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A computational strategy 
for estimation of mean using 
optimal imputation in presence 
of missing observation
Subhash Kumar Yadav 1, Gajendra K. Vishwakarma 2* & Dinesh K. Sharma 3

In this study, we suggest an optimal imputation strategy for the elevated estimation of the population 
mean of the primary variable utilizing the known auxiliary parameters for the missing observations. 
Under this strategy, we suggest a new modified Searls type estimator, and we study its sampling 
properties, mainly bias and mean squared error (MSE), for an approximation of order one. The 
introduced estimator is compared theoretically with the estimators of population mean in competition 
under the imputation method. The efficiency conditions for the introduced estimator to be more 
efficient than the estimators in the competition are derived. To be sure about the efficiencies, these 
efficiency conditions are verified through the three natural populations. We have also conducted 
a simulation study and generated an artificial population with the same parameters as a natural 
population. The estimator with minimum MSE and the highest Percentage Relative Efficiency (PRE) is 
recommended for practical use in different areas of applications.
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The arithmetic mean is the most accurate way to measure central tendency when the population being studied 
is homogeneous for the characteristic being studied. Because of time and financial restrictions, estimating the 
arithmetic mean is crucial for large populations for determining various policy decisions and other uses. These 
days, missing data or non-response is a prevalent and unavoidable problem and is a prevalent problem with 
data received from sampling surveys. These missing numbers make data analysis, processing, and handling 
more complex. Missing data is a concern in clinical or life-saving drug testing trials since some experimental 
units have to be eliminated during the experiment. Similar to this, during agricultural experiments, crops are 
destroyed by disease or other natural disasters. For a variety of reasons, responses from every unit in the sample 
are typically not available in demographic and socioeconomic surveys. This kind of incompleteness is referred 
to as non-response, and judgments about the population parameters may be tainted if the necessary information 
regarding the nature of non-response is not present.

For a long time, sample survey professionals have known that failing to account for the random character of 
incompleteness or non-response might degrade the data quality. In surveys, there are two forms of non-responses: 
unit non-response and item non-response. When an eligible sample unit is entirely absent from the survey, unit 
non-response occurs. Missing values can be replaced by imputations and then treated as any other auxiliary vari-
able. However, this depends on the way the imputations are derived. It is well known that in sampling designs the 
use of auxiliary information improves the precision of an estimator substantially for instance see Vishwakarma 
and Kumar1 and Kumar and Vishwakarma2 and Vishwakarma et al.3. In contrast, item non-response occurs 
when a sampled unit is present in the survey but fails to provide information about a component of a unit in 
the sample survey. Missing data is an issue in such cases. Numerous studies adopted the imputation method to 
address this issue, which involves substituting values for missing data. It is a highly suggested method for resolv-
ing non-response issues in sample surveys, Singh et al.4.

Rubin5 suggested three methods for missing observations in survey sampling, namely, Missing At Random 
(MAR), Observed At Random (OAR), and Parameter Distinctness (PD). The difference between MAR and Miss-
ing Completely at Random (MCAR) was discussed by Heitjan and Basu6. Various authors, including, Singh and 
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Vishwakarma7, Kadilar and Cingi8, Diana and Perri9, Gira10, Bhushan and Pandey11, Prasad12, Audu et al.13, Audu 
et al.14, Singh et al.4 and others worked on the MCAR technique and suggested different imputation methods 
for efficient estimation of population mean of the main variable under the situation of missing observations. 
The theory of sample surveys was expanded by Shahzad et al.15 to include imputation-based mean estimators in 
the event of missing data, using variance–covariance matrices and robust regression. Shahzad et al.16 proposed 
estimators of the quantile regression-ratio type for estimating means under both partial and complete auxiliary 
data. In order to achieve enhanced population mean estimate, Alomair and Shahzad17 worked on compromised 
imputation and EWMA based memory-type mean estimators employing quantile regression. Lawson18 presented 
a novel approach to imputation for estimating population mean in survey sampling when there are missing data. 
Robust quantile regression was used by Anas et al.19 to develop compromised imputation-based mean estimators 
for better population mean estimation.

