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Optimal sizing and location 
of grid‑interfaced PV, PHES, 
and ultra capacitor systems 
to replace LFO and HFO based 
power generations
Isaac Amoussou 1, Emmanuel Tanyi 1, TakeleFerede Agajie 1,2, Baseem Khan 3* & 
Mohit Bajaj 4,5,6,7

The impacts of climate change, combined with the depletion of fossil fuel reserves, are forcing human 
civilizations to reconsider the design of electricity generation systems to gradually and extensively 
incorporate renewable energies. This study aims to investigate the technical and economic aspects 
of replacing all heavy fuel oil (HFO) and light fuel oil (LFO) thermal power plants connected to the 
electricity grid in southern Cameroon. The proposed renewable energy system consists of a solar 
photovoltaic (PV) field, a pumped hydroelectric energy storage (PHES) system, and an ultra‑capacitor 
energy storage system. The economic and technical performance of the new renewable energy system 
was assessed using metrics such as total annualized project cost (TAC), loss of load probability (LOLP), 
and loss of power supply probability (LPSP). The Multi‑Objective Bonobo Optimizer (MOBO) was used 
to both size the components of the new renewable energy system and choose the best location for the 
solar PV array. The results achieved using MOBO were superior to those obtained from other known 
optimization techniques. Using metaheuristics for renewable energy system sizing necessitated the 
creation of mathematical models of renewable energy system components and techno‑economic 
decision criteria under MATLAB software. Based on the results for the deficit rate (LPSP) of zero, the 
installation of the photovoltaic field in Bafoussam had the lowest TAC of around 52.78 ×  106€ when 
compared to the results for Yaoundé, Bamenda, Douala, and Limbe. Finally, the project profitability 
analysis determined that the project is financially viable when the energy produced by the renewable 
energy systems is sold at an average price of 0.12 €/kWh.
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Electricity is always generated by converting non-renewable energy sources, such as heavy fuel oil, light fuel 
oil, coal, and natural gas, on the one hand, and renewable energy sources, such as solar radiation, on the other. 
Fossil fuels make up a significant proportion of the energy sources used in power generation worldwide. The 
consequences of using such polluting energy sources to generate electricity are both economic and environ-
mental. Indeed, the energy sector is the largest emitter of greenhouse gases into the atmosphere. In 2020, this 
sector alone generated 20  GtCO2, accounting for approximately 37% of total greenhouse gas emissions into the 
 atmosphere1. Furthermore, in 2021, the electricity and heat production sectors accounted for 46% of the increase 
in greenhouse gas  emissions2. The release of greenhouse gases into the atmosphere accelerates global warming, 
with tragic consequences for human societies. If nothing is done, extreme climatic phenomena such as storms 
and cyclones will become recurrent, as will droughts on every continent, including Africa. The competitiveness 
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of diesel, HFO, and natural gas-fired power plants is greatly affected by global hydrocarbon prices. These prices 
have a general upward trend and fluctuate according to factors exogenous to the hydrocarbon extraction sector, 
such as wars and health crises. Finally, the depletion of hydrocarbon reserves, predicted by some studies to occur 
in a few  decades3, is forcing human societies to think about alternatives to these non-renewable energy sources. 
Electricity generation system architectures must, therefore, progressively integrate renewable energy production 
systems in order to replace thermal power plants with renewable energy plants.

Renewable energy sources can be categorized into controllable sources such as hydroelectricity, biomass, and 
geothermal energy and intermittent sources such as solar and wind power. The total installed capacity of solar 
energy systems has grown steadily, as has the maturity of the technologies used in renewable energy systems. The 
technologies used in solar systems are increasingly mature and profitable. In fact, according to the International 
Renewable Energy Agency (IRENA), the cost of solar photovoltaic (PV) modules has fallen by around 93% over 
the last decade, and the levelized cost of energy (LCOE) has fallen by 85% for grid-connected applications over 
the same  period4. This has encouraged the installation of photovoltaic systems for a variety of applications. As 
a result, the average growth rate for photovoltaic systems rose to 34% between 2010 and  20205. The worldwide 
installed capacity of solar PV systems is estimated to be around 939 GW in  20216.

Annual electricity production in Cameroon is primarily derived from hydroelectric and thermal power 
plants. Hydroelectric power accounted for 70% of total consumption in Cameroon in  20217. Thermal power 
plants supply the remaining 30%. Given the negative environmental impact of fossil fuels and their increasing 
scarcity, the Cameroonian government needs to implement a policy of replacing existing thermal power plants 
with renewable energy systems, in particular solar photovoltaic systems. Cameroon receives abundant sunshine 
across its entire territory. Indeed, the average irradiance across the country ranges from 5.8 kWh/m2 in the north 
to 4.9 kWh/m2 in the  south8.

However, switching from thermal to renewable energy plants presents a number of technical and economic 
challenges. Indeed, replacing thermal power plants, whose energy production is perfectly controllable, with 
solar photovoltaic systems, which are inherently intermittent, may lead to production-demand mismatches. 
The uncontrollable and unpredictable nature of solar radiation can cause stability issues in Cameroon’s aging 
power grid. Energy storage systems can be combined with renewable energy systems to increase their  reliability9. 
Storage system implementation bridges the gap between production and consumption by delivering the energy 
required to meet demand in the event that solar power systems fail. Lithium  batteries10–12,  hydrogen13–15, com-
pressed air energy storage (CAES)16–18, and pumped hydro energy storage (PHES)19–21 are examples of storage 
systems that can be integrated with PV power plants to balance the supply and demand of energy. PHES is the 
most widely used storage system in the world, particularly for large-scale  applications22,23. This storage technol-
ogy has a relatively long lifespan and low energy production costs compared to alternative storage technologies. 
The presence of favorable topographical features for the installation of PHES  systems24 and the accessibility of 
water  resources25 are essential prerequisites. Nevertheless, PHES systems require a few minutes of transient time 
before they can meet load  demand26. Storage systems with high power  density27 and millisecond response times, 
such as ultra-capacitors (super-capacitors), are required to ensure grid reliability. However, integrating storage 
systems into PV power plants raises the capital and operating costs of renewable energy installations. Solar PV 
and energy storage systems must be optimally dimensioned in order to be competitive and attractive. To size 
renewable energy systems optimally, several methods are used. Two sizing methods were discovered to be the 
most widely used in the literature reviewed. These are  HOMER28,29, and meta-heuristics30,31. Several comparative 
studies of the results provided by the two sizing methods show that meta heuristics provide the best results in 
terms of system cost and reliability when compared to HOMER  software32–34.

