2, 
 TSTC = 25 °C; G denotes irradiance;  ki denotes the short-circuit current coefficient;  Eg denotes the energy bandgap 
of the semiconductor; and  Voc_STC denotes the open-circuit voltage of the PV cell under reference conditions.

The output voltage, current and power of a single solar cell are small and cannot meet the normal operating 
requirements, so photovoltaic modules are usually manufactured from multiple solar cells connected in series and 
parallel. The output characteristic equation of the PV module with  Nm connections in series and  Np connections 
in parallel is modified as Eq. (5).  Rs_eq denotes the equivalent series resistance and  Rp_eq denotes the equivalent 
parallel resistance. The PV module model used in this study is "LSP672-285" and its electrical characteristics are 
listed in Table 1 and described as follows:
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Figure 1.  Single-diode PV cell model.

Table 1.  Characteristic parameters of photovoltaic modules.

PV module parameter Symbol LSP672-285

Maximum power Pmax 285 W

Current at  PMPP IMPP 7.92 A

Voltage at  PMPP VMPP 36 V

Open circuit current VOC 44.5 V

Short circuit current ISC 8.53 A

Temperature coefficients of  VOC KV − 0.32%/°C

Temperature coefficients of  ISC KI 0.02%/°C
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PV module under partial shadow conditions
In the field, a PV array may be intermittently shaded by clouds, buildings, trees, dust, etc., as shown in Fig. 2. At 
these times, the output characteristics of the shaded PV cells change, leading to output power loss and hot spot 
effects, and the PV array efficiency decreases. Thus, the output characteristics of the PV array exhibit multipeak 
characteristics. As shown in Fig. 3a, b, under uniform irradiation, the P–V and I–V curves of the PV arrays have 
only one peak, namely, GMPP. However, under nonuniform irradiation, there is one GM and multiple LMs. As 
shown in Fig. 3c, d.

Design of boost converters
The topology of the MPPT control system of a typical PV system is shown in Fig. 4. The DC–DC boost converter 
connects the PV panel to the back-end load or energy storage unit. The voltage of the PV array is regulated by 
adjusting the duty cycle, the main control variable of the converter, as a way of obtaining the best reference volt-
age  Vrefh for MPPT control of the PV system. The duty cycle has a value between 0 and 1. The parameters of the 
DC boost converter are the input voltage  VDCin, output voltage  VDCout, inductor L, input capacitance  Cin, output 

shadow from the 

tree
shadows from dust shadow from cloud shadows from rain 

and snow

Bypass diode

Blocking diode

21000 /W m 21000 /W m 21000 /W m21000 /W m

2800 /W m 2600 /W m 2400 /W m 2200 /W m

Figure 2.  Series connected PV modules under uniform and non-uniform irradiance.

Figure 3.  (a) P–V curve under uniform irradiance, (b) I–V curve under uniform irradiance, (c) P–V curve 
under non-uniform irradiance and (d) I–V curve under non-uniform irradiance.
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capacitance  Cout, switching frequency  fswt, and duty cycle D. Among these parameters, the input capacitance is 
used to reduce the ripple generated by the photovoltaic module, and the input ripple voltage ΔVload = 1%VDCin. 
The role of the output capacitor is to limit the ripple of the output voltage, and the output ripple voltage is 
ΔVload = 2%VDCout. The abovementioned parameters are calculated using Eqs. (4)–(8). The output voltage and 
current of the PV module are influenced mainly by the load and the operating environment of the PV module.

DBO-based MPPT technique
Inspired by the rolling, dancing, foraging, stealing and breeding behaviours of dung beetles, we propose a new 
MPPT technology for PV systems based on the DBO algorithm. In the DBO algorithm, the global search refers 
to the rolling ball behaviour, e.g., rolling the manure ball to the optimal position for storage; Local searches 
(including breeding, foraging, and stealing) are then used to move around the storage balls to further explore 
the optimal location. The working process of the dung beetle MPPT controller is as follows: initialize the dung 
beetle population, evaluate the fitness values of different populations and record the optimal individuals. Then, 
each subpopulation was subjected to collaborative optimization. A global search was performed with the Rolling 
Dung Beetle and the Dancing Dung Beetle. The local search was conducted by breeding and foraging dung bee-
tles, and the spawning and foraging areas were dynamically adjusted with the change in R parameters to reduce 
the search range. Thief dung beetles search for the best foraging areas to speed up tracking.

Inspiration
The Dung beetle optimizer (DBO) is a new biological swarm intelligence optimization algorithm proposed by 
Jiankai in 2022. The algorithm is inspired by the social behaviour of dung beetle populations and is designed 
with five different update rules to help find high-quality solutions. The population classification and boundary 
selection strategies of DBO enable the algorithm to consider both global exploration and local convergence.
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Figure 4.  Typical PV system with MPPT control.
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Implementation
Ball‑rolling dung beetle
A dung beetle makes a ball of dung and rolls it to a desired location. During the rolling process, the dung beetle 
needs to keep the dung ball rolling in a straight line by using celestial cues (sun position or wind direction, etc.). 
To simulate the rolling behaviour, the dung beetle needs to move in a given direction throughout the search 
space. The position update formula for rolling dung beetles is as follows:

where t is the current number of iterations;  xi(t) is the position information of the ith dung beetle at t iterations; 
k ∈ (0,0.2] is a constant value representing the coefficient of deflection; b is a constant between (0, 1); and α is 
a natural coefficient assigned to − 1 or 1, with 1 denoting no deviation and − 1 denoting a deviation from the 
original direction.  XW is the global worst position, and Δx is used to simulate light intensity variation.