Let U = (U1, U2, ...,UN ) be the finite population under consideration consisting of N distinct and identifiable 

units. Further, let Y  be the main characteristic under investigation with a population mean as Y = 1
N

N
∑

i=1

Yi and 

population variance as σ 2 = 1
N

N
∑

i=1

(Yi − Y)2 . To estimate Y  , we draw a random sample s of size n using Simple 

Random Sampling Without Replacement (SRSWOR). Let r be the responding units belongs to R , the set of all 
responding units and n− r be the non-responding units belongs to Rc , the set of all non-responding or missing 
units out of n sampled units from the above population of size N . For every ith unit belonging to R that is i ∈ R , 
the corresponding value of yi is observed, while for i ∈ Rc , the value of yi is missing and is estimated through 
different imputation methods. For elevated estimation of Y  under imputation methods, many authors utilized 
the known population mean ( X  ) of the auxiliary variable x . Let xi be the observation for the ith unit of x and is 
positive for all i ∈ s . Now let y.i be the observation on Y  such that:

where, ỹi is the imputed value for the ith non-responding unit and by the utilization of above data, the point 
estimator of Y  under the imputation method is given by:

In the present study, we also suggested a new imputation method for elevated estimation of Y  using the 
known auxiliary parameters under MCAR mechanism. We study the large sampling properties of the suggested 
estimator for the first order of approximation. The conditions of efficiency for the proposed estimator over the 
estimators in competition are derived and are verified using the three natural populations along with one simu-
lated population. The most efficient estimator is recommended for practical use in different areas of applications.

Review of imputation estimators
The most appropriate imputation estimator for estimating Y  is obtained through the following imputation 
method as:

and the resultant point estimator of Y  is,

t0 =
1
n

[

∑

i∈R

yi +
∑

i∈Rc
ỹi

]

= 1
r

r
∑

i=1

yi = yr.

It is unbiased for Y  and its variance for an approximation of order one is,

where, θr,N =
(

1
r −

1
N

)

S2y =
1

N−1

N
∑

i=1

(yi − Y)2 , Cy =
Sy

Y
.

The estimator, making the use of auxiliary parameters is the ratio estimator and under the missing observa-
tion technique is given by the following imputation method as,

where,β̂ =
r
∑

i=1

yi

/

r
∑

i=1

xi.

The resulting estimator of Y  is presented by,

y.i =

{

yi if i ∈ R

ỹi if i ∈ Rc

t =
1

n

n
∑

i=1

y.i =
1

n

[

∑

i∈R

yi +
∑

i∈Rc

ỹi

]

y.i =

{

yi if i ∈ R

ỹi if i ∈ Rc

(1)V(t0) = θr,N Y
2
C2
y

y.i =











yi if i ∈ R

β̂ ỹi if i ∈ Rc .
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where, xr = 1
r

∑

i∈R

xi and xn = 1
r

∑

i∈S

xi.

The bias and MSE of tr for an approximation of order one respectively are,

where,Cx = Sx
X

 , S2x = 1
N−1

N
∑

i=1

(xi − X)2 , Syx = 1
N−1

N
∑

i=1

(yi − Y)(xi − X) , ρ =
Syx
SySx

 , Cyx = ρCyCx , θr,n =
(

1
r −

1
n

)

 , 

X =
N
∑

i=1

xi.