Several studies have been conducted to investigate the optimal sizing of renewable energy systems using meta-
heuristic algorithms based on economic and technical criteria. Thus, in Ref.35, three algorithms, namely the whale 
optimization algorithm (WOA), particle swarm optimization (PSO), and fire fly (FF), were used to minimize 
the cost of energy (COE) and the loss of power supply probability (LPSP) for a hybrid wind/PV/biomass/PHES 
system isolated from the electrical grid. The WOA produced the best results in this study. In Ref.36, the effective-
ness of a modified crow search algorithm (CSA) in reducing fuel consumption in an autonomous PV/diesel/
PHES system was investigated. The modified CSA results were compared to the results obtained using the genetic 
algorithm (GA) and PSO. It has been discovered that the results obtained using modified CSA outperform those 
obtained using GA and PSO. The optimal sizing of a hybrid solar PV, biogas, and PHES system isolated from the 
electrical grid using metaheuristics such as the water cycle algorithm (WCA), moth flame optimization (MFO), 
and GA using total net present cost (TNPC) and loss of load probability (LLP) criteria has been completed in 
Ref.37. The WCA algorithm outperformed the others. WOA, WCA, grey wolf optimizer (GWO), and salp swarm 
algorithm (SSA) were used in Ref.38 to optimize the sizing of a grid-connected PV-Wind-PHES hybrid system 
with the goal of minimizing the COE. Under a well-defined loss of power supply probability, the WOA algorithm 
provided the best energy cost. The MOGWO algorithm was used  in39 to optimize the sizing of a hybrid storage 
system comprised of PHES (long-term storage) and battery (short-term storage) integrated with PV and wind 
renewable energy systems. This study discovered that the hybrid storage system outperformed PHES and batteries 
alone in terms of energy cost. In Ref.40, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm 
has been used to optimize the sizing of a PV-Wind-PHES hybrid system with the goal of minimizing the LCOE 
and LPSP. Furthermore, the authors determined the optimal sizing for hybrid solar PV-wind renewable energy 
systems with PHES while taking LCOE into  account41. According to the findings, a hybrid PV-wind system 
with PHES has the highest system capacity and the lowest LPSP and  COE42. It is possible to compensate for 
the intermittent nature of renewable energy sources by using PHES technology to support a microgrid hybrid 
solar-wind  system43. Several studies have examined the integration of fast-response storage systems, such as 
superconducting magnetic energy storage (SMES), with the  PHES44–46. The purpose of the SMES system was 
to provide energy as needed during the transitional periods necessary for the start-up of the primary storage 
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system, the PHES. The integration of supercapacitors with batteries in Ref.47 resulted in the development of a 
dependable renewable energy system that can efficiently respond to demand. Fast-response storage systems are 
essential for the widespread integration of renewable energy systems into the energy mix of nations worldwide. 
Finally, as intermittent renewable energies are integrated into the power grid, energy management becomes more 
complex. Energy management strategies for microgrids, including electric car energy storage as virtual system 
storage, were proposed in Refs.48–50, with the primary goals of reducing grid dependence and lowering energy 
costs. This work additionally seeks to create an energy management strategy for Cameroon’s southern intercon-
nected grid, allowing for large-scale integration of PV systems and PHES power plants.

The main goal of this work is to propose a new architecture for the electricity production system, which 
would replace the HFO and LFO power plants linked to the SIG with renewable energy systems comprised of a 
PV field, a PHES power plant, and an ultra-capacitor battery system. LOLP, LPSP, and TAC were used as tech-
nical–economic criteria to assess the reliability and investment required for the installation of new renewable 
energy systems. MOBO, MSSA, MOALO, MOPSO, SPEA2, and MOAVOA optimization techniques were used 
to achieve optimal and economically appealing results. The primary contributions of this work in comparison 
to previous studies can be succinctly summarized as follows:

1. Mathematical modelling of solar PV, PHES, and ultra-capacitor systems and their optimal dimensioning 
using multi-objective optimization algorithms as potential replacements for HFO and LFO thermal power 
plants connected to Cameroon’s southern interconnected grid were conducted. On this basis, the ultra-
capacitors were specifically sized to serve as the fast-response energy storage system required during the 
transition period necessary for the start-up of the PHES system.

2. The impact of the geographical location of the solar PV field on the total annualized cost was investigated 
in order to inform decision-makers about the best areas for PV installation in Cameroon’s southern region.

3. The payback period has been used to determine an energy selling price, which ensures the profitability of 
the proposed new renewable energy system.

4. This study can serve as a solid scientific foundation for the development and implementation of large-scale 
solar PV and PHES systems in Cameroon.

The subsequent sections of the paper are structured in the following manner: Section "Overview of the study 
area" provides an overview of the geographical area being studied. Section "Proposed renewable energy system" 
includes a schematic and description of the proposed renewable energy system, along with mathematical mod-
eling of its components. Section "Evaluation parameters" focuses on modeling the evaluation parameters, includ-
ing technical and financial aspects. Section "Formulation of problems and Optimization" presents the formula-
tion of the optimization problem. Section "Optimization Algorithms" describes the metaheuristic optimization 
techniques used in this study. Section "Proposed system operational strategies" discusses the energy management 
of the renewable system. Section "Result and discussion" presents the results and includes a discussion. Finally, 
Section "Conclusion and future research directions" provides a conclusion, followed by the references.

Overview of the study area
Southern interconnected grid
The Southern Interconnected Grid (SIG) of Cameroon is the most extensive, serving approximately six of the 
country’s ten regions. These are the Littoral, Center, South, West, North-West, and South-West regions. The SIG 
is made up of transmission lines rated at 225 kV/90 kV, substations rated at 225 kV/90 kV with 225 kV/90 kV 
transformers, distribution substations rated at 90 kV/30 kV and 90 kV/15 kV, and low-voltage distribution lines. 
The Edea and Songloulou hydroelectric dams, as well as the Mem’vele hydroelectric dam, account for a significant 
portion of the total capacity of power generation units connected to this grid. The thermal power plants were built 
primarily to meet rapidly increasing demand on the one hand and to provide backup power on the electricity grid 
during peak periods on the other. Thermal power plants linked to the SIG are managed by either the parastatal 
ENEO or independent producers. In contrast to the Lagdo hydroelectric dam in Cameroon’s semi-arid north, 
hydroelectric dams in the south, particularly in the Sanaga basin, are less affected by global warming. There are 
numerous thermal power plants connected to the southern interconnected grids that run on three types of fuel: 
gas, HFO, and diesel. Given the low cost of gas-fired power generation, the 216 MW gas-fired power station is 
the most commonly used, producing power at or above 75 MW continuously. Other thermal power plants assist 
in power grid stabilization during peak demand in specific areas or urban centers. It should also be noted that, 
due to the extremely high cost of diesel power generation, HFO power plants are in higher demand than LFO 
thermal power plants. Diesel-fired power plants are used as a last resort, particularly during peak periods on the 
electricity grid between 6 p.m. and 10 p.m. In 2021, ENEO’s thermal power plants generated approximately 7% 
of the total energy generated by all generation  systems7. Figures 1 and 2 depict the energy production profiles of 
the different thermal power plants, as well as the energy flow on the southern power grid.