When a dung beetle encounters an obstacle that prevents it from moving forwards, it changes the direction 
of travel by dancing. The tangent function is used to simulate the dancing behaviour of the dung beetle for a new 
rolling direction. The location of the Dancing Dung Beetle is thus updated as follows:

where θ ∈ [0,π]. If θ is equal to 0 or π/2, the position of the dung beetle will not be updated.

Breeding dung beetles
Certain dung balls are hidden in a relatively safe environment as an egg-laying place. Therefore, a boundary 
selection strategy is used to model the area where female dung beetles lay their eggs:

where  X* represents the current local optimal position,  Lb* is the lower bound of the spawning area,  Ub* is the 
upper bound, R = 1 − t∕Tmax, Tmax is the maximum number of iterations, and the upper and lower bounds of 
the optimization problem are represented by Lb and Ub, respectively.

Female dung beetles lay their eggs in the spawning area, and each female dung beetle produces only one 
egg in each iteration. The boundary of the spawning area is determined by the value of R, which dynamically 
changes. The position of the hatching ball is also dynamic during the iteration process, and the iteration process 
is as follows:

where  Bi(t) is the position information of the ith hatching ball at the tth iteration.  b1 and  b2 represent two 
independent 1 × D random vectors, and D denotes the dimension of the optimization problem. The location of 
hatching balls is strictly limited to the spawning area.

The boundary selection strategy is shown in Fig. 5. The brown circle indicates the current local optimal posi-
tion  X*, and the rolling dung beetle is indicated by the blue point. Small black points indicate hatching balls, 
each of which contains only one egg. The upper and lower bounds of the boundary are indicated by red circles.

Small dung beetles (foraging dung beetles)
Eggs that hatch successfully become baby dung beetles. Dung beetles are guided to forage by establishing optimal 
foraging areas. The boundaries of the optimal foraging area are delineated as follows:

(10)
xi(t + 1) = xi(t)+ α × k × xi(t − 1)+ b×�x,

�x =
∣

∣xi(t)− Xw
∣

∣

(11)xi(t + 1) = xi(t)+ tan (θ)|xi(t)− xi(t − 1)|

(12)
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(

X∗ × (1− R), Lb
)
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(
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)
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(
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(

Bi(t)− Ub∗
)
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Figure 5.  Boundary selection strategy.
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where  Xb denotes the global optimal position. The lower and upper bounds of the optimal foraging area are 
represented by  Lbb and  Ubb, respectively. The position of the small dung beetle is updated as follows:

where  xi(t) denotes the location information of the ith small dung beetle at the tth iteration,  C1 denotes a random 
number that follows a normal distribution, and  C2 denotes a random vector belonging to (0,1).

Stealing dung beetles
Certain dung beetles steal dung balls from other dung beetles, a process that is denoted as stealing dung beetles. 
During the corresponding iterations, the position of the thief is updated as follows:

where  xi (t) is the location information of the ith thieving dung beetle at the tth iteration, g is a random vector 
of size 1 × D obeying a normal distribution, and S is a constant value.

Implementation of DBO-based MPPT technology under PS conditions
The implementation of DBO-based MPPT technology is shown in Fig. 6. The proposed DBO control algorithm 
is used to adjust the duty cycle of the PV power generation system to maximize the output power of the PV sys-
tem and reduce energy loss. Therefore, the objective function (OF) is defined as shown in Eq. (17).  PPV denotes 
the output power of the PV array, and the duty cycle is varied from 0 to 1. The current position of an individual 
dung beetle indicates the duty cycle. DBO attempts different duty cycle values based on the real-time current 
and voltage parameters of the PV array and evaluates the fitness value corresponding to each duty cycle until it 
finds the optimal duty cycle corresponding to the maximum value of the output power.

When the operating temperature or irradiance of the PV array changes, the position of the MPP changes 
accordingly. Therefore, a restart  strategy44,45 is introduced in the algorithm to ensure its adaptability to dynami-
cally changing weather. The algorithm is initialized with the following conditions:

In the DBO, rational classification of dung beetle populations, effective boundary selection strategies, and 
reinitialization produce effective results. The initialization of DBO particles and multiple particle updating 
methods increase the speed of the process.

The pseudocode for the implementation of the MPPT technique based on the dung beetle optimization 
algorithm is shown in Table 2.