Singh and Horn20 defined the following study variable after utilizing the imputed observation for the respond-
ing and non-responding units under consideration as,

Under the imputation method, the resultant estimator of Y  is as follows,

where,� is a characterizing constant to be obtained so that MSE(t1) is least.
The bias and MSE of t1 for an approximation of degree one are respectively given by,

The optimum value of � is given by,

The minimum MSE of t1 for �opt is,

Singh and Deo21 utilized the transformed auxiliary information and defined the following variable after using 
the imputed observation for missing value as,

The resultant estimator of Y  is given by,

where, β is a characterizing constant and is obtained so that MSE(t1) is least.
The bias and the minimum MSE of t2 for an approximation of degree one respectively are,

The optimal value of β for which MSE(t2) is least is given by,

The least value of MSE(t2) for βopt is,

tr =
yr
xr

xn

(2)
B(tr) = θr,nY

(

C2
x − Cyx

)

,

MSE(tr) = θr,nY
2
[

C2
y + C2

x − 2Cyx

]

y.i =







�
n

r
yi + (1− �)β̂ xi if i ∈ R

(1− �)β̂ xi if i ∈ Rc .

t1 = yr

(

�+ (1− �)
xn

xr

)

B(t1) = (1− �)θr,nY
(

C2
x − Cyx

)

,

MSE(t1) = θr,nY
2
C2
y + θr,nY

2[
(1− �)2C2

x − 2(1− �)Cyx

]

�opt = 1−
Cyx

C2
x

.

(3)MSEmin(t1) = Y
2
C2
y

[

θr,N − θr,nρ
2
]

.

y.i =



































yi if i ∈ R

yr

�

n

�

xn

xr

�β

− r

�

xi
�

i∈Rc
xi

if i ∈ Rc .

t2 = yr

(

xn

xr

)β

.

B(t2) = θr,nY

[

β(β − 1)

2
C2
x − βCyx

]

.

βopt = ρ
Cy

Cx
.
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Kadilar and Cingi8 suggested the following regression type estimators of Y  under the case of missing obser-
vations as,

The biases and MSEs of ti(i = 3, 4, 5 ) for an approximation of order are respectively given by, B(t3) ∼= θn,NYC
2
x , 

B(t4) ∼= θr,NYC
2
x , B(t3) ∼= θr,nYCyx and

where, R = Y
X

 and β =
Syx
S2x

.
Singh22 suggested a new modified imputation method for estimation of Y  and suggested the following vari-

able as,

The resultant estimator of Y  is given by,

where, α is a scalar to be obtained so that MSE(t6) is least.
The bias and MSE of t6 for an approximation of degree one respectively are,

The optimal value of α for which MSE(t6) is least is given by αopt = ρCy

/

Cx.
The least value of MSE(t6) for αopt is,

Singh et al.23 suggested a new imputation method using exponential function as,

The resultant estimator of Y  under imputation method is given by,

where, α is a constant to be obtained so that MSE(t7) is least.
The bias and MSE of t7 for an approximation of degree one respectively are,

The optimal value of α is given by,

(4)MSEmin(t2) = MSEmin(t1)− θr,nS
2
x

(

Syx

S2x
−

Y

X

)2

.

t3 =
[

yr + β̂(X − xr)
] X

xr
, t4 =

[

yr + β̂(X − xn)
] X

xn
, t5 =

[

yr + β̂(X − xn)
]xn

xr
.

(5)MSEmin(t3) = MSEmin(t1)− θr,NS
2
x(R

2 − β2),

(6)MSEmin(t4) = MSEmin(t1)− θn,NS
2
x(R

2 − β2),

(7)MSEmin(t5) = MSEmin(t1)− θr,n[(R + β)2S2x − 2(R + β)Syx],

y.i =















yi if i ∈ R

yr

�

(n− r)xn + α r(xn − xr)

α xn − (1− α)xr

�

xi
�

i∈Rc
xi

if i ∈ Rc .

t6 =
yrxn

α xr + (1− α)xn

B(t6) = Y
[

θn,NCyx + α2θr,nC
2
x + (1− α)2θn,NC

2
x − α(θr,nCyx + θn,NC

2
x)

+2α(α − 1)θn,NC
2
x − (1− α)θn,N (Cyx + C2

x)
]

(8)MSEmin(t6) = MSEmin(t1)− θr,nS
2
x

(

Syx

S2x
−

Y

X

)2

.

y.i =



















α
n

r
yi + (1− α)yr exp

�

X − xr

X + xr

�

if i ∈ R

(1− α)yr exp

�

X − xr

X + xr

�

if i ∈ Rc .

t7 = α yr + (1− α)yr exp

(

X − xr

X + xr

)

.