Solar resource assessment
The majority of Cameroon’s territory receives abundant sunlight, making it an ideal location for the installation 
of small and large-scale solar photovoltaic systems. The average annual solar irradiation ranges from 4.9 to 5.8 
kWh/m2/day in the south and north,  respectively8. As reviewed in different research works, the northern regions 
of the country have significant potential for the installation of large-scale solar PV fields. Other regions of Cam-
eroon also have significant potential for solar photovoltaic resources. Indeed, the western and north-western 
regions, along with the rest of the country, have significant solar PV resource potential. The relatively mild aver-
age temperatures in some regions make solar PV systems ideal for installation. According to this  study51, the 
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cities of Bafoussam and Bamenda have a significant capacity for solar photovoltaic energy generation. Existing 
initiatives aim to exploit this untapped potential. The Cameroonian government and international partners are 
examining projects to install solar PV power plants in both the country’s north and  south8.

Figure 3 depicts monthly solar radiation data for localities with thermal power plants in southern Cameroon. 
The data in question were derived  from52. This figure reveals that solar PV has a strong potential in all geographi-
cal zones of Cameroon.

Figure 3 shows the minimum monthly solar radiation for Limbe, Douala, Bamenda, Yaoundé, and Bafous-
sam as 102.10 kWh/m2, 112.29 kWh/m2, 113.83 kWh/m2, 132.74 kWh/m2, and 133.32 kWh/m2, respectively. 
Limbe, Douala, Bamenda, Yaoundé, and Bafoussam have maximum monthly solar radiation measurements 
of 184.98 kWh/m2, 185.81 kWh/m2, 203.03 kWh/m2, 192.30 kWh/m2, and 205.62 kWh/m2, respectively. As a 
result, Bafoussam has the best insolation conditions for solar system installation when compared to Bamenda, 
Yaoundé, Douala, and Limbe.

Assessment of suitable locations for PHES systems in Cameroon
The availability of water resources and space at a sufficiently high altitude to provide sufficient potential energy 
determines the potential for large-scale installation of PHES systems. According to a  study53, Cameroon has 
significant potential for PHES system installation, particularly in the northern, western, and north-western 
regions. The total capacity of PHES systems that could be installed, according to the same study, is nearly 33.36 
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GWh. There are dozens of sites in the country’s south with favorable characteristics for the installation of PHES 
systems. Among the dozens of sites suitable for PHES systems, the following are the most important in terms 
of storage capacity: The Enep site has a capacity of 4.998 GWh and a height of 560 m, the Bamendjin site has a 
capacity of 4.804 GWh and a height of 549 m, and the Banakuma site has a capacity of 4.861 GWh and a height 
of 505  m53,54. A ranking of the various sites potentially suitable for installation based on multiple criteria revealed 
that the Enep site came in first place.

Proposed renewable energy system
The proposed renewable energy system consists of a PV field, a PHES power plant, and an ultra-capacitor bat-
tery system functioning as a fast-response storage system. The layout proposed for the integration of renewable 
energy resources with the PHES and ultra-capacity energy storage system is illustrated in Fig. 4.

Mathematical modeling of RES
A comprehensive understanding of the mathematical and economic models pertaining to renewable energy 
production sources and storage systems is imperative for the efficient sizing of each constituent component.

Solar photovoltaic generation system
In the literature, several mathematical models are used to calculate the power supplied by photovoltaic solar 
panels. The mathematical model utilized in this work has been used in several previous studies,  including55,56. 
The model incorporates hourly irradiation and temperature data, as well as the surface area and efficiency of 
solar PV panels. It is determined by Eq. (1)57,58.

Here, A represents the surface area of the solar panel,NPV represents the number of solar panels,G(t) repre-
sents the hourly irradiance of the site chosen for solar array installation, and ηpv represents the efficiency of the 
solar panel. Equation (2) expresses this  efficiency55,57:

where β is the temperature constant relative to the photovoltaic cells and ηr is the photovoltaic module’s refer-
ence efficiency. It is defined as the ratio of the module’s maximum power produced to the solar radiation power 
collected.

(1)PPV (t) = NPV × A× G(t)× ηpv

(2)ηpv = ηr × ηpc ×

[

1− β

(

Ta +

(

NOCT − 20

800

)

× G(t)− Tcref

)]

Figure 3.  Monthly solar radiation for the selected areas.
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ηpc is the degradation factor that takes into account the optimal operating point of the modules when using an 
MPPT converter. Tcref  is the reference temperature of the photovoltaic cells in the solar panel, Ta is the ambient 
temperature at the site, and NOCT is a solar panel-specific characteristic.

Energy storage system
The storage system consists of ultra-capacitors and a PHES power station. During the PHES system’s transitory 
switch-on phase, the ultra-capacitors are solely needed for fast response to demand. The PHES system was 
designed for long-term storage.

Power balance. The Power balance here is the difference between the energy production from the solar PPV 
field and the energy demand met by the thermal plants PDT.

Ultra-capacitor. When the PV field output is insufficient to fulfill demand and the PHES switch-on time, the 
ultra-capacitor storage system steps in. The transitory time of the PHES system switch-on is estimated to be 
three  minutes59 in this work. Because the simulation step is an hour, it is anticipated that the ultra-capacitors will 
only deliver the energy equivalent to the three-minute transient period of the PHES system when it is in demand. 