Results and discussion
An MPPT simulation model of the PV system is designed in MATLAB/Simulink 2022b and comprises a PV 
array (the PV array is in a 5 × 1 series configuration, where each PV module is in a 2 × 3 configuration), a boost 
converter, a resistive load, and an MPPT controller. The detailed parameters of the PV modules used are listed 
in Table 1. The parameters of the boost converter are set as  Cin = 200 µF,  Cout = 500 µF, and L = 8.5 mH. The IGBT 
switching frequency is set to 20 kHz and the load is 20 Ω.

In this section, Case 1 is a static PSC, Case 2 is a dynamic PSC, Case 3 is a CPS, and Case 4 contains field 
atmospheric data used to evaluate the real-time performance of the DBO-based MPPT technology at 24 h. To 
verify the various performances of the DBO algorithm, several classical and recent MPPT techniques, such as the 
 SSA34,  CS35,  HOA36,  PSO41,  FMSPSO42, and GWO-NM46, are introduced for comparative analysis. The initializa-
tion parameters are set to be the same for all algorithms. Based on these results, a comprehensive performance 
evaluation of DBO with other technologies was performed.

Partial shading condition: Case-1
The irradiance pattern of the PV array under Case-1 is shown in Table 3. The environmental temperature is 
25 °C. GMPP under three different PSCs is located on the left, centre, and right of the curve, as shown in Fig. 7.

Under PSC1, the GM of the PV system is 3762.5 W. The power transient curve is shown in Fig. 8. The PSO 
tracks the GM for the longest time because the PSO fell into the LM at 0.07 s and tried to attract all the particles 
to the LM until 0.323 s retreated to the GM and jumped out of the LM trap. The tracking speed of GWO-NM 
is 0.149 s, which is closer to that of DBO. However, the final maximum power obtained by GWO-NM is only 
3698.98 W, which is lower than that of the other algorithms. The distinction between GM and LM in PSC1 is 
high, and all seven technologies can handle PS problems. The maximum powers tracked by DBO, SSA, CS, 
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Figure 6.  Flow chart of MPPT control based on the DBO algorithm.

Table 2.  Pseudocode of the MPPT technique based on the DBO algorithm.

Begin
1. Set the population size N and the maximum iterations Max_iteration

2. Initialize the particles Di (i=1, 2,...N) and classify the populations

3. While iteration < Max_iteration

4.  For i=1:N  

5.    If i==Rolling Dung Beetle  

6.        If  δ<0.9 then  (δ =rand(1)) 

7.        Updating the Rolling Dung Beetle with Equation (10)

8.        Else

9.       Updating the Rolling Dung Beetle with Equation (11)

10.      End If

11.    End If

12.    If i==breeding dung beetles  

13.       Updating the location of breeding dung beetles using equation (13)

14.    End If

15.    If i==Small dung beetles

16.       Updating the location of the small dung beetle using equation (15)

17.    End If

18.   If i==Theft Dung Beetles  

19.       Updating the location of the stealing dung beetle using Equation (16).

20.    End If

21.  End For

22. Making greedy choices

23. t=t+1

24. End While

25. Return Gbest

End
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HOA, PSO, FMSPSO and GWO-NM are 3762.4 W, 3760.1 W, 3761.9 W, 3762.0 W, 3758.3.7 W, 3759.6 W and 
3698.98 W respectively, and the tracking efficiencies of GM reach 99.99%, 99.93%, 99.98%, 99.91%, 99.88%, 
99.92% and 98.31%, respectively. In contrast, the tracking accuracy and tracking efficiency of DBO are better 
than those of the other six technologies.

In terms of tracking speed, the convergence time, interval time and settling time are used to evaluate the 
global exploration and local convergence ability of MPPT technology. The interval time is the difference between 
the settling time and the convergence time. The convergence times of DBO, SSA, CS, HOA, PSO, FMSPSO and 
GWO-NM are 0.017 s, 0.065 s, 0.087 s, 0.044 s, 0.023 s, 0.029 s and 0.032 s, the settling times are 0.084 s, 0.354 s, 
0.237 s, 0.565 s, 0.452 s, 0.105 s, and 0.149 s, and the interval times are 0.057 s, 0.289 s, 0.150 s, 0.521 s, 0.577 s, 
0.076 s and 0.117 s respectively. The time consumption of the DBO algorithm is the lowest and remains within 0.1 
s, indicating that it can consider both global and local exploration in the search process. While other technolo-
gies may exhibit shorter convergence times, they typically require longer local convergence times. This process 
causes a loss of power and reduces the energy output of the PV module.

For metaheuristic algorithms based on MPPT technology, the number of iterations of the algorithm when it 
reaches stability is another important indicator for measuring the performance of the algorithm. A comparison 
of the duty cycles of the different technologies is shown in Fig. 9. The DBO can track the GM after 5 iterations, 
and the response is fast. The SSA, CS, HOA, PSO, FMSPSO and GWO-NM require more than 20 iterations to 
track the GM.

GM power oscillations and fluctuations cause energy losses, especially in the HOA and PSO. The amplitude of 
the power fluctuations of the HOA and PSO are between 9 and 30 W because the speed vector update formulas 
for the PSO and HOA are embedded with random numbers. Irregular oscillations and fluctuations in voltage 
are also observed in the transient voltage comparison in Fig. 10.