B(t7) = (1− α)θr,NY

(

3

8
C2
x −

1

2
Cyx

)

,

MSE(t7) = θr,NY
2
[

C2
y +

(1− α)2

4
C2
x − (1− α)Cyx]

]

.
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The least MSE of t7 for αopt is given by,

Gira10 suggested a novel imputation method for the estimation of Y  as,

The resultant estimator of Y  is given by,

where, δ is the scalar to be obtained so that MSE(t8) is least.
The bias of t8 is given by,

The optimal value of δ for which MSE(t8) is least, is given by,

The least value of MSE(t8) for δopt is,

Singh et al.4 worked on a new imputation method as,

The resultant point estimator of Y  is given by,

The bias and MSE of t9 for an approximation of degree one respectively are,

The optimum value of m is given by,

The least value of MSE(t9) for mopt is,

Aliyu et al.24 suggested a new imputation method for the estimation of Y  as,

The resultant estimator of Y  is,

αopt = 1− 2
Cyx

C2
x

.

(9)MSEmin(t7) = MSEmin(t1)− θr,nS
2
x

(

Syx

S2x
−

Y

X

)2

.

y.i =















yi if i ∈ R

yr

�

n
(δ − xr)

(δ − xn)
− r

�

xi
�

i∈Rc
xi

if i ∈ Rc .

t8 = yr

[

(δ − xr)

(δ − xn)

]

.

B(t8) = −θr,n
X Y

δ − X
Cyx .

δopt = X

(

Cx

ρCy
− 1

)

.

(10)MSEmin(t8) = V(t0)− θr,nY
2
ρ2C2

y .

y.i =















yi if i ∈ R

yr

�

{m (n+ r)− r}xn + {(1−m)n−mr}xn

m xn − (1−m)xr

�

xi
�

i∈Rc
xi

if i ∈ Rc .

t9 = yr

[

mxr + (1−m)xn

mxn + (1−m)xr

]

.

B(t9) = θr,nY
[

(2m2 − 3m+ 1)C2
x + (2m− 1)Cyx

]

,

MSE(t9) = Y
2
[

θr,NC
2
y + (1− 2m)2θr,nC

2
x − 2(1− 2m)θr,nCyx

]

.

mopt =
1

2

(

1− ρ
Cy

Cx

)

.

(11)MSEmin(t9) = V(t0)− θr,nY
2
ρ2C2

y .

y.i =











yi if i ∈ R

1

n− r

�

n

�

α yr + (1− α)yr
xr

X

�

exp

�

X − xr

X + xr

�

− ryr

�

if i ∈ Rc .
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The bias and MSE of t10 for an approximation of degree one respectively are,

The optimum value of α is given by,

The least value of MSE(t10) for αopt is,

Suggested computational strategy
Searls25 suggested and proved that an estimator which is a constant multiple of sample mean estimator, is more 
efficient than the sample mean estimator. This has also been proven by various authors for ratio and product 
estimators. Therefore, motivated by Searls25 and Aliyu et al.24, we suggest the following imputation strategy for 
the estimation of Y  as,

The resultant point estimator of Y  is,

where, κ1 and κ2 are the Searls constants to be obtained so that the MSE of tp is least and κ1 + κ2 �= 1 . If 
κ1 + κ2 = 1 , then the suggested estimator reduced to Aliyu et al.24 estimator.

The properties of the sampling distribution of tp , the standard approximations are given as,
yr = Y(1+ e0) , xr = X(1+ e1).
such that E(e0) = E(e1) = 0 and E(e20) = θr,NC

2
y , E(e21) = θr,NC

2
x , E(e0e1) = θr,NCyx.

Expressing tp in terms of e′is(i = 0, 1 ), expanding and retaining the terms for an approximation of order one, 
we have,

Subtracting Y  on both sides of above equation, we get,

Taking expectation on both sides and putting values of different expectations, we have bias of tp as,

t10 =

{

α yr + (1− α)yr
xr

X

}

exp

(

X − xr

X + xr

)

.