(3)EB(t) = PPV (t)× ηinv − PDT (t)

Solar Farm Ultra capacitor Energy Storage 

DC

AC

Bidirectional 

Converter

AC Transmission Line

DC Bus

National Grid

Connected Load

Pumped Hydro Energy Storage 

Transformer 2

Transformer 1

Figure 4.  Proposed renewable energy systems interfaced to the grid with PHES and ultra-capacitors storage 
systems.
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The ultra-capacitors are charged when the energy produced by the PV system exceeds demand. Equation (4) 
describes the energy flow in ultra-capacitors and is inspired by that proposed in Ref.47.

This energy flow in the ultra-capacitor storage system is subject to the constraints described below:

Here, EUC(t) represents the energy present in the ultracapacitors at time t,δ is the self-discharge rate of ultra-
capacitors,EUC(t − 1) represents the energy available at time t-1, Emin

UC  represents the minimum energy imposed, 
Emax
UC  represents the rated capacity of the ultracapacitor system, PUC(t) represents the power supplied/charged 

and Pmax
UC  represents the maximum rated power of the ultra-capacitors.When charging, PUC(t) is positive, and 

when discharging, PUC(t) is negative.

Pumped hydro energy storage system. The PHES plant operates in two modes: water pumping when the 
energy balance is more significant than zero and energy generation when the energy balance is less than zero.

(a) PHES generating mode: If EB(t) < 0 , the demand exceeds the output of the PV and wind systems. In this 
instance, the energy must come from the PHES system. Equations (6) and (7) are derived from the models used 
in the  papers38,56 and represent the operation of the PHES in generating mode.

Here, it is assumed that the water density ρ and gravitational constant g are 1000  m3/kg and 9.81 m/s2, respec-
tively. H equals the sum of the water level height in the upper reservoir and the elevation of the upper reservoir’s 
location above the lower reservoir. It is determined using Eq. (8). The height caused by the water level in the upper 
tank is dependent on the structure used to build it. Equation (9) permits its evaluation for a particular type of 
construction structure. This additional height is disregarded in this study due to the height h of the chosen site 
in relation to the lower reservoir, which is several hundred meters.

Equation (10) determines the power PPHES supplied by the PHES system to the  loads60.

(b) PHES Pumping Mode: In the event that EB(t) > 0 , it indicates the presence of surplus energy within the 
power grid. In the event that the upper reservoir is not at maximum capacity, the PHES system transitions into 
a pumping mode until the upper reservoir reaches its full capacity. Equations (11) and (12) are derived from the 
models used in the  papers38,56 and represent the operation of the PHES in pumping mode.

Here, ηP refers to the efficiency of the PHES system in pumping mode.
In pumping mode, the power consumed over time by the PHES system is calculated using Eq. (13)60.

Model of the reservoirs. Equation (14) estimates the quantity of water present in the upper reservoir.

Here, γ represents the rate of evaporation and leakage over time.
The water volume in the upper reservoir fluctuates within the predetermined minimum and maximum 

limits.Vmin ≤ V(t) ≤ Vmax

Equation (15) is used to compute the total energy stored in the upper reservoir, EC , expressed in  kWh61,62:

(4)EUC(t) = (1− δ)× EUC(t − 1)+ ηUC ×�tPUC(t)

(5)

{

E
min
UC

≤ EUC(t) ≤ E
max
UC

0 ≤ |PUC(t)| ≤ P
max
UC

(6)EdisPHES(t) = min

{(

V(t − 1)− Vmin

3600

)

× g × ρ × ηt ×H ,min(PPHSn, |EB(t)|)

}

(7)qdis(t) =
EdisPHES(t)

g × ρ × ηt ×H

(8)hadd(t) =
V(t − 1)

area

(9)H(t) = h+ hadd(t)

(10)PPHES(t) = qdis × g × ρ × ηt ×H

(11)EchPHES(t) = min

{(

Vmax − V(t − 1)

3600

)

× g × ρ ×H ×
1

ηP
, min(PPHSn,EB(t))

}

(12)qch(t) =
ηP × EchPHS
g × ρ ×H

(13)PPump(t) =
ρ × g × qch(t)×H

ηP

(14)V(t) = (1− γ )× V(t-1)+ �t× (qch(t)− qdis(t))
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Surplus energy. Excess energy exists only when EB(t) > 0 and may be estimated using Eq. (16).

Inverter. The inverters must be capable of converting the DC power output of the PV array and ultra-capaci-
tors to AC.

Here, SF represents the safety factor and is greater than 1, Pinvn represents the nominal capacity of the 
inverters.

Power flow on the grid. Equation 18 expresses the maximum power transmitted through the electrical grid. 
Hydroelectric power stations serve as the primary source of electricity for the southern interconnected grid.

In this equation, PHydro represents hydroelectric power, while PGasT represents natural gas-fired power plants. 
The amount of power flowing through the grid must not exceed the grid’s maximum capacity ( Pmax

grid ).

If the maximum grid capacity is exceeded, the output of the photovoltaic system is curtailed.

Evaluation parameters
Sizing renewable energy systems requires decision criteria. These parameters are classified into two types: eco-
nomic and financial decision criteria and technical criteria for determining system reliability.

Reliability of the system
In this study, two reliability criteria were considered. These are loss of power supply probability (LPSP) and loss 
of load probability (LOLP).

Loss of power supply probability (LPSP)
The loss of power supply probability is a criterion that estimates the rate of energy deficit relative to demand 
over a given time period. This reliability criterion has been used in a number of  studies63–66. It is calculated using 
Eq. (20).

Loss of Load Probability (LOLP)
A criterion assessing the hourly deficit rate has been established to assess the reliability of new renewable energy 
systems. The LOLP criteria is determined by Eqs. (19) and (20)67,68.

In this instance, N = 8784 is the simulation period, and F is the failure frequency of the response y when it 
is negative.

Economic model
Several economic criteria were taken into account in this work. These are the total annualized cost (TAC) of the 
project over its lifetime, the levelized cost of energy (LCOE) assessed for each energy production system, and 
the net present value (NPV) assessed for each configuration studied.

Total annualized cost (TAC)
The TAC comprises the cumulative sum of the annual capital cost ( CCAP ), the yearly maintenance and operating 
costs ( CO&M ), and the annual replacement cost ( CREP)69,70.