Table 3.  Irradiance patterns of five PV arrays.

Shade condition Irradiances (W/m2) MPP (W) Location (GMMP)

1.  PSC1 100 400 700 800 1000 3762.5 Middle

2.  PSC2 200 300 400 900 1000 3111.6 Left

3.  PSC3 1000 1000 1000 1000 200 6829.3 Right

4.  PSC1–PSC3–PSC2 3762.5–6829.3–3111.6 Middle–right–left

Figure 7.  P–V and I–V curves of PV array under Case-1.

Figure 8.  Power comparison in PSC1.
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The output characteristic curve of PV cells under PSC2 has 5 knee points, and the power values of the 3 
knee points on the right are relatively close to each other, which challenges efficient operation of the MPPT. The 
corresponding power curve is shown in Fig. 11. The convergence times of DBO, SSA, CS, HOA, PSO, FMSPSO 
and GWO-NM are 0.030 s, 0.052 s, 0.049 s, 0.032 s, 0.063 s, 0.032 s and 0.051 s respectively. Their settling times 
are 0.109 s, 0.243 s, 0.208 s, 0.523 s, 0.147 s, 0.159 s and 0.134 s respectively. The power curve at PSC2 is slightly 
more complex than that at PSC1. The highest power output of PSC2 is obtained by DBO at 3111.5 W, followed by 
CS at 3111.4 W, GWO-NM at 3111.2 W, SSA at 3111.1 W, FMSPSO at 3110.8 W, HOA at 3110.1 W, and PSO at 
3082.8 W. The tracking efficiencies of DBO, SSA, CS, HOA, PSO, FMSPSO and GWO-NM are 99.99%, 99.98%, 
99.99%, 99.96%, 99.07%, 99.97% and 99.98%, respectively.

A comparison of the duty cycles under PSC2 is shown in Fig. 12. The number of iterations required for 
DBO is 8, while other MPPT technologies require more than 30 iterations. The voltage comparison is shown 
in Fig. 13, with the highest voltage obtained by the DBO being 145.8 V. Obvious voltage fluctuations at the GM 
still appear in the HOA and PSO, and the duty cycle cannot be stable. The corresponding power curve also has 
power fluctuations of up to 45 W, and the energy loss in this process is inevitable. The energies harvested by the 
DBO, SSA, CS, HOA, PSO, FMSPSO and GWO-NM were 60.66 kJ, 60.62 kJ, 60.51 kJ, 60.48 kJ, 60.41 kJ, 60.59 kJ 
and 60.63 kJ, respectively. The greatest energy gain at the DBO by the DBO derives from the shortest settling 
time and zero oscillation of power at the GM, and the lower energy harvests of the HOA and PSO are due to the 
longer tracking time and sustained oscillation of power at the GM.

Figure 9.  Duty cycle comparison in PSC1.

Figure 10.  Voltage comparison in PSC1.

Figure 11.  Power comparison in PSC2.
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Rapidly changing shade conditions: Case-2
Case-2 is studied to examine the adaptability of the MPPT technology for dynamic PSCs. The PV array configura-
tion and DC-DC converter parameters are the same as those in Case-1. The PSC sequence is PSC1-PSC3-PSC2, 
which is divided into three phases with an interval of 1 s. The details are shown in Table 3. The position of the 
GM changes from middle-right-left.

Figure 14 shows a power comparison under the Case 2. At 1 s, PSC1 changes to PSC3. PSC3 has a GM of 
6829.3 W. The power tracked by DBO is 6829.2 W, and the power tracked by SSA, CS, HOA, PSO, FMSPSO and 
GWO-NM is 6023.4 W, 6829.1 W, 6828.5 W, 6829.0 W, 6828.1 W and 6828.3 W, respectively. The SSA cannot 
achieve secondary stable tracking of the GM, and the tracking power is the lowest. The other MPPT technologies 
enable secondary tracking of GM, and the tracking time of the DBO is the shortest.

At 2 s, PSC3 changes to PSC2. PSC2 has a GM of 3111.6 W. The powers of the DBO, SSA, CS, HOA, PSO, 
FMSPSO and GWO-NM tracks are 3111.5 W, 2885.2 W, 3037.5 W, 3109.6 W, 3037.7 W, 3107.2 W, and 3105.9 
W, respectively. The SSA still cannot track GM after three restarts and falls into LM. The PSO tracked the wrong 
GM after continuous irregular oscillations. Compared with that of PSC2 in Case-1, the tracking efficiency of 
the DBO algorithm when it is dynamically cut into PSC2, which is 99.99%, remains unchanged. The tracking 
efficiencies of the SSA, CS, HOA, PSO, FMSPSO and GWO-NM decreased by 7.62%, 2.38%, 0.03%, 1.45%, 
0.12% and 0.17%, respectively. It can be concluded that the DBO has good adaptability to dynamic PSCs and 
can quickly search and track two or three times according to changes in the external environmental irradiance. 
This approach shows good robustness in the multistage tracking process.