B(t10) = θr,NY

[

−

(

1

8
− α

)

C2
x +

(

1

2
+ α

)

Cyx

]

.

MSE(t9) = θr,NY
2

[

C2
y +

(

1

2
− α

)2

C2
x + 2

(

1

2
− α

)

Cyx

]

.

αopt =
1

2
+ ρ

Cy

Cx

(12)MSEmin(t10) = θr,NY
2
C2
y (1− ρ2).

y.i =











yi if i ∈ R

1

n− r

�

n

�

κ1 yr + κ2 yr
xr

X

�

exp

�

X − xr

X + xr

�

− ryr

�

if i ∈ Rc .

tp =

{

κ1 yr + κ2 yr
xr

X

}

exp

(

X − xr

X + xr

)

tp =

[

κ1Y(1+ e0)+ κ2Y(1+ e0)
X(1+ e1)

X

]

exp

[

X − X(1+ e1)

X + X(1+ e1)

]

,

= [κ1Y(1+ e0)+ κ2Y(1+ e0)(1+ e1)] exp

[

−e1

2+ e1

]

,

= Y [κ1(1+ e0)+ κ2(1+ e0)(1+ e1)] exp

[

−
e1

2
+

e21
4

]

,

= Y [κ1(1+ e0)+ κ2(1+ e0 + e1 + e0e1)]

[

1−
e1

2
+

3e21
8

]

,

=

[

κ1

(

1+ e0 −
e1

2
−

e0e1

2
+

3e21
8

)

+ κ2

(

1+ e0 +
e1

2
+

e0e1

2
−

e21
8

)]

.

(13)tp − Y = Y

[

κ1

(

1+ e0 −
e1

2
−

e0e1

2
+

3e21
8

)

+ κ2

(

1+ e0 +
e1

2
+

e0e1

2
−

e21
8

)

− 1

]

.

B(tp) = Y

[

κ1

(

1−
1

2
θr,NCyx +

3

8
θr,NC

2
x

)

+ κ2

(

1+
1

2
θr,NCyx −

1

8
θr,NC

2
x

)

− 1

]

.
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Squaring on both sides of (13), simplifying and putting the terms for an approximation of degree one, we 
get the MSE of tp as,

Putting the values of different expectations, we get,

w h e r e  A = {1+ θr,N (C
2
y + C2

x − 2Cyx)}   ,  B = {1+ θr,N (C
2
y − 2Cyx)}   ,  C = (1+ θr,NC

2
y )   , 

D =
(

1− 1
2 θr,NCyx +

3
8 θr,NC

2
x

)

 , F =
(

1− 1
2θr,NCyx −

1
8 θr,NC

2
x

)

.
The optimal values of κ1 and κ2 , which reduces the MSE of tp respectively are,

The minimum value of MSE(tp) for the optimum values of κ1 and κ2 is,

where,

Theoretical efficiency comparison
In this section, the introduced estimator has been compared with the estimators of Y  in competition under 
imputation methods in terms of their efficiencies. The efficiency conditions for which the introduced estimator 
is more efficient than the completing estimators are obtained.

The introduced estimator tp is better than t0 under imputation method if,

The introduced estimator tp has lesser MSE than the usual ratio estimator tr for the condition if,

The suggested estimator tp performs better than the Singh and Horn20 estimator t1 for the condition if,

The proposed estimator tp is more efficient than the Singh and Deo21 estimator t2 if,

MSE(tp) = Y
2
E

[

κ1

(

1+ e0 −
e1

2
−

e0e1

2
+

3e21
8

)

+ κ2

(

1+ e0 +
e1

2
+

e0e1

2
−

e21
8

)

− 1

]2

,

= Y
2
E
[

1+ κ21
(

1+ e20 + e21 − 2e0e1
)

+ κ22
(

1+ e20 + 2e0e1
)

+ 2κ1κ2
(

1+ e20
)

−2κ1

(

1−
1

2
e0e1 +

3

8
e21

)

− 2κ2

(

1−
1

2
e0e1 −

1

8
e21

)]

.