(15)EC =
ηt × g × ρ × Vmax ×H

3.6× 106

(16)ES(t) = EB(t)− EchPHS(t)−�tPUC(t)

(17)
{

Pinv(t) ≥ PPV (t)+ PUC(t)
Pinvn = SF ×max(PPV (t)+ PUC(t))

(18)Pgrid(t) = PHydro(t)+ PGasT (t)+ PPV (t)

(19)Pgrid(t) ≤ Pmax
grid

(20)LPSP =

∑8784
i:1 PDT (t)− ηinv × PPV (t)− PPHES(t)−�tPUC(t)

∑8784
1:1 PDT

(21)LOLP = y
{

f (x) ≤ 0
}

=
1

N

t
∑

1

Fy

(22)f (x) = PPV (t)+ PPHES(t)+�tPUC(t)− PDT (t)
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The total annualized cost over the study period of the PV system and energy storage was evaluated.
(a) PV system: The total annualized cost of the PV system includes the initial cost and the cost of operations 

and maintenance. Considering the duration of the project (25 years) considered in this study, no component 
replacement will be made. It is calculated by Eq. (24):

where NPV represents the number of solar panels, CPV
cap represents the initial cost of the solar panels, CPV

O&M repre-
sents the cost of operations and maintenance of the PV systems.Thecost of capital recovery factor CRF depends 
on the rate of real interest rate and the project lifetime. It is provided by Eq. (25)69,70.

Here r represents the real interest rate, N  represents the considered study duration. The real interest rate 
depends on the nominal interest rate in and the inflation rate if 69,71.

(b) Inverters: The total life cycle cost of the inverters includes the capital cost, replacement cost, maintenance 
and operation costs, and salvage cost. The lifespan of the inverters considered here is 15 years. They are, therefore, 
replaced only once during the lifetime of the project.

where Pinvn represents the nominal power of the inverter, Cinv
cap represents the initial cost of the inverter, Cinv

O&M 
represents the cost of operations and maintenance of the inverters, Cinv

rep represents the replacement cost of the 
inverter, and kr represents the replacement cost discount factor. It depends on the real interest rate r and the 
component’s life span n . It is calculable using Eq. (28)72.

(c) Ultra-Capacitor System: The ultra-capacitor system’s total annualized cost includes both initial installation 
and ongoing maintenance and operating costs.

In this instance, EUCn denotes the nominal capacity, measured in kilowatt-hours (kWh), of the ultracapacitor 
system. CUC

cap refers to the initial cost of the ultracapacitor, whereas CUC
O&M indicates the expenses associated with 

its maintenance and operation.
(d) PHES System: The total annualized cost of the PHES system includes not only its initial investment but 

also its fixed and variable operating and maintenance cost. It is computed using the Eq. (30).

Here, the total annualized cost of the PHES over the considered period takes into account the total installed 
capacity PPHSn in kW, the initial installation cost CPHES

cap  in €/kW, the total capacity of the upper reservoir in kWh 
and its construction cost Cstor

cap  in €/kWh, the fixed maintenance cost related to the total installed capacity and its 
specific cost CPHES

O&M−f  in €/MW and finally, the variable maintenance cost depending on the quantity EPHESn of 
energy produced by the PHES system over a year and its unit cost CPHES

O&M−V in €/MWh.

Levelized cost of energy (LCOE)
The levelized cost of energy is used to calculate the lifetime cost of producing energy from a power plant. It is 
determined  by73:

where the variable It denotes the capital investments required for the installation of renewable energy systems. 
The variable Ot reflects the ongoing operational costs, while the variable Mt indicates the expenses associated 
with maintenance;Et is the annual energy produced.

Net present value (NPV)
The criteria for measuring a project’s cash flow were implemented to evaluate the profitability and payback time 
of the proposed new systems. The following equation expresses the  NPV74:

(23)TAC = CCAP + CREP + CO&M

(24)TACPV = NPV × CPV
cap × CRF + NPV × CPV

O&M

(25)CRF =
r(1+ r)N

(1+ r)N − 1

(26)r =
in − if

1+ if

(27)TACinv = Pinvn × (Cinv
cap × CRF + Cinv

rep × kr × CRF + Cinv
O&M)

(28)kr =
1

(1+ r)n

(29)TACinv = EUCn × (CUC
cap × CRF + CUC

O&M)

(30)TACPHES = (PPHSn × CPHES
cap + Ec × Cstor

cap )× CRF + PPHSn × CPHES
O&M−f + EPHESn × CPHES

O&M−V

(31)LCOE =
It +

∑N
i=1(Ot +Mt/(1+ r)i)
∑N

i=1

(

Et
(1+r)i

)
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where Ct is the difference between cash inflow and outflow.

Formulation of problems and optimization
The optimization problem in this study is bi-objective and is represented by Eq. (33). Equation (34) describes 
the constraints for this multi-objective optimization problem.

where, NL
PV  , PLPHSn , VL

n  , ELUC , represent the lower bounds of the optimization variables. NU
PV  , PUPHSn , VU

n  , EUUC 
represent the upper bounds of the optimization variables.

Optimization algorithms
In this paper, the optimization problem was solved using six different optimization techniques. These include 
multi-objective bonobo optimizer (MOBO), multi-objective salp swarm algorithm (MSSA), multi-objective 
ant lion optimizer (MOALO), multi-objective particle swarm optimization(MOPSO), improving the strength 
pareto evolutionary algorithm (SPEA2)and multi-objective African vulture’s optimization algorithm (MOAVOA).

MOBO is an adaptation of the bonobo optimizer(BO)technique introduced in Ref.75 that is designed to 
address multi-objective challenges. This algorithm takes its inspiration from the social behavior of  bonobos76. 
Several variants of this method are available, including a version that integrates a distance sorting approach and 
non-dominated crowding (MOBO-II)77. This algorithm has been employed to address a wide range of optimiza-
tion issues, particularly as documented in  references78–82. The variation employed in this work is the proposed 
one, which incorporates distance sorting and a non-dominated crowding approach.

MSSA is a multi-objective problem-solving version of the salp swarm algorithm(SSA) approach developed 
 in83. It is an algorithm inspired by the swarming and feeding behavior of salp in the seas. This approach has been 
used for a wide range of optimization problems, most notably  in84–87. This method was especially intended to 
handle the challenge of sizing renewable energy  plants88–91.

MOALO is an adaptation of the ant lion optimizer(ALO) for multi-objective problem  solving92. It is a natural-
inspired algorithm, more especially the hunting techniques used by ant  lions93. This approach has been used for 
a wide range of optimization problems, particularly in Refs.94–96.

The MOAVOA metaheuristic, which was introduced in Ref.97, is an adaptation of the African vultures optimi-
zation algorithm (AVOA)  technique98 designed to solve multi-objective problems. It is an algorithm inspired by 
nature, specifically the navigation and foraging behaviors of African vultures. Numerous optimization problems 
have been resolved utilizing this algorithm, including those in Refs.99,100.