Figure 12.  Duty cycle comparison in PSC2.

Figure 13.  Voltage comparison in PSC2.

Figure 14.  Power comparison in Case-2.
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The average power of the 3 stages is shown in Table 4. The average power levels of DBO, SSA, CS, HOA, PSO, 
FMSPSO and GWO-NM are 4530 W, 4063 W, 4333 W, 4502 W, 4409 W, 4515 W, and 4500 W, respectively. DBO 
has the highest average power, while a higher average power signifies that more energy is harvested. Similarly, we 
analyze the average convergence time, average interval time, and average settling time. The average convergence 
times of DBO, SSA, CS, HOA, PSO, FMSPSO and GWO-NM in the 3 stages are 0.022 s, 0.119 s, 0.092 s, 0.037 
s, 0.028 s, 0.037 s and 0.027 s, while the average settling times are 0.076 s, 0.454 s, 0.244 s, 0.411 s, 0.491 s, 0.139 
s and 0.130 s, their intervals are 0.051s, 0.299 s, 0.152 s, 0.374 s, 0.463 s, 0.102 s and 0.103 s, respectively. DBO 
takes the shortest time, indicating that this technology can also track the GM efficiently and accurately under 
dynamic PSC. The newly proposed DBO technology has strong adaptability to dynamic PSCs and can improve 
the production efficiency of PV systems.

Figures 15 and 16 show the duty cycle and voltage comparison. Under dynamic PSC, the PSO and HOA 
still have large voltage oscillations at the GM, which is caused by the algorithm mechanism and is difficult to 
eliminate. The CS and SSA produce large oscillations at high frequencies during the global search due to the 
Levy flight mechanism in the algorithm. While this effect improves the algorithm’s ability to find the best duty 
cycle, it takes more time to execute tracking. FMSPSO sets multiple clusters and adds an adaptive selection factor 
strategy to PSO. In addition, the GWO-NM mixes the NM into GWO; these improved strategies improve the 
tracking speed and accuracy of the maximum power point to some extent, and the energy collection is further 
improved compared with the SSA, CS, HOA and PSO. However, it is still lower than the energy captured by DBO. 
Simultaneously, the introduction of improved strategies increases the complexity of the algorithm, increases 

Table 4.  Quantitative comparison of the DBO with the SSA, CS, HOA, PSO, FMSPSO and GWO-NM for 
Case-2.

Tech

Avg 
convergence 
time (s)

Avg interval 
time

Avg settling 
time (s)

Pavg at GM 
(W)

MPPavg 
tracked (W)

Avg power 
(W) Energy (kJ) Effie. (%)

DBO 0.022 0.051 0.076 4567.8 4567.7 4530 187.96 99.99

SSA 0.119 0.299 0.454 4567.8 4223.6 4063 166.28 92.46

CS 0.092 0.152 0.244 4567.8 4492.1 4333 179.06 98.33

HOA 0.037 0.374 0.411 4567.8 4567.5 4502 187.13 99.98

PSO 0.028 0.463 0.491 4567.8 4543.1 4409 184.43 99.45

FMSPSO 0.037 0.102 0.139 4567.8 4564.9 4515 186.82 99.93

GWO-NM 0.027 0.103 0.130 4567.8 4544.3 4500 186.15 99.48

Figure 15.  Duty cycle comparison in Case-2.

Figure 16.  Voltage comparison in Case-2.
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the computational burden of the computer, and requires a longer computation time. DBO uses the population 
classification mechanism and boundary selection strategy to conduct collaborative optimization, which exhibits 
faster convergence speed and good robustness (because these are inherent features of the algorithm). In Case 2, 
the average number of iterations for DBO at GM was only 6, while the other approaches exceeded 20 iterations.

Complex partial shading (CPS) condition: Case-3
The PV array in the photovoltaic power station is combined in the form of multiple panels in series/parallel, and 
when exposed to nonuniform irradiance, a complex peak form of multiple LMs will be produced, which can 
be called a CPS. The PV array adopts a 12 × 1 series configuration, and the specific irradiance parameters of the 
different panels are shown in Table 5. The parameters of the DC-DC converter are the same as those in Case-1. 
The P–V output curve of the PV array under a CPS is shown in Fig. 17. There are three extreme points in Cluster 
1, from left to right, and their corresponding maximum powers are 6216.8 W at 410.4 V, 7078.7 W at 496.8 V, 
and 6552.8 W at 583.2 V. There are also three extreme points in Cluster 2, and the maximum power values from 
left to right are 6744.6 W at 669.5 V, 6566.2 W at 734.4 V, and 6762.4 W at 820.8 V. The CHM of 7078.7 W in 
Cluster 1 was GMPP, and the CHM in Cluster 2 was 6744.4 W.

The power comparison under CPS is shown in Fig. 18. A detailed comparison of the duty cycle iteration 
behaviour is shown in Fig. 19. HOA and FMSPSO are trapped in the LM during the search process and remain 
stable at low power, and energy loss is inevitable. The SSA spends the longest time in the exploratory phase, 
despite leaving the LM after 1.5 s. CS, PSO and GWO-NM successfully avoided the LM trap, but ultimately did 
not find the ideal GM, which also caused some energy loss. DBO spends slightly more settling time in CPS than 
in PSC1, depending on the complexity of the irradiance.