(14)

MSE(tp) = Y
2
[

1+ κ21

{

1+ θr,N

(

C2
y + C2

x − 2Cyx

)}

+ κ22

{

1+ θr,N

(

C2
y − 2Cyx

)}

2κ1κ2

(

1+ θr,NC
2
y

)

−2κ1

(

1−
1

2
θr,NCyx +

3

8
θr,NC

2
x

)

− 2κ2

(

1−
1

2
θr,NCyx −

1

8
θr,NC

2
x

)]

,

MSE(tp) = Y
2[
1+ κ21A+ κ22B+ 2κ1κ2C − 2κ1D − 2κ2F

]

κ1(opt) =
BD − CF

AB− C2
and κ2(opt) =

AF − DC

AB− C2
.

(15)
MSEmin(tp) = Y

2













1−

�

2(AF − DC)F + 2(BD − CF)D − 2(AF − DC)(BD − CF)C

−(BD − CF)2A− (AF − DC)2B

�

(AB− C2)2













,

MSEmin(tp) = Y
2
�

1−
L

M2

�

L =

{

2(AF − DC)F + 2(BD − CF)D − 2(AF − DC)(BD − CF)C

−(BD − CF)2A− (AF − DC)2B

}

,

M = (AB− C2).

(16)
V(t0)−MSEmin(tp) > 0, or

θr,N C2
y −

[

1−
L

M2

]

> 0.

(17)
MSE(tr)−MSEmin(tp) > 0, or

θr,n[C
2
y + C2

x − 2Cyx] +
L

M2
> 1.

(18)
MSEmin(t1)−MSEmin(tp) > 0, or

C2
y [θr,N − θr,nρ

2] +
L

M2
> 1.
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The introduced estimator tp has lesser MSE than the Kadilar and Cingi8 estimators ti ; (i = 3, 4, 5) ) under 
the conditions if,

The suggested estimator tp performs better than the Singh22 estimator t6 for the condition if,

The proposed estimator tp is more efficient than the Singh et al.23 estimator t7 for the condition if,

The introduced estimator tp performs better than the Gira10 estimator t8 for the condition if,

The suggested estimator tp has lesser MSE than the Singh et al.4 estimator t9 if the following condition is 
satisfied.

The introduced estimator tp is more efficient than the Aliyu et al.24 estimator t10 under the condition if,

Empirical study
To verify the efficiency conditions of the introduced estimator over the estimators in competition, we have con-
sidered the following three natural populations. The data of Population-1 has been taken from Murthy26, while 
Population-2 has been taken into account from Cochran27 and the data set of Population-3 has been obtained 
from Sarndal et al.28 for both study and the auxiliary variables. These populations are of different natures as per 

(19)

MSEmin(t2)−MSEmin(tp) > 0, or

MSEmin(t1)− θr,n S
2
x

(

Syx

S2x
−

Y

X

)2

+
L

M2
> 1.

MSEmin(ti)−MSEmin(tp) > 0; i = 3, 4, 5; or

(20)MSEmin(t1)− θr,NS
2
x(R

2 − β2)+
L

M2
> 1,

(21)MSEmin(t1)− θn,NS
2
x(R

2 − β2)+
L

M2
> 1,

(22)MSEmin(t1)− θr,n
[

(R + β)2S2x − 2(R + β)Syx
]

+
L

M2
> 1.

(23)

MSEmin(t6)−MSEmin(tp) > 0, or

MSEmin(t1)− θr,nS
2
x

(

Syx

S2x
−

Y

X

)2

+
L

M2
> 1.

(24)

MSEmin(t7)−MSEmin(tp) > 0, or

MSEmin(t1)− θr,nS
2
x

(

Syx

S2x
−

Y

X

)2

+
L

M2
> 1.