MOPSO is the multi-objective problem-solving version of the PSO  technique101. This algorithm has been used 
for the dimensioning of renewable energy systems. It is one of the most popular  algorithms102–104.

SPEA2, an improvement on  SPEA105, is also a proven algorithm for solving complex optimization 
 problems106,107.

Proposed system operational strategies
Energy flow management on the grid is critical for increased grid resilience.

If Pgrid(t) > Pmax
grid  , the PV system output will be reduced until Pgrid equals Pmax

grid .
If Pgrid(t) ≤ Pmax

grid  , the electrical grid’s power flow is managed as follows:
Three situations are considered:

 I. If,ηinv × PPV (t) = PDT (t) , the output of the PV field equals the demand.
 II. If,ηinv × PPV (t) > PDT (t) , the PV field output exceeds the demand. The extra energy is used to charge 

the two storage systems, and the remainder is deemed excess energy.
 III. If,ηinv × PPV (t) < PDT (t) , PV field output is insufficient to fulfill demand. In this scenario, if the PHES 

plant were turned off, the ultra-capacitor system would provide the energy required to fulfill demand 
over a three-minute period. Following that, the PHES power plant takes over and meets the long-term 
energy needs.

The flow chart in Fig. 5 shows the proposed energy flow management strategy for new renewable energy 
systems.

(32)NPV =
∑N

i=1

Ct

(1+ r)i

(33)min(Objective Functions) = min

{

Reliability Parameter{LPSP}
Economical Parameter{TAC}

(34)
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Result and discussion
Figures 6, 7 and 8 show the hourly meteorological data for the locations selected as potential sites for the PV 
solar field. The meteorological data were acquired  from108.

Optimization algorithm results
The locality of Bafoussam was first chosen for the installation of the solar PV field in order to evaluate the perfor-
mance of each optimization algorithm. The Pareto fronts obtained through the utilization of the MOBO, MSSA, 
MOALO, SPEA2, MOPSO, and MOAVOA algorithms are depicted in Fig. 9.

Figure 9 reveals several key points. All six curves generated by the six algorithms are the same shape. When 
the criterion for measuring load shedding rate (LPSP) approaches zero, the total annualized project cost (TAC) 
for the MOBO, MSSA, MOALO, MOAOA, MOPSO, and SPEA2 meta-heuristics rises to 52.78 ×  106 €, 52.87 ×  106 
€, 56.61 ×  106 €, 53.08 ×  106 €, 53.17 × 106 €, and 56.49 ×  106 €, respectively. The second most obvious visual 
observation in Fig. 9 is that the six Pareto fronts generated by the six metaheuristics are nearly identical. The 
curves of the Pareto fronts show the contradictions between the objectives. TAC increases while LPSP decreases. 
It is worth noting that all points on the Pareto fronts provide optimal solutions for the specified configurations. 
These configurations correspond to the sizes of the renewable energy systems that will be installed, including 
PV, ultra-capacitor, and PHES capacities. Because the goal of this work is to completely replace LFO and HFO 
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Figure 5.  Flowchart describing the operation of the proposed grid-connected solar PV/PHES/Ultra-capacitor 
system.
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Figure 6.  Bafoussam and Bamenda hourly solar radiation and temperature data over a year.

Figure 7.  Douala and Yaounde hourly irradiation and temperature data over a year.
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Figure 8.  Limbe hourly irradiation and temperature data over a year.

Figure 9.  Pareto fronts obtained with different algorithms.
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thermal power plants, the remainder of the analysis will concentrate on the results obtained for the lowest LPSPs 
from each algorithm. The LPSP criterion here assesses the dependability of new renewable energy systems. When 
LPSP is zero, system reliability is 100%; when LPSP is 100%, then system reliability is zero. Table 1 displays the 
results of the six algorithms.

After analyzing the data in Table 1, the MOBO algorithm gave the most satisfactory result in terms of total 
annualized costs. The simulation results indicate that the total annualized costs of the MOBO, MSSA, MOALO, 
MOAVOA, MOPSO, and SPEA2 meta-heuristics are 52.78 ×  106 €, 52.87 ×  106 €, 53.08 ×  106 €, 56.61 ×  106 €, 
53.17 ×  106 €, and 56.49 ×  106 €, respectively. The TAC achieved using the MOBO algorithm is 0.17%, 0.57%, 
0.73%, 7.03%, and 7.26% lower compared to the TACs achieved using the MSSA, MOALO, MOPSO, SPEA2, 
and MOAVOA algorithms, respectively. The reported TACs for the metaheuristics MOBO, MOPSO, SPEA2, 
and MOAVOA are zero for LPSPs. However, the TACs for the metaheuristics MSSA and MOALO are 0.000078% 
and 0.0039%, respectively. As a result, compared to the other five methods, the TAC derived from the MOBO 
algorithm performs better. The consistent outcomes of the six algorithms serve as evidence of their exceptional 
quality and mutually validate the results they generate. MOBO was selected to analyze the influence of different 
reliability criteria on TAC and the optimal placement of PV system installation based on its superior performance 
compared to the other five algorithms. Table 1 also displays the various algorithm arrangements, such as the 
capacity of the solar, ultra-capacitor, and PHES systems.

Table 1.  The results provided by the six optimization algorithms for LPSP equal to zero after simulation.

Algorithm LPSP (%) TAC  (106€) PV (MW) PHES (MW) Storage  (m3) Euc (MWh)

MOBO2 0 52.78 350.06 182.64 1,252,768.10 10

MSSA 0.000078 52.87 346.66 193.30 1,246,216.85 10.06

MOAVOA 0 56.61 390.84 154.98 1,327,083.69 12.86

MOALO 0.0039 53.08 348.97 178.76 1,277,494.60 12.50

MOPSO 0 53.17 357.51 168.10 1,268,342.25 11

SPEA2 0 56.49 389.20 156.23 1,367,540.21 11.10

Figure 10.  Pareto fronts obtained for LPSP/LOLP.
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Impact of reliability criteria on TAC 
Figure 10 depicts the Pareto fronts obtained in this study for the two reliability criteria assessed for new renew-
able energy systems.