The convergence times of DBO, SSA, CS, HOA, PSO, FMSPSO and GWO-NM are 0.041 s, 0.322 s, 0.109 s, 
0.081 s, 0.064 s, 0.048 s and 0.047 s, respectively, and the settling times are 0.091 s, 0.509 s, 0.105 s, 0.153 s, 0.209 s, 
0.172 s and 0.266 s, respectively. In terms of tracking efficiency and accuracy, the maximum powers tracked by 
DBO, SSA, CS, HOA, PSO, FMSPSO and GWO-NM are 7078.4 W, 7077.1 W, 7077.3 W, 6281.3 W, 7075.2 W, 
6542.74 W and 7076.53 W, respectively. DBO also has the highest tracking accuracy and efficiency. The DBO 

Table 5.  Irradiance pattern of Case-3.

Case Irradiance 
(
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Figure 17.  P–V characteristic curve at CPS.

Figure 18.  Power comparison in Case-3.
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gradually stabilized after 6 iterations. The numbers of iterations required for the SSA, CS, HOA, PSO, FMSPSO 
and GWO-NM are 33, 15, 6, 30, 10 and 18, respectively. The response speed of the DBO is the most ideal. A 
voltage comparison under a CPS is shown in Fig. 20.

HOA has a tracking efficiency of more than 99% under PSC1 and PSC2, but under PSC3, its tracking efficiency 
is only 75.45%, producing minimal energy. FMSPSO suffers from the same problem, achieving more than 99% 
tracking efficiency under PSC1 and PSC2, but only 92.42% under PSC3. Due to the complexity of PSCs, the 
tracking effectiveness of different MPPT technologies is different, indicating that some MPPT technologies have 
poor adaptability to complex irradiance and can only solve relatively simple PS problems but cannot address 
CPSs. The newly proposed DBO technology shows good environmental adaptability in dealing with PS problems.

Table 6 lists the overall performance of the DBO controller under PSC1, PSC2, and the CPS. The tracking 
efficiency of the DBO is almost close to 100%. Simultaneously, due to its efficient GM tracking and fast conver-
gence performance, the DBO algorithm is able to capture more equal energy under various PSCs.

Conditions change with weather: Case-4
Cases 1–3 analyse static, dynamic, and short-term irradiance changes. Case-4 was combined with field atmos-
pheric data from Shihezi city, Xinjiang, China, to study the performance of MPPT technology under long-term, 
dynamic PSCs. Field atmospheric data such as irradiance and temperature changes are provided by Xinjiang 
photovoltaic power stations. The irradiance levels of the four seasons in Shihezi city are shown in Fig. 21, and 
the irradiance and temperature data are real-time 24-h data. The PV system used is the same as that in Case-1. 
In this section, the 24-h peak power, average power and energy harvest of the PV system are used to verify the 
performance of MPPT technology.

The results of the different MPPT technologies are listed in Table 7. The DBO has more average and peak 
power in spring and summer, so it can harvest more energy. The MPPT technology based on DBO contributes to 
the global goal of zero carbon emissions. The tracked power and harvested energy of different MPPT technologies 
in the spring are shown in Figs. 22 and 23. The energy harvested by the DBO in 24 h is 32.59 KWh, the SAA is 
31.66 KWh, the CS is 31.11 KWh, the HOA is 30.32 KWh, the PSO is 30.68 KWh, the FMSPSO is 32.28 KWh, 
and the GWO-NM is 31.96 KWh. The peak power of the DBO is 6440 W, followed by the SSA at 6309 W, the 
CS at 6223 W, the HOA at 6094 W, the PSO at 6154 W, the FMSPSO at 6398 W, and the GWO-NM at 6352 W; 
the average powers of these approaches are 1380 W, 1341 W, 1318 W, 1285 W, 1300 W, 1367 W, and 1354 W, 
respectively. The energy yield of DBO is approximately 5% greater than that of other technologies.

Summer has the highest solar irradiance levels throughout the year, enabling more energy harvesting than 
in other seasons. The power and energy harvesting results are shown in Figs. 24 and 25. The energy harvested 
by the DBO in summer is 53.66 KWh, the SSA is 52.31 KWh, the CS is 53.20 KWh, the HOA is 82.73 KWh, the 
PSO is 52.14 KWh, the FMSPSO is 53.31 KWh, and the GWO-NM is 53.05 KWh. The peak power and aver-
age power of the DBO are 8137 W and 2329 W, the SSA is 8099 W and 2271 W, the CS is 8132 W and 2310 W, 
the HOA is 8118 W and 2289 W, the PSO is 8089 W and 2264 W, the FMSPSO is 8135 W and 2316 W, and the 

Figure 19.  Duty cycle comparison in Case-3.

Figure 20.  Voltage comparison in Case-3.