(25)
MSEmin(t8)−MSEmin(tp) > 0, or

V(t0)− θr,nY
2
ρ2C2

y +
L

M2
> 1.

(26)
MSEmin(t9)−MSEmin(tp) > 0, or

V(t0)− θr,nY
2
ρ2C2

y +
L

M2
> 1.

(27)
MSEmin(t10)−MSEmin(tp) > 0, or

θr,NY
2
C2
y (1− ρ2)+

L

M2
> 1.

Table 1.   Parameters of the three natural populations.

Population-1: Murthy26 Population-2: Cochran27 Population-3: Sarndal et al.28

N = 80 , n = 25,r = 20 N = 10 , n = 5,r = 4 N = 284 , n = 35,r = 25

Y = 5182.638 , X = 285.125 Y = 56.900 , X = 54.296 Y = 29.360 , X = 245.088

Cy = 0.354 , Cx = 0.949 Cy = 0.184 , Cx = 0.162 Cy = 1.760 , Cx = 2.430

β1(x) = 0.949 β1(x) = 0.496 β1(x) = 8.770

β2(x) = 3.536 , ρyx = 0.914 β2(x) = 2.593 , ρyx = 0.924 β2(x) = 88.880 , ρyx = 0.961
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their populations sizes and, we have taken samples of different sizes to see the performances of the competing 
and introduced estimators. The parameters of the considered three populations along with their sources are 
presented in Table 1.

Table 2 represents the MSE of different estimators in competition and the introduced estimator along with the 
Percentage Relative Efficiency (PRE) of various estimators with respect to t0 for all the three natural populations.

MSEs for Population-1

Figure 1.   MSEs of Different estimators.

MSEs for Population-2

Figure 2.   MSEs of Different estimators.

MSEs for Population-3

Figure 3.   MSEs of Different estimators.

PREs w.r.t. t0 for Population-1

Figure 4.   PREs of Different estimators.
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The following Figs. 1, 2 and 3 represent the MSEs of the estimators in competition and the introduced estima-
tors for the three real natural populations respectively.

The following Figs. 4, 5 and 6 represent the PREs of the competing and the suggested estimators with respect 
to t0 for the three natural populations respectively.

Simulation study
In this section, an artificial data has been generated for the comparison of competing and introduced imputation 
methods for the large simulated population to see the nature of different estimators under comparison. We have 
generated a population using the same parameters of the real population-3. We have taken a sizable sample to 
examine the nature of the suggested estimator and other estimators for large samples, rather than taking into 
account the changing sample size in the simulation study because it is well-established in the literature that the 
estimate becomes closer to the true parameter as the sample size increases. We created the population using a 
normal distribution because it is widely known that all theoretical and sampling distributions approach a normal 
distribution for big sample sizes. This means that the findings of more complicated real-world scenarios with 
various sample sizes would remain unchanged. A bivariate normal distribution with mean vectors and a vari-
ance–covariance matrix is used to construct the population as:

Means of [ Y , X ] as µ = [29.360, 245.088].

Variances and covariance of [Y , X] as σ 2 =

[

2670.161 29574.704

29574.704 354696.288

]

.

Correlation ρyx = 0.961.
The following steps have been used for the simulation of the required population:

(a)	 A bivariate normal distribution of X and Y of size N = 5000 have been generated through these parameters 
using R Program.

(b)	 The parameters have been computed for this simulated population of size N = 5000.
(c)	 A sample of size n = 200 has been selected from this simulated population with response rate r = 160.
(d)	 Sample statistics that is sample mean, sample variance and the values of the introduced and competing 

estimators ti , i = 0, 1, ..., 10, p of Y  are calculated for this sample under imputation technique.
(e)	 Steps (c) and (d) are repeated m = 50, 000 times.

(f)	 The MSE of every estimator ti is calculated through the formula, MSE(ti) =
1
m

m
∑

j=1

(tij − Y)2.