In Fig. 10, the Pareto fronts obtained for the two-reliability criterion have comparable curves. Total annualized 
cost rises when LOLP and LPSP decreases. As LPSP and LOLP approach 0, the Pareto front curves converge. 
When the LPSP/LOLP is equal to zero, the TACs estimated for the two reliability criteria are nearly identical, as 
shown in Table 2. The differences between the two Pareto fronts in Fig. 10 are primarily due to the LOLP reli-
ability criterion, which considers the time when renewable energy systems were able to meet the entire demand. 
When the energy available at a given time can only meet a portion of the demand, the LOLP criterion classifies 
this as a time when the renewable energy system was unable to meet the load.

Impact of the location of PV system on TAC 
The prospective sites for the solar plant were selected based on the geographical coverage of the southern con-
nected grid and the locations of the thermal power facilities. The outcomes acquired in this instance are displayed 
in Fig. 11.

Figure 11 shows that among the other locations, Bafoussam had the lowest total yearly cost of PV installation. 
It is also worth noting that Bamenda and Yaoundé had economically interesting outcomes. The coastal towns, on 
the other hand, provided the least substantial economic gains. Limbe had the poorest TAC results. The substantial 
variance in TACs discovered for different places is mostly explained by the large variation in PV system capacity 
depending on the locality under consideration. According to Table 3, the PV system size determined for Bafous-
sam is 350.06 MW, compared to Limbe’s 574.78 MW. As a result, the PV system planned for Limbe is 1.64 times 
larger than the PV system planned for Bafoussam. The same is true for the other towns. The size of the PV system 
is determined by the amount of solar radiation received at each site. As a result, installing a PV field in Bafoussam 
is more cost effective than in the other towns considered. Yaoundé, in addition to Bafoussam, will be included 
in the detailed economic assessments due to its administrative, demographic, and geographical significance.

Figure 12 depicts the cost-sharing arrangements of renewable energy system components.

Table 2.  Effects of LPSP & LOLP on TAC.

Criteria TAC (€) PV (MW) PHES (MW) Storage  (m3) Euc (MWh)

LPSP 52.78 ×  106 350.06 182.64 1,252,768.85 10

LOLP 52.80 ×  106 354.52 182.83 1,188,565.20 10

Figure 11.  Pareto fronts obtained for Bafoussam, Bamenda, Yaoundé, Douala and Limbe.
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Figure 12 depicts the PV system accounting for 47% of the total annualized project cost in the case where 
the PV system installation location is Bafoussam, the PHES system accounting for 31%, inverters accounting 
for 19%, and ultra-capacitors accounting for the remaining 3%. In the case of a PV system installed in Yaoundé, 
the PV system accounted for 48% of the total annualized cost of the project, the PHES system for 30%, inverters 
for 19%, and ultra-capacitors for the remaining 3%. In the two cases investigated, photovoltaic systems account 
for a more significant percentage of expenses than PHES storage systems. The contribution of each renewable 
energy source and storage technology to meeting demand is depicted in Fig. 13.

Table 3.  Impact of PV field installation site on TAC (LPSP = 0%).

Locations TAC (€) PV (MW) Pphs (MW) Storage  (m3) Euc (MWh)

Bafoussam 52.78 ×  106 350.06 182.64 1,252,768.85 10

Yaoundé 57.07 ×  106 390.81 167.30 1,477,515.22 10

Bamenda 57.57 ×  106 393.12 200 1,241,794.98 10

Douala 71.82 ×  106 520.10 199.99 1,628,329.03 10

Limbe 79.63 ×  106 574.98 200 2,000,000.00 10

Figure 12.  Share of each component in the project’s TAC.

Figure 13.  The role of storage in meeting total energy demand.
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In any event, ultra-capacitor systems provide very little energy compared to PHES and PV systems. The 
PHES system supplied 60% of the energy to the loads in the Bafoussam case, while the PV system supplied the 
remaining 39%. In the Yaoundé case, the PHES system supplied 63% of the required annual load, while the PV 
system supplied 37%. Figure 14 depicts the LCOEs for the PV, PHES, and ultra-capacitor systems to assess the 
proposed systems’ competitiveness.

The LCOE for the PV, PHES, and ultra-capacitor systems in the Bafoussam case is 0.037€/kWh, 0.0623€/kWh, 
and 3.322€/kWh, respectively, according to Fig. 14. The LCOE for the PV, PHES, and ultra-capacitor systems 
in the Yaoundé scenario is 0.043€/kWh, 0.063€/kWh, and 3.56€/kWh, respectively. The average cost of energy 
supplied by ultra-capacitors is quite high, owing to their position as a fast-response storage system, but also to 
the fact that their share of the overall system cost in any scenario is 3%, despite the fact that their total yearly 
energy supplied is less than 1% of demand.

Figures 15 and 16 represent the net present value over time to analyze the project’s payback period.
Figure 15 illustrates that regardless of the chosen site for the PV system installation, the investment does not 

become profitable until the end of the project’s lifespan if only load demand is considered. The Bafoussam and 
Yaoundé scenarios become cost-effective when surplus energy is considered, with payback periods of 17 and 
19 years, respectively.The energy-selling price was reassessed to determine its impact on the project’s profitability. 
Figure 16 depicts the consequences of increasing the selling price from 0.1€/kWh to 0.12€/kWh.

0.037 0.0430.0623 0.063

3.322
3.56

Bafoussam Yaounde

LCOE (€/kWh)

Ppv PHES UC

Figure 14.  Levelized cost of energy obtained for Bafoussam and Yaounde.

Figure 15.  Net present value for an energy selling price of 0.10€/kWh.
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Figure 16 demonstrates that the project is profitable under all scenarios analyzed. The payback periods for 
the Bafoussam and Yaoundé scenarios are 21 and 24 years, respectively, when considering only load demand. 
When surplus energy is absorbed and utilized by the power grid, payback periods are significantly shortened. 
The payback periods for Bafoussam and Yaoundé are 11 and 12 years, respectively, when excess energy is taken 
into account. The project’s profitability is mainly determined by the energy sales price. The project becomes 
profitable when electricity is sold at €0.12/kWh.

The dynamic behavior of the energy production/consumption of the PV system, the PHES power plant, and 
the ultra-capacitor system over a one-year period was analyzed only for the results obtained for the Bafoussam 
locality. Figure 17 depicts the demand, PV system output, and extra energy produced for the Bafoussam case 
during a one-year timeframe.

According to Fig. 17, the photovoltaic field produced a maximum power of 318 MW and an annual energy 
generation of 671.84 GWh.The surplus energy produced can reach a maximum capacity of 237 MW at times, with 
an annual energy surplus of 153.022 GWh. The surplus energy accounts for approximately 22.78% of the annual 
energy produced by the photovoltaic system.Installing hydrogen production systems based on water electrolysis 
would be one method of using this extra energy. The hydrogen generated might then be sold.