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6471  | https://doi.org/10.1038/s41598-024-57268-8

www.nature.com/scientificreports/

GWO-NM is 8128 W and 2303 W. Compared to other technologies, DBO has increased energy production by 
approximately 3% in the summer. DBO technology can adapt to practical application environments. The energy 
harvested by the PV system comes from two main sources. A small part of this energy is captured by the search 
process, while the majority of it is captured in the steady state. DBO has a faster convergence speed, accurate 
steady-state power, and no oscillations at GM, enabling it to minimize the energy loss in the search process and 
therefore capture more energy.

Efficiency and performance assessment
Figures 26 and 27 show the results of the statistical quantitative analysis of the different technical performance 
indicators. Regardless of whether traditional P&O technology or bioinspired MPPT control technology is used, 

Table 6.  Quantitative comparison of the DBO with SSA, CS, HOA, PSO, FMSPSO and GWO-NM.

Tech Psc No
Convergence 
time (s) Interval time

Settling time 
(s)

Power at GM 
(W)

Power tracked 
(W) Energy(kJ) Effie. (%)

DBO

PSC1 0.017 0.057 0.084 3762.5 3762.4 73.36 99.99

PSC2 0.030 0.079 0.109 3111.6 3111.5 60.66 99.99

CPS 0.041 0.049 0.091 7078.7 7078.4 69.12 99.99

SSA

PSC1 0.065 0.289 0.354 3762.5 3760.1 73.29 99.93

PSC2 0.052 0.191 0.243 3111.6 3111.1 60.62 99.98

CPS 0.322 0.187 0.509 7078.7 7077.1 67.5 99.97

CS

PSC1 0.087 0.150 0.237 3762.5 3761.9 73.33 99.98

PSC2 0.049 0.158 0.208 3111.6 3111.4 60.51 99.99

CPS 0.109 0.105 0.214 7078.7 7077.3 69.021 99.98

HOA

PSC1 0.044 0.521 0.565 3762.5 3759.1 73.26 99.91

PSC2 0.032 0.485 0.523 3111.6 3110.1 60.48 99.96

CPS 0.081 0.071 0.153 7078.7 LM 5341.3 51.984 75.45

PSO

PSC1 0.023 0.577 0.452 3762.5 3758.3 71.49 99.88

PSC2 0.063 0.147 0.210 3111.6 3082.8 60.41 99.07

CPS 0.064 0.145 0.209 7078.7 7075.2 69.012 99.95

FMSPSO

PSC1 0.029 0.076 0.105 3762.5 3759.6 73.29 99.92

PSC2 0.038 0.127 0.159 3111.6 3110.8 60.59 99.97

CPS 0.048 0.124 0.172 7078.7 6542.74 56.85 92.42

GWO-NM

PSC1 0.032 0.117 0.149 3762.5 3698.98 72.14 98.31

PSC2 0.051 0.083 0.134 3111.6 3111.2 60.63 99.98

CPS 0.047 0.219 0.266 7078.7 7076.53 68.61 99.96

Figure 21.  Irradiance levels in Shihezi in four seasons.

Table 7.  Summary of Case 4 atmospheric data.

City Season Measurement DBO SSA CS HOA PSO FMSPSO GWO-NM

Shihezi

Summer

Energy (kWh) 53.66 52.31 53.20 52.73 52.14 53.31 53.05

Peak P (W) 8137 8099 8132 8118 8090 8135 8128

Avg. P (W) 2329 2271 2310 2289 2264 2316 2303

Spring

Energy (kWh) 32.59 31.66 31.11 30.32 30.68 32.28 31.96

Peak P (W) 6440 6309 6223 6094 6154 6398 6352

Avg. P (W) 1380 1341 1318 1285 1300 1367 1354
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Figure 22.  Power tracked in spring.

Figure 23.  Energy harvested in spring.

Figure 24.  Power tracked in summer.

Figure 25.  Energy harvested in summer.
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the most prominent problem is still the oscillation of the GM and the tendency to fall into a local optimal solu-
tion, which leads to a low power generation efficiency of the PV system. By testing the performance of DBO 
technology under various conditions, it can be found that the DBO output curve at the GM is smooth and 
almost oscillation-free, and the energy loss is reduced to a very low level. At the same time, DBO can track GM 
within approximately 30 ms (on average) and can reach stable GM within 90 ms. Compared with other MPPT 
technologies, the convergence rate is increased by 38–80%, and the stability rate is increased by 60–80%. The 
average power per unit of time reflects the energy harvesting ability of the MPPT technology, and there is a posi-
tive correlation between these values. The average power of the DBO is increased by 3–8%, and the harvested 
energy is similarly increased by the same percentage. Efficient global exploration and robust local exploitation 
enable DBO to converge quickly and quickly achieve stable GM tracking. The DBO tracking efficiency can 
reach 99.99% under all weather conditions, which allows it to capture more energy in complex environments. 
Moreover, the proposed MPPT technique is compared to other renowned and latest MPPT techniques using 
various criteria, as shown in Table 8. Where the average computation time is the average of the time consumed 
in computing PSC1, PSC2 and CPS. The DBO technique is less complex and requires less computational time 
than the other approaches.