(g)	 The PRE of each of the estimator ti with respect to t0 has been calculated using the formula:
(h)	 PRE(ti) =

MSE(t0)
MSE(ti)

× 100 , i = 1, 2, ..., 10, p

PREs w.r.t. t0 for Population-2

Figure 5.   PREs of Different estimators.

PREs w.r.t. t0 for Population-3

Figure 6.   PREs of Different estimators.
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Table 3 represents the PRE of various estimators of  under imputation methods with respect to  for the 
simulated population.

These results are also prsesnted in the form of graph in Fig. 7 given below as,

Results and discussion
From Table 2, it may be observed that the MSEs of the competing estimator of Y  under imputation methods lie 
in the intervals [98215.14, 926,966.20], [11.77, 16.44] and [69.22, 97.40] while for the suggested estimator, these 
are 90,056.57, 10.04 and 61.75 for Population-1, Population-2 and Population-3 respectively. On the other hand 
the PREs of various estimators with respect to t0 lie in the intervals [13.63, 128.66], [102.62, 139.68] and [50.43, 
140.41] while the PREs of the suggested estimator are 140.32, 163.75 and 158.41 for Population-1, Population-2 
and Population-3 respectively. The same results may also be verified from the figures from Figs. 1, 2, 3, 4, 5, and 6 
for the three real populations under consideration. It may also be observed from Table 3 that the PREs of various 
estimators in competition with respect to t0 lie in the interval [61.76, 149.81] and for the introduced estimator 
is 172.68, which may also be verified from Fig. 7 for the simulated data.

PREs of different estimators w.r.t t0

Figure 7.   PREs of different estimators for the simulated population.

Table 2.   MSE and PRE of different estimators with respect to t0.

Estimator

Population-1 Population-2 Population-3

MSE PRE MSE PRE MSE PRE

t0 126,366.00 100.00 16.44 100.00 97.40 100.00

tr 203,055.80 62.23 11.78 139.56 74.60 130.56

t1 98,215.14 128.66 11.77 139.68 69.22 140.71

t2 98,215.14 128.66 11.77 139.68 69.22 140.71

t3 926,966.20 13.63 15.17 108.37 193.13 50.43

t4 713,472.80 17.71 15.60 105.38 163.14 59.71

t5 339,859.40 37.18 16.02 102.62 127.39 76.46

t6 98,215.14 128.66 11.77 139.68 69.22 140.71

t7 98,215.14 128.66 11.77 139.68 69.22 140.71

t8 98,215.14 128.66 11.77 139.68 69.22 140.71

t9 98,215.14 128.66 11.77 139.68 69.22 140.71

t10 98,215.14 128.66 11.77 139.68 69.22 140.71

tp 90,056.57 140.32 10.04 163.75 61.49 158.41

Table 3.   PRE of different estimators with respect to t0 for the simulated population.

Estimator t0 tr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 tp

PRE 100.00 138.47 149.81 149.81 61.76 68.52 85.94 149.81 149.81 149.81 149.81 149.81 172.68
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Conclusion
In this manuscript, we have introduced a new class of estimators of Y  under imputation method. The bias and 
the MSE of the introduced family have been studied for an approximation of degree one. Through theoretical 
comparison with competing estimators using imputation techniques, efficiency requirements over competing 
estimators are produced for the suggested estimator. Along with a simulated population, three actual natural 
populations are used to confirm these efficiency criteria of the presented estimators. It has been found that 
the suggested estimators is having least MSE in all three real populations and has heighest PRE for all real and 
simulated populations. Thus it is evident that the introduced estimator is the most efficient among the class of 
all estimators of Y  in competition under the imputation methods. As the proposed estimator is most efficient, 
therefore it is recommended for use in different ares of applications including Agricultural Sciences, Biological 
Sciences, Commerce, Engineering, Economics, Fishries, Medical Science, Social Science and other areas of appli-
cations. For instance, as certain experimental units must be discarded during the experiment, in therapeutic or 
life-saving drug testing studies. In a manner similar to this, diseases, livestock grazing, or other natural calamities 
kill crops during agricultural experiments.

Data availability
All relevant data is within the manuscript.
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