Figure 18 displays the energy generated/consumed, the quantity of water consumed/pumped, and the state 
of charge in the upper reservoir of the PHES system.

The yearly energy produced by the PHES system is 271.27 GWh, and the highest power output is 138 MW, 
which corresponds to the maximum load demand, as shown in Fig. 18. The yearly energy consumption in water 
pumping mode is 347.43 GWh, and the PHES system’s maximum power in pumping mode is 182.64 MW, cor-
responding to the PHES system’s rated capacity. The PHES system’s energy generated to energy-consumed ratio 
is roughly 0.75, equating to the system’s round-trip efficiency. The highest amount of water utilized to generate 
electricity is 102.50 thousand  m3, which is equivalent to the amount of water necessary to generate 138 MW of 
power for a PHES system at a height of 560 m. The PHES system can pump a maximum of 101.74 thousand  m3 
of water into the higher reservoir. The state of charge of the upper reservoir strictly complies with the minimum 
water limit set for the PHES reservoir. Figure 19 depicts the discharge and charge energy of the ultra-capacitor 
system.

The annual discharge energy generated by the ultracapacitor system is negligible in comparison to the energy 
produced by the PHES system, totaling 717.005 MWh, whereas the annual energy used to charge the ultraca-
pacitor system is 752.78 MWh. Figure 20 depicts the dynamic behavior of the energy production curves over a 
24-h period to help comprehend the operational and energy management processes for the overall renewable 
energy system.

According to the results of Fig. 20, the ultra-capacitor system discharges only during transitory periods, when 
the PHES system must begin producing energy. The discharge curve of the ultra-capacitor system is in energy 
magnitude and corresponds to the power provided by the ultra-capacitors throughout the 3-min period required 
to start the PHES system. It is also worth noting that the charging energy of the PHES system is limited by the 

Figure 16.  Net present value for an energy selling price of 0.12€/kWh.
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PHES system’s nominal capacity and the state of charge of the upper reservoirs. The ultra-capacitor system’s func-
tion in power system reliability is critical. Fast-response storage systems will play an increasingly important role 
in grid stability as intermittent renewable energy technologies are increasingly integrated into power networks.

Conclusion and future research directions
This study investigated the size of renewable energy systems comprised of a PV field, a PHES power plant, and an 
ultra-capacitor system for quick response to demand. The renewable energy systems will be used to replace the 
LFO and HFO thermal power facilities that are linked to Cameroon’s southern interconnected grid. LPSP, LOLP, 
and TAC are the techno-economic criteria used to evaluate the renewable energy system. Six metaheuristics, 
MOBO, MSSA, MOALO, MOAVOA, SPEA2, and MOPSO, were employed to ensure the appropriate scaling 
of these renewable energy systems. The outcomes of the six algorithms were compared. The MOBO algorithm 
produced the best outcome. Indeed, the TAC achieved with the MOBO algorithm is 0.17%, 0.57%, 0.73%, 7.03%, 
and 7.26% lower compared to the TACs achieved using the MSSA, MOALO, MOPSO, SPEA2, and MOAVOA 
algorithms, respectively. In addition, the ideal position of the PV field was investigated. According to the statis-
tics, the locality of Bafoussam had the best total annualized project cost, followed by the city of Yaoundé. The 
competitiveness of the new renewable energy system was investigated. It demonstrates that the capital necessary 
to build renewable energy systems may be repaid based on a selling price of 0.12€/kWh for the energy produced 
by the renewable energy systems.

As renewable energy sources continue to play an increasingly vital role in Cameroon’s energy landscape, 
future research can delve into various avenues to optimize and enhance the integration and utilization of these 
resources further. One potential direction is the exploration of technological integration and efficiency improve-
ment, where a comprehensive approach is taken to combine multiple renewable energy systems—such as wind, 
solar, and hydro—in a manner that optimizes their synergies and ensures a stable and sustainable power supply. 
Advanced control and management systems represent another promising area, with research opportunities lying 
in the development of systems that can optimize power generation, storage, and distribution in real-time. This 
would involve considerations such as weather conditions, demand variations, and grid requirements. Addition-
ally, research could delve into hybrid energy systems that combine renewable energy sources with conventional 
sources like gas or diesel generators, providing a reliable and cost-effective solution for regions with intermittent 

Figure 17.  Hourly variations of load, solar PV power generation, and excess power on the grid.
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renewable resources. Another avenue for future research is the exploration of energy storage technologies, includ-
ing batteries, compressed air energy storage (CAES), and flywheels. These technologies can play a critical role 
in maintaining grid stability and balancing supply and demand, thus warranting further investigation into their 
cost-effectiveness and suitability for Cameroon’s grid. Lastly, policy and regulatory frameworks can be refined and 
developed to incentivize investment in renewable energy infrastructure and foster sustainable energy develop-
ment, while community-level energy solutions, such as microgrids and decentralized energy systems, could be 

Figure 18.  Energy produced/consumed and volume of water discharged/pumped by the PHES system.
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Figure 19.  Ultra-capacitor charging/discharging power over a one-year period.
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explored to enhance energy access and resilience in rural areas. These future research directions collectively aim 
to contribute to the sustainable development of Cameroon’s energy sector, promoting energy access, mitigating 
climate change impacts, and fostering a supportive environment for renewable energy adoption.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Appendix
Technical and economic considerations.

PV system

  Model109 LONGI LR4-72HPH-450

 Rated power 450Wp

 NOCT 45◦C

 β 0.35%

 CPV
cap

110 857C /kW

 CPV
O&M 1%

 Life span 25years

PHES  system111

 ηt × ηp 75%

 CPHES
cap 5131C /kW

 Cost of balance 15C /kW

 Cstor
cap 68C /kWh

 CPHES
O&M−f 4.6C /kW

Figure 20.  A typical one-full day 24-h operation.
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 CPHES
O&M−V 0.22C MWh

Ultra-capacitor

 CUC
cap

112 2000$kWh

 CUC
O&M 1%

 Life  span112 Above 25 years

Inverter113

 CInv
cap 210$kW

 CInv
rep 210$/kW

 CInv
O&M 1%

 Life span 15years

Economic parameters

 in 7%

 if 3%

 Lifetime of the project 25years

Algorithm parameters

 Iteration 200

 Population 200
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