Figure 26.  Average convergence time, settling time and tracking efficiency for different MPPT technologies.

Figure 27.  Comparison of average power statistics for different MPPT technologies.

Table 8.  Comparative analysis of different MPPT techniques under various criteria.

MPPT algorithms SSA34 CS35 HOA36 PSO41 FMSPSO42 GWO-NM46 Proposed

Periodic tunning Not required Not required Not required Not required Not required Not required Not required

Tracking accuracy High High High Good High High Very high

Steady-state oscillation Zero Zero Minor Minor Zero Zero Zero

Tracking speed Medium Medium Medium Medium Fast Fast Very fast

Algorithm complexity Medium Medium Medium Simple More More Medium

Efficiency High Average Average Average High High High

Average computational time 11.88 s 12.63 s 12.11 s 11.39 s 15.91 s 16.28 s 10.51 s
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Experimental verification
This section uses the HIL + RCP platform to experimentally validate the MPPT technology based on DBO 
(hardware in the loop, HIL; rapid control prototyping, RCP). StarSim HIL generates the analogue signal on field 
programmable gate array (FPGA) hardware and passes it to the controller. The digital/analogue signal interposer 
board enables signal connection between the simulation side and the control side. The development algorithm 
is downloaded to the StarSim RCP built-in controller, and the control signal is generated and transmitted to the 
simulation side. Finally, a closed-loop experimental system is formed. The parameters of the PV cells and the 
main circuit used are shown in Table 9. The experimental setup is shown in Fig. 28. The PV array is connected in 
the series form of 2 × 1 (a series/parallel configuration of 35 × 20 is used inside each PV cell), and the irradiance 
is 1000 W/m2 and 500 W/m2. The GM of the PV array is 39,864 W.

Figure 29 shows the power comparison of five MPPT technologies in the online hardware closed-loop experi-
ment. From the enlarged view, it can be seen that there is significant power oscillation in the HOA and SSA after 
reaching the GM. The powers tracked by DBO, SSA, CS, HOA, PSO, FMSPSO and GWO-NM are 37,387 W, 
37,138 W, 37,320 W, 36,333 W, 37,207 W, 37,255 W, and 37,363 W, respectively, and the GM tracking efficiency 
of DBO reaches 93.4%. Figure 30 shows a comparison of the experimental voltages. The output voltages of the 
DBO, SSA, CS, HOA, PSO, FMSPSO and GWO-NM are 608.4 V, 632.5 V, 583.4 V, 606.5 V, 605.1 V, 641.3 V, and 
644.5 V, respectively. It can be seen from the figure that the voltage of the DBO has no oscillation, while other 
MPPT technologies have different degrees of voltage fluctuation. Voltage fluctuations will eventually still lead to 
power loss, reducing the control efficiency of the MPPT. DBO also achieves efficient GM tracking on hardware 
systems with fast global and local convergence and zero power oscillation. This matches the results of the offline 
model run above.

Conclusion
This study proposes a new MPPT technology based on DBO, aiming to solve the problems of power loss, GM 
oscillation and low tracking efficiency existing in traditional and intelligent MPPT technologies. By using dif-
ferent cases such as field atmospheric data, static/dynamic PSC and CPS in Shihezi city, a comparative analysis 
was conducted between DBO and renowned MPPT controllers such as SSA, CS, HOA, PSO, FMSPSO and 
GWO-NM proposed in recent years. The results show that DBO has excellent GMPP tracking capabilities under 
different weather conditions, and its GM tracking efficiency reaches 99.99% under all PSCs. Compared with 
other technologies, the convergence rate of DBO is increased by 38–80%, the stabilization rate is increased by 
60–80%, and the energy harvest is increased by 3–8%. In the HIL + RCP hardware platform, the GM tracking 
efficiency of the DBO reached 93.4%, which is higher than other technologies, and the output power is more 
stable. Therefore, the new MPPT technology based on DBO can effectively solve the problems of random power 
oscillation, low tracking efficiency and easy falling into LM traps in PSCs and CPS. Because the DBO controller 
has the capabilities of fast convergence, efficient GM tracking and high energy capture, it is expected to improve 
the utilization efficiency of solar energy and the economic performance of PV systems. The PV system in this 
study is an off-grid type, and future research can apply the proposed algorithm to a grid-connected PV system 
to further test the performance of the proposed MPPT for practical applications.

Table 9.  Parameters of PV modules and other modules used for experimental verification.

Component Value Component Value

Nominal maximum power  (Pmp) 53.07 Inductance (L) 1.1478e−3H

Optimal voltage  (Vmp) 17.4 Input capacitor  (Cin) 1e−3F

Optimal current  (Imp) 3.05 Output capacitor  (Cout) 3227e−6F

Open-circuit voltage  (Voc) 21.7 Conversion frequency (f) 10 kHz

Short-circuit current  (Isc) 3.35 Load (RL) 100 Ω

Figure 28.  HIL + RCP experimental platform setup.
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Figure 29.  Comparison of power in the experiment.